

Canada's Capital University

2.5D Finite Element Method for Electrical Impedance Tomography Considering the Complete Electrode Model

Navid Bahrani, Andy Adler
System and Computer Engineering
Carleton University
CCECE 2012
April 30, 2012

Electrical Impedance Tomography (EIT)

- EIT is used to generate images of the internal structure of sections of a body
- The EIT problem is
 - to reconstruct an unknown impedance distribution from boundary measurements.

Photos: (left) from Wikipedia/EIT, (right) from [4]

The EIT Problem

Forward Model (2D & 3D)

$$\nabla_{2D} \cdot (\sigma(x,y)\nabla_{2D}\phi(x,y)) = 0$$

$$\nabla_{3D} \cdot (\sigma(x,y,z)\nabla_{3D}\phi(x,y,z)) = 0$$

$$\sigma \frac{\partial \phi}{\partial n} = \begin{cases} J & \text{on current electrodes} \\ 0 & \text{elsewhere on the surface} \end{cases}$$

- Finite Element Method
- Current Patterns
- Electrode Models

2½D Motivation

- The 3D FE Model recruits too much elements.
 - => requires much more memory and Computational Complexity vs. 2D
 - Both Forward and Inverse Problem
 - Specially the inverse part
 - Requires more calculation time
 - ≠ Real time
 - Or a super-computer for fast imaging
 - ≠ Portability and Inexpensiveness

The 21/2D Model

- Assumption
 - Translational Invariance along z
 - => Symmetric Voltages
- Equations

$$\nabla_{3D}\cdot \big(\sigma(x,y,z)\nabla_{3D}\phi(x,y,z)\big) = \ 0$$

$$\varphi(x, y, z) = \sum_{k=0}^{\infty} V_k(x, y) \cos\left(\frac{k\pi}{a}z\right)$$

$$\begin{cases} \nabla_{2\mathrm{D}} \cdot \left(\sigma(x, y) \nabla V_k(x, y) \right) - \sigma(x, y) \left(\frac{k\pi}{a} \right)^2 V_k(x, y) = 0 \\ \sigma(x, y) \frac{\partial}{\partial n} V_k(x, y) = J_k \end{cases}$$

Boundary Condition $\sigma(x, y) \frac{\partial V_k}{\partial x} = J_k$

$$\sigma(x, y) \frac{\partial V_k}{\partial n} = J_k$$

• for I = 1

$$J_0 = \frac{1}{H} = \frac{1}{2a}$$

$$J_k = \frac{2}{k\pi h} \sin\left(\frac{k\pi h}{2a}\right)$$

Finite Element Method

• Interpolation functions, i.e. basis

$$\widetilde{u}_n(\vec{x}) = \sum_{i=1}^M u_i^n \phi_i(\vec{x})$$

• The Modified 'Stiffness Matrix'

$$S'_{ij}^{k} = S_{ij}^{k} + \left(\frac{n\pi}{a}\right)^{2} R_{ij}^{k} = \int_{E_{k}} \nabla \phi_{i} \cdot \nabla \phi_{j} + \left(\frac{n\pi}{a}\right)^{2} \phi_{i} \phi_{j} d\Omega$$

$$S'(n)U_n = I_n$$

Inverse Problem of EIT

- Static EIT, Difference EIT
- Jacobian (Sensitivity Matrix)

$$z = \Delta v = v_{\sigma_2} - v_{\sigma_1}$$
 $z = Jx + n$ $x = \Delta \sigma = \sigma_2 - \sigma_1$

$$\mathbf{J} = T \left[-\frac{\partial}{\partial \sigma} S^{-1}(\sigma) I \right] = T \left[S^{-1}(\sigma) \frac{\partial}{\partial \sigma} S(\sigma) S^{-1}(\sigma) I \right]$$

$$\hat{x} = (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T z$$

$$\hat{x} = (\mathbf{J}^T \mathbf{J} + \lambda^2 \mathbf{R}^T \mathbf{R})^{-1} \mathbf{J}^T z = Bz$$

Inverse Problem in 21/2D

- Using Jacobian:
 - For each $n \to \Delta v_n$

$$n \to \Delta v_n$$

$$n \to S_n \to \mathbf{J}_n \to \Delta \sigma_n$$

$$\Delta v_n = \mathbf{J}_n \Delta \sigma$$

$$\mathbf{J} = \sum_{n=0}^{\infty} \mathbf{J}_n$$

$$\Delta v = \sum_{k=0}^{\infty} \Delta v_k \cos\left(\frac{k\pi}{a}z\right)$$

Complete Electrode Model

$$\begin{bmatrix} A_M + A_Z & A_W \\ A_W^T & A_D \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ I \end{bmatrix}$$

$$A_W = \begin{bmatrix} -\frac{\Delta}{2z_c} & -\frac{\Delta}{z_c} & -\frac{\Delta}{2z_c} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\Delta}{2z_c} & -\frac{\Delta}{z_c} & -\frac{\Delta}{2z_c} & 0 \end{bmatrix}^T$$

3D CEM

Mesh

2D mesh with 4096 elements used for the 2½D method (32 layers in xy) 3D mesh with 737,280 elements (61 layers in z)

H=2; h=0.1, $w \approx 0.1$

The Images are produced by EIDORS

Results for Measurements

Measurements (Difference Voltage of Electrodes) – Opposite Pattern - Only first 5 terms

Maximum error: 0.82% (0.002)

Tank height: 2, Object height: 2, Elect height: 0.4, Elect width: 0.098165, Domain height: 2, MAX,: 50

Comparing 3D, 2D, 2D/H (first term of $2\frac{1}{2}$ D) and $2\frac{1}{2}$ D CEM solutions for electrode voltages - CEM (W = 0.1, H = 2,h = 0.4)

Decrement of the Error by Decrement of the Element size

Truncation Point

$$V_{2\frac{1}{2}D} = \frac{1}{H}S^{-1}I + \sum_{n=1}^{\infty} \frac{2}{n\pi h} \sin(\frac{n\pi h}{2z_m})\cos(\frac{n\pi}{z_m}z)(S + (\frac{n\pi}{z_m})^2R)^{-1}I$$

$\frac{H}{r}$	2		4		10	
			$\frac{h}{H}$	n_max	h	n_max
	$\frac{h}{H}$	n_max	(0.025)	7	$\frac{\frac{h}{H}}{(0.025)}$	13
	(0.025, 0.05, 0.1)	3	(0.05)	6	(0.023) (0.05)	11
	(> 0.1)	2	(0.1)	5	(0.03) (≥ 0.1)	7
			(≥ 0.2)	3	(≥ 0.1)	,

Time/Memory Performance

$$t_{2\frac{1}{2}D} = t_{2D} + n_max \times t_{\text{2D-size Forward_Solve}} + t_R + t_{IFT}$$

Mesh Structure:

$$[2\frac{1}{2}D: Mesh.Nodes]_{N\times 2}$$
 vs. $[3D: Mesh.Nodes]_{MN\times 3}$

$$[2\frac{1}{2}D: Mesh.Elements]_{K\times 3}$$
 vs. $[3D: Mesh.Nodes]_{3(M-1)K\times 4}$

if M = 61 slices

System Matrix:

$$M^2 = 61 61 = 3,681$$

$$[S_{2\frac{1}{2}D}]_{N\times N} \quad \text{ vs. } \quad [S_{3D}]_{MN\times MN}$$

Matrix Inversion at the Forward Problem:

$$[S_{2\frac{1}{2}D}^{-1}]_{N\times N}$$
 vs. $[S_{3D}^{-1}]_{MN\times MN}$

$$M^2 = 61 \ 61 = 3,681$$

The EIDORS Project

- http://eidors3d.sourceforge.net/
- Electrical Impedance and Diffuse Optical Tomography Reconstruction Software
- A collaborative project where many groups working on EIT are involved around the world
- Modular-Based structure
- Medical & Industrial Applications

Questions

Reference

- [0] Ider et al, Electrical impedance tomography of translationally uniform cylindrical objects with general cross-sectional boundaries. IEEE Trans. Med. Imaging 9 49–59, 1990.
- [1] Lionheart W R B, Uniqueness, shape and dimension in EIT, Ann. NY Acad. Sci. 873 466–71, 1999
- [2] K Jerbi, W R B Lionheart, et al sensitivity matrix and reconstruction algorithm for EIT assuming axial uniformity, Physiol. Meas. 21 (2000) 61–66
- [3] David Holder, Electrical impedance tomography: methods, history, and applications, 2004
- [4] Costa E.L.V., Lima R. Gonzalez, Amato M.B.P., "Electrical Impedance Tomography", Yearbook of Intensive Care and Emergency Medicine, 2009.
- [6] ...

Speed/Computation Improvement

