
CEW Workshop 2009: Themes

Andy Adler

Professor, Canada Research Chair Systems and Computer Engineering Carleton University

Theme: Complex / Multifactorial

Theme: *Trust*

- Population / Police
- Police / Weapons
- Police / Training

Theme: Risk

- "Safe" is wrong word
- Taser's have a relative risk
- Taser's are best choice is many situations

Theme: Research

- Expectations of scientific justifications
- "Evidence Based" policing
- Police initiated research questions
 - Lack of funding, except for crisis
- Need to improve academic / police collaboration

Theme: Lessons

Reality: invested public \$\$ in Tasers

- Manage current "crisis"
- Learn lessons for next police technology

Theme: *Testing*

- Performance measurement Is this weapon reliable?
- Risk measurement how should we use these weapons?
 - Are there subject groups that are especially vulnerable?
 - Does risk increase after multiple shots?
 - What should officers be looking for?

Theme: Reliability

- What are the failure modes?
 - Gas discharge tube aging?
- What is weapon life span?
- Can we identify problem serial numbers?
- How often should we test?

Theme: **Standard**

We need a standard for testing. It doesn't need to be complicated. It does need to be done now.

Consensus on:

- Load
- Parameters
- Measure all pulses, take maximum

Theme: Research Plan

- Theme #1: models
- Theme #2: retrospective analysis
- Issues
 - Working relationship police/government/academics
 - Research can't just focus on Taser.
 Goal has to be broad use of force.

Quick summary of presentations

- Cindy Bir, Wayne State U., Detroit
- Joel Johnston (S/Sgt., Justice, BC) & Chris Butler (Inspector, Calgary PS)
- Mike Joy, U. Toronto
- Peter Layden, Solicitor General, Alberta
- Pierre Savard, École Polytechnique, Montréal
- lan Sinclair, MPB Technologies, Montréal
- Rick Wyant, CRT Less Lethal, Seattle

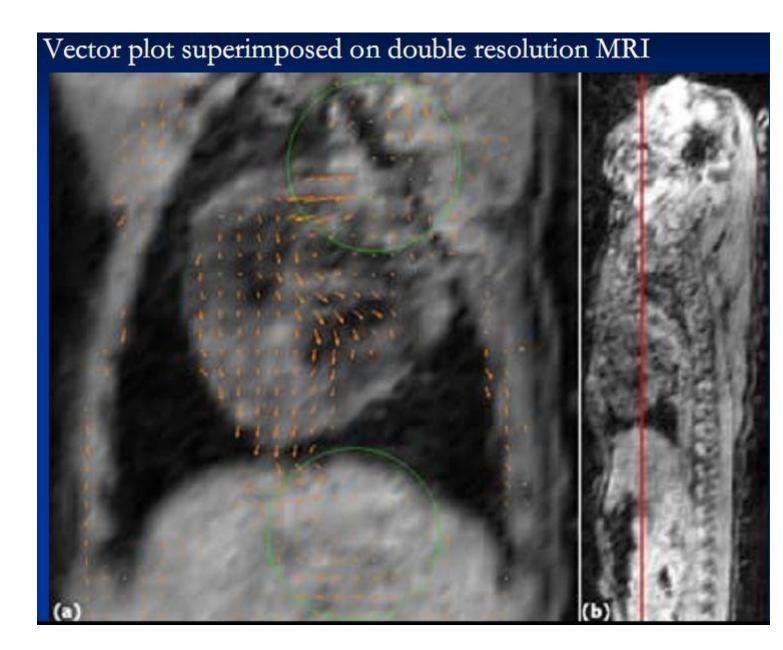
Talk: Cindy Bir, Wayne State U.

Pigs with stress (via hemorage) + Taser Increased Taser shots increased acidosis

Subject Number	Weight (kg)	Survival Status	Survival Time Post Exposures					
		Control Stress Group						
2018	44.0	Survived	NA					
2017	52.0	Survived	NA					
2019	45.6	Survived	NA					
	Control CEW Group (20 Exposures)							
2020	46.0	Survived	4.0 H (euthanized)					
2026	45.8	Survived	4.0 H (euthanized)					
5003	46.7	Survived 4.0 H (euthanize						
Experimental Group (Stress + 20 CEW Exposures)								
2021	43.6	Non-survival	2.5 H					
2022	44.8	Non-survival	3.5 H					
2023	44.8	Non-survival 2.5 H						
2024	48.4	Survived	4.0 H (euthanized)					
2025	48.0	Non-survival	3.0 H 37					

Talk: Joel Johnson, Justice, BC

The law enforcement community supports relevant Quality Assurance Testing that is:


- Affordable
- Accessible
- Logistically feasible

Quoted listsery member:

"... on the one hand, I am fed up with the mediadriven frenzy ... on the other hand, [we must] ensure that our equipment is well-maintained and operating ... there must be a logical, defensible protocol and process for regular testing of CEWs.

Talk: Mike Joy, U. Toronto

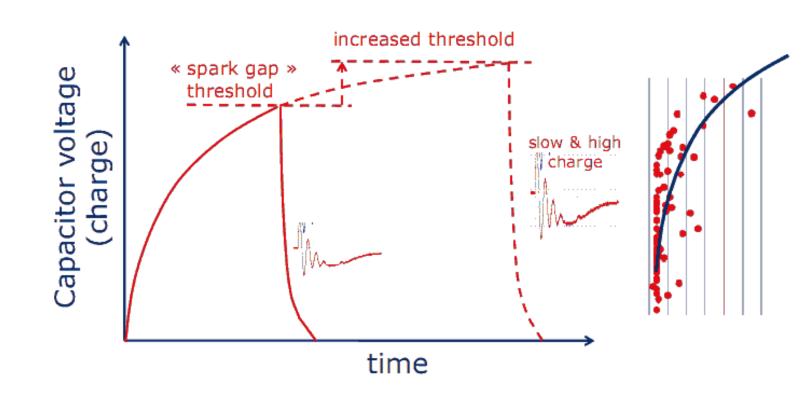
Current
Density
MRI can
visualize
flow of
current in
body

Talk: Peter Layden, SolGen, AB

Two controversies:

- Abuse of the device
 - Because no standard / transparent system to report on and monitor the use of force
- Electrocution
 - remains issue because the science is not clear.
 Tied to a sub-issue: approval of force option

Themes:


- Science Informing Policy
- Learn from CEWs to prevent future problems

Talk: Pierre Savard, Polytech. Mtl

Spark Discharge tube:

Taser failure mode?

2. High charge and slow rate: Cause: higher threshold of spark gaps?

Talk: Pierre Savard, Polytech. Mtl

Proposal for a

"safety centered" Test approach

4. Design of test protocols:
A proposed "safety centered" approach

- "Realistic worst case approach":
 - Maximum CEW values (current, charge, voltage, rate) instead of average values
 - Minimum realistic load
 - No spark tests ("fool proof approach")
 - Inclusion of a "safety factor" in IEC60479-2 to account for spontaneous extrasystoles and increased pathological susceptibility to arrhythmias
- Example:
 - The net charge of a single impulse should never exceed $X \mu C$ when connected to a $Y \Omega$ load

Talk: Ian Sinclair, MPB Technologies

- How a Taser works
- Results
- Waveforms
- History of specs from Taser International
- Test Results
- Unusual weapons functions

Model Number	*	X26
Serial Number		X00-012345
Battery Status	percent	90
CEW Temperature	degrees Celsius	24
Software Revision	-	15
Load Resistance	ohms	594.66
Comments:		

Overall CEW Status:	
In Tolerance	

TI CEW Operating Parameters

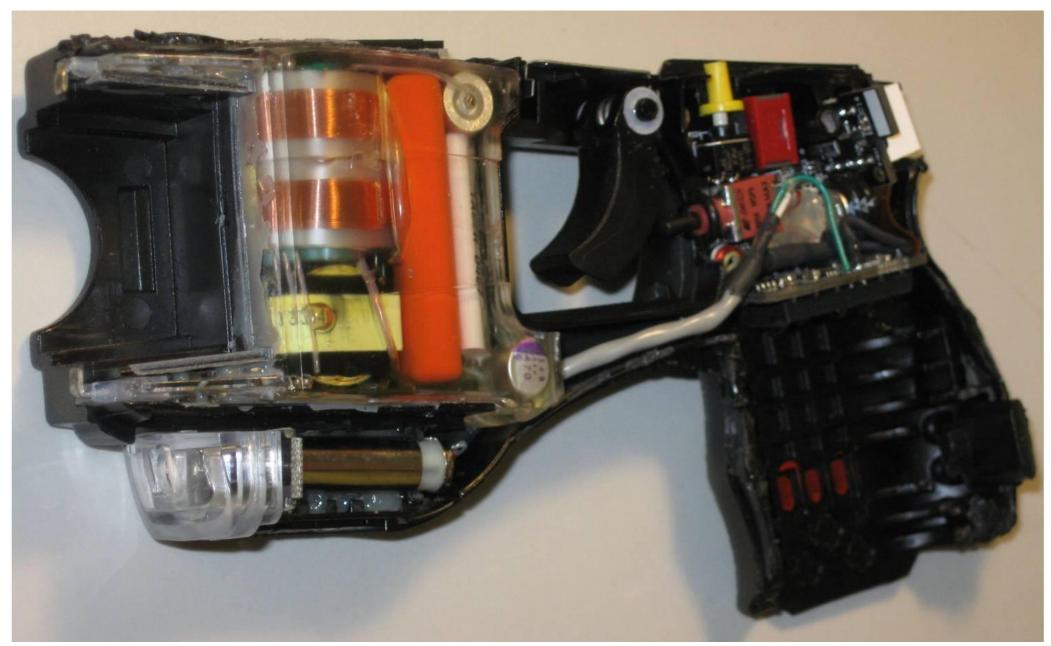
315.	Units Compliance as Fou		Value	Limit Minimum	Limit Maximum	
Pulse Duration	microseconds	In Tolerance	134.6	105	155	
Main Phase Net Charge	microcoulombs	In Tolerance	120.0	80	125	
Main Phase Peak Current	amps	In Tolerance	3,43	2.3	4.2	
Main Phase Peak Voltage	volts	In Tolerance	2037	1400	2520	
Pulse Rate	pulses/second	In Tolerance	18.3	16.5	20.0	

4.9161

Supplemental Test Parameters

Charge/Second Energy/Second Duration of Cycle

Total Number of Pulses


	Units	Average of All Pulses	Standard Deviation of All Pulses	Average of First 8 Pulses	Average of Last 8 Pulses	Average of 8 Max Values	Maximum Pulse	Minimum Pulse
Pulse Duration	microseconds	134.4	1.9	134.8	134.6	137.9	139.0	130.2
Arc Phase Net Charge	microcoulombs	9.0	0.2	9.0	9.1	9.3	9.5	8.7
Arc Phase Peak Current	amps	3.44	0.06	3.44	3.48	3.55	3.62	3.30
Main Phase Net Charge	microcoulombs	119.2	2.2	119.4	120.0	123.0	124.4	113.7
Main Phase Total Charge	microcoulombs	122.6	2.3	122.8	123.5	126.5	127.9	117.0
Main Phase Peak Current	amps	3.39	0.06	3.39	3.43	3.50	3.54	3.24
Main Phase Peak Voltage	volts	2015	34	2018	2037	2079	2106	1925
Main Phase Energy	millijoules	105.2	3.6	105.5	107.2	111.7	114.2	96.1
Full Pulse Net Charge	microcoulombs	110.2	2.1	110.5	110.9	113.8	115.1	105.0
Full Pulse Energy	millijoules	119.7	4.0	120.0	122.1	127.1	129.9	109.7
Pulse Rate	pulses/second	18.3						

Talk: Rick Wyant, CRT Less Lethal

- Devices in the field must be maintained
- Less-Lethal manufacturer's claims MUST be independently evaluated / verified for scientifically accurate post event analysis

Taser X26: Internals

CEW Workshop 2010

- Partnership Government / Academic
- Open exchange of data, results, ideas
- Clarify
 - What is known / unknown
 - What we agree on
 - Where the priorities are
- Testing goal:
 - consensus on test principles and methodologies