Temporal effects in EIT image reconstructions

Hervé Gagnon¹, Bartłomiej Grychtol² and Andy Adler¹.

- 1. Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada.
- 2. Fraunhofer Project Group for Automation in Medicine and Biotechnology, Mannheim, Germany.

Introduction

- Introduction
- Methods
- Results
- Discussion and Conclusion

- Reconstruction Algs assume that:
 - Conductivity distribution does not change during acquisition of an EIT data frame;
 - Successive EIT frames are not correlated.
- However, in reality, frames are correlated
- Methods to account for temporal effects:
 - Kalman filter
 - Temporal EIT reconstruction
 - Interpolation of EIT measurements
- Our questions:
 - When do we need to worry about artefacts?
 - How much do algorithms help?

Frequency domain representation

Methods

Results

Discussion and Conclusion

Frequency domain representation

Methods

Results

Discussion and Conclusion

Frequency domain representation

Methods

Results

Discussion and Conclusion

Overview of the method

Types of EIT frames

- Introduction
- Perfect EIT frames:
- Methods
- Results
- Discussion and Conclusion

- $v_{p}(nT_{f}) = \begin{bmatrix} f_{1}[\sigma(nT_{f})] \\ \vdots \\ f_{n_{m}}[\sigma(nT_{f})] \end{bmatrix}$
- Realistic EIT frames:

$$v_{\rm r}(nT_{\rm f}) = \begin{bmatrix} f_1[\sigma(nT_{\rm f})] \\ \vdots \\ f_{n_{\rm m}}[\sigma(nT_{\rm f} + (n_{\rm m} - 1)T_{\rm m})] \end{bmatrix}$$

Interpolated EIT frames:

$$[v_{i}(nT_{f})]_{i} = \frac{(i-1)[v_{r}((n-1)T_{f})]_{i} + (n_{m}-i+1)[v_{r}(nT_{f})]_{i}}{n_{m}}$$

One cycle of conductivity variation

- Methods
- Results
- Discussion and Conclusion

FOM as a function of time

- Introduction
- Methods
- Results
- Discussion and Conclusion

FOM as a function of frequency

FOM as a function of frequency (cycles/frame)
Radius = 0.666667; Phase = 0; Number of cycles = 4; SNR = Inf;

- Introduction
- Methods
- Results
- Discussion and Conclusion

Conclusion

- Introduction
- Methods
- Results
- Discussion and Conclusion

- Temporal artefacts and FOM worsening observed as low as 50× below frame rate.
- No clear winner among the proposed techniques to account for temporal effects.
 - The performance of most algorithms could be optimized for particular scenarios.
- The proposed framework is useful for:
 - Observing temporal effects and artefacts;
 - Designing the next generation of algorithms accounting for temporal effects.

Thank you!

- This work was supported in part by:
 - Natural Sciences and Engineering Research Council of Canada (NSERC).