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Transfer resistance matrix

Given a system of L electrodes attached to a conductive body to which a

vector of currents I ∈ RL,
L∑̀
=1

I` = 0 is applied the resulting vector of voltages

V ∈ RL satisfies
V = RI, (1)

where R is the (real symmetric) transfer resistance matrix. Without loss of

generality this is chosen so that
L∑̀
=1

V` = 0.

Restricted to this subspace R has an inverse – the transfer conductance
matrix.

R is the complete EIT data.
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EIT and resistor networks

Resistor networks are important for EIT

We use them as phantoms and test loads

FEM (and finite difference and finite volume) forward models are equivalent
to resistor networks

It is important to understand the transfer resistance matrices of resistor
networks.

For planar networks this is completely understood, for non-planar less so.
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Well connected planar networks

Consider a planar network which can be drawn in a circle with the electrodes
ordered anti-clockwise 1, ..., L on the circle. Let A be the transfer conductance.
We will consider only networks that are well connected. This means that there are
independent paths connecting electrodes in any two non-interleaved subsets of
electrodes P and Q, |P| = |Q|.

Left: A resistor phantom from Gagnon et al[7] with 350 resistors and 16 electrodes.

Right: Illustrating that this network is well connected where P is the first 8 electrodes

and Q the remaining 8 electrodes
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Characterizing Transconductance for planar networks

We have the following characterization of transfer conductance matrices of
well-connected planar networks[4].

Colin de Veriére’s criterion
A symmetric matrix A is a transfer conductance matrix of a well connected planar
network if and only if

(−1)k detAP,Q > 0, (2)

where AP,Q is the matrix restricted to subsets P,Q ⊂ {1, ..., L}, P ∩ Q = ∅,
|P| = |Q| = k and on the circle the electrodes in P and Q are ordered as
p1, .., pk , qk , ..., q1.

The sets P and Q should be thought of as two ordered and not interleaved sets of
electrodes.
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Checks on 2D EIT data

The well known reciprocity condition is simply that A (and hence also R) is
symmetric. It is used to check for errors in drive and measurement circuits.

If an adjacent pair is driven the voltages are non-increasing between source
and sink. This is a consequence of the condition we stated. It is often used
to check electrodes are in the correct order.
As this is a complete set of criteria any such transfer conductance can be
realized as a resistor network. There is a canonical way to do this with only

L(L− 1)/2 resistors.
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n-port networks

We can derive a consistency condition for 3D EIT using the classical theory of
n=port networks

An n-port network is a connected resistor network with m > 2n terminals in
which n pairs of terminals have been chosen, and within each pair one is
labeled + and one −.
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Open circuit resistance

The open circuit resistance matrix of this n-port network is the matrix S such
that

V = SI (3)

where here I ∈ Rn is a current applied across each pair of terminals and
V ∈ Rn the resulting voltages across those terminals.

Here S is a real symmetric n × n matrix and indeed

S = CTRC, (4)

where R is the transfer resistance of the network with the L = 2n > 4
distinguished terminals and where the i-th column of the matrix C has a 1 in
the row corresponding to the + terminal of the i-th port and −1 in the row
corresponding to the − terminal and is otherwise zero.
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Paramountcy

Cederbaum [1] noticed that the open circuit resistance matrix of an n-port has a
property known as paramountcy.

Definition:

Let S be real symmetric n × n matrix with elements sij . Let I = (i1, i2, ..., ik) be
an ordered set k < n of indices between 1 and n and SII the determinant of the
submatrix of rows and columns indexed by I . Suppose J is another ordered subset
of k indices and denote by SIJ the determinant with rows indexed by I and
columns by J. We say the matrix S is paramount if SII ≥ |SIJ | for all such I and
J.
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Paramountcy explained

There is a maximal principle for networks which says a terminal that has zero
current cannot be a maximum or minimum for voltage.

It follows if you have only one source and sink of current they must be the
maximum and minimum voltage.

As an example consider a 4-port where a current is driven in port 1, port 2
and 3 are short circuted and port 4 open circuted. resulting in

V1 = s11I1 + s12I2 + s13I3

0 = s21I1 + s22I2 + s23I3

0 = s31I1 + s32I2 + s33I3

V4 = s41I1 + s42I2 + s43I3

Hence ∣∣∣∣∣∣∣∣
V1 s11 s12 s13
0 s21 s22 s23
0 s31 s32 s33
V4 s41 s42 s43

∣∣∣∣∣∣∣∣ = 0
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and we have

V1

∣∣∣∣∣∣
s21 s22 s23
s31 s32 s33
s41 s42 s43

∣∣∣∣∣∣ = V4

∣∣∣∣∣∣
s11 s12 s13
s21 s22 s23
s31 s32 s33

∣∣∣∣∣∣

and we see
s44/|s14| > |V1/V4| ≥ 1

which is the condition of paramountcy.
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3D transfer resistances that are not valid 2D ones

In 3D voltages on electrodes on a plane need not decrease monotonically source to sink.

An asymmetrical conductivity anomaly in cylindrical domain created using EIDORS and
Netgen. Electrodes in green.

The equipotential lines on the surface resulting from driving current between the two
circular electrodes. Note that in the plane through the electrodes that voltage is not

monotonically decreasing from source to sink, see for example the isopotential between
the yellow and white shading
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