Detection of Unreliable Measurements in Multi-sensor Devices

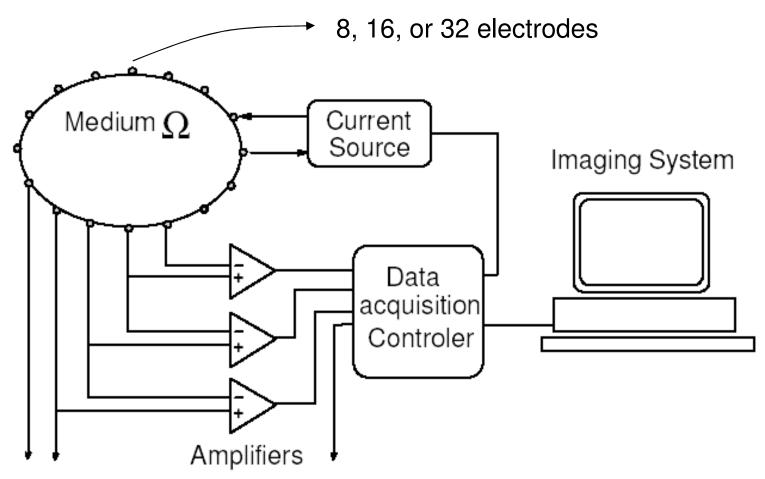
Yednek Asfaw*, Andy Adler[†] *University of Ottawa [†]Carleton University

Multi-Sensor Systems

Multi-sensor systems

- Class of sensors that measure the same medium
- □Eg. ECG, EIT,EMG
- EIT: measures change in conductivity of a medium
- ECG: measure electrical activity of the heart

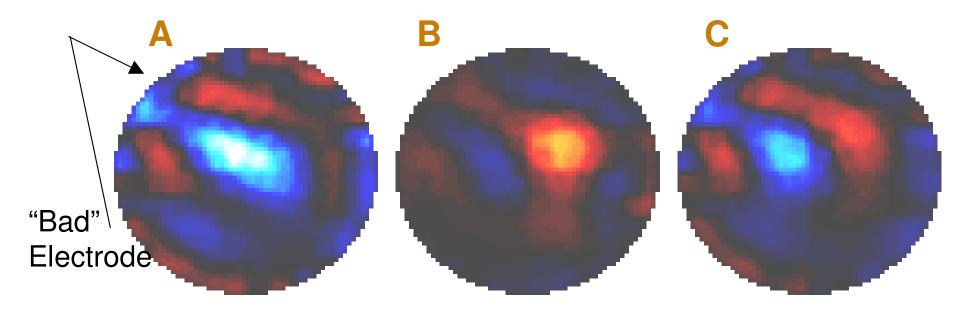
EIT System



Problem

- Experimental measurements quite often show large errors from sensors
- In EIT and ECG:
 - □ Electrode Detaching
 - Skin movement
 - Sweat changes contact impedance
 - Electronics Drift

Example of electrode errors



Images measured in anaesthetised, ventilated dog

- A. Image of 700 ml ventilation
- B. Image of 100 ml saline instillation in right lung
- C. Image of 700 ml ventilation and 100 ml saline

Problem

Logical step forward is: How to detect a faulty sensors?

Idea: data from a "bad" sensors are inconsistent with data from "good" sensors

System Model

Linear forward model:

$\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{n}$

- z measured signal
- H sensitivit y matrix
- x system parameter
- n noise

Linear inverse:

 $\hat{\mathbf{x}} = \mathbf{R}\mathbf{z}$

- $\hat{\mathbf{x}}$ estimate system parameter
- **R** reconstruc tion matrix

System Model-Known

- Underlying principle that defines H and R is known
- In EIT:
 - □ **H** is defined by boundary measurement (**z**) and the general background conductivity (**x**):

$$\mathbf{H}_{i,j} = \frac{\partial \mathbf{z}_i}{\partial \mathbf{x}_j} \bigg|_{\sigma_b = \sigma_0}$$

R is determined through a regularized scheme

System Model-Unknown

Use Singular Value Decomposition

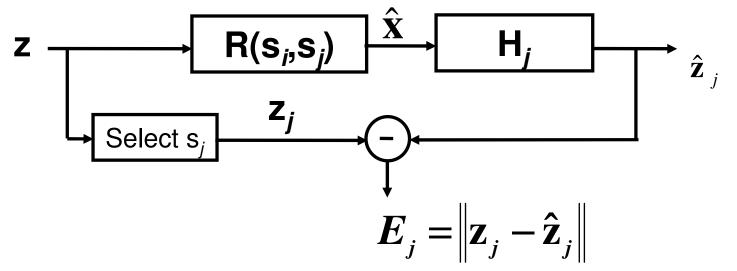
Measured data from each sensor organized into a matrix (z). Enforce non-singularity:

D=**z*****z**[⊤]

- Applying SVD: D=UΣV^T
- □ Top *n* dominant eigenvectors used to simulate **H**
- □ **R** determined through direct inversion

Estimation Error

Based on the forward and inverse model we construct an estimation scheme:

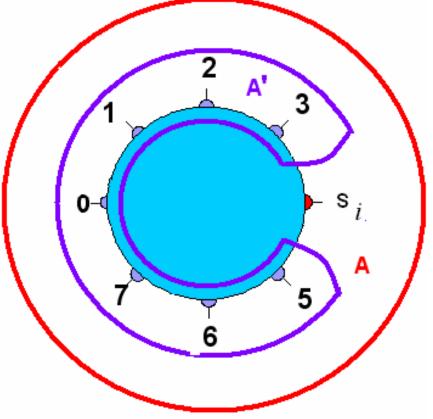


R(s_i,s_j): reconstruction matrix where data from s_i, s_j are removed

• E_j is estimation error for sensor j

Method: outer loop Goal: construct test for each s;

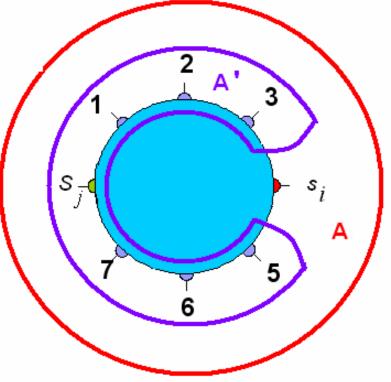
- Remove a candidate sensor s_i from set A
- Create a set A' that does not include candidate sensor



Method: inner loop (s_j) Goal: is data in S' consistent?

 \Box Estimate \mathbf{z}_i and calculate E_i

$$E_{j} = \left\| \mathbf{z}_{j} - \hat{\mathbf{z}}_{j} \right\|$$
$$= \left\| \mathbf{z}_{j} - \mathbf{H}_{j} \mathbf{R} \left(s_{i}, s_{j} \right) \mathbf{z} \right\|$$

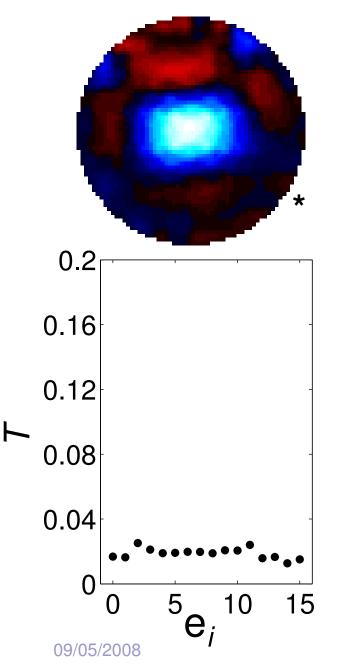


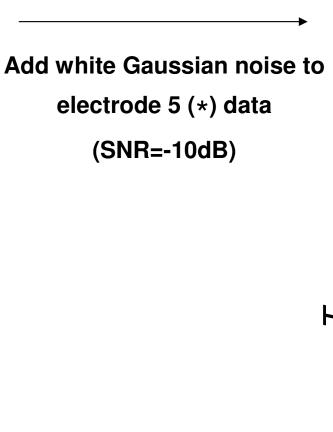
 \Box E_i is low if data in A' is consistent

Method: inner loop (s_j) Goal: is data in S' consistent?

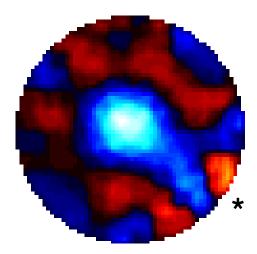
- Known system models: If A' does not contain the erroneous sensor, Estimation error (E_j)values are low
- Unknown system models: If A' does not contain the erroneous sensor, Estimation error (*E_j*)values are *High*
 - Model is dependent on the data
 - In the presence of dominant noise, the model describes the noise rather than the data

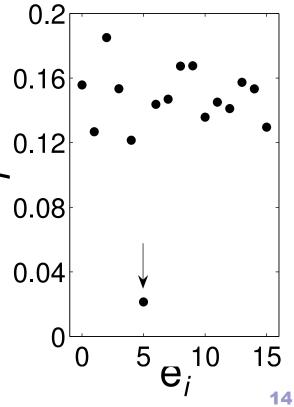
Example: EIT





Erroneous Sensor detection



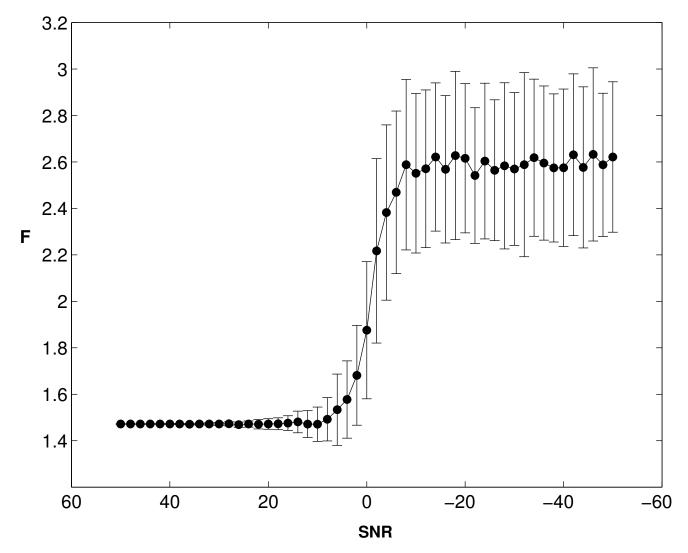


Error Detection sensitivity curve

Error detection sensitivity curve
 Selected representative "clean data"
 Image of 700 ml ventilation
 Calculate the F value for different noise levels on a single electrode

100 simulations per noise level

F statistic vs. SNR

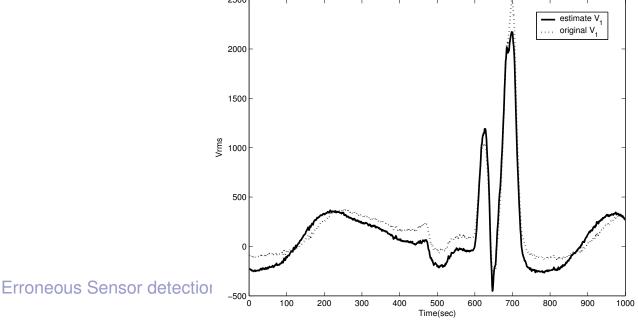


Example: ECG

- 12 Lead System:
 - □ Sagittal plane (X-Z plane)
 - □ Frontal plane (Z-Y plane)
 - □ Transverse plane (X-Y plane)
- Sagittal plane and Frontal plane are constructed from 6 Leads determined by measurements from 3 electrodes
 - □ High level of dependency
 - Measurement points are on limbs, shoulder and ankle making the signal weaker and susceptible to noise

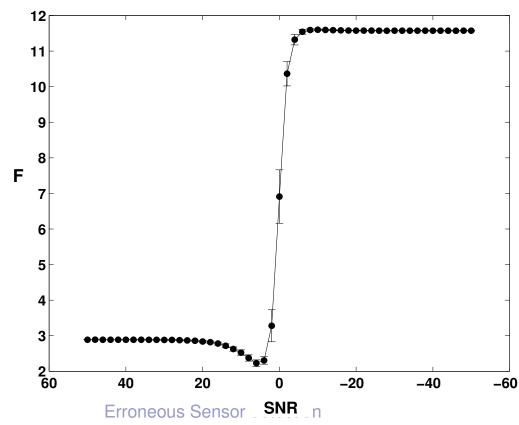
Example: ECG

- Transverse Plane measured from 6 independent electrodes measuring along the X-Y plane
- Data from this plane sufficient to estimate the Original



Example: ECG

Applying the estimation scheme to the transverse plane, using simulated noise:



Conclusion

- Developed method to detect the presence of erroneous sensors
- Application of the method in EIT and ECG showed promising results
 - □ Method is sensitive at SNR < 5dB for EIT
 - Method is sensitive at SNR < 0dB for ECG Transversal plane
 - ECG data on Sagittal and Frontal plane was not independent

Q & A

Decision Parameter: ANOVA

- For each candidate sensor s_i of set A:
 An array of estimation E_i results for sensors in A'
- Without erroneous sensor the estimation results of array E_i are *consistent*
- With erroneous sensor the estimation result for
 E_i with erroneous sensor s_i is low, thus
 Inconsistent

Decision Parameter: ANOVA

- The Inconsistency of the data groups can be tested using Analysis of Variance (ANOVA)
- ANOVA is used to determine the statistical similarity between Treatments (E_i)

Variation **between** treatments Variation **within** treatments

F ratio=

Decision Parameter: LSD

- ANOVA determines if a specific data set has an at least one erroneous sensors
- But does not tell us the number and location of these erroneous sensors
- Fisher's Least Significant Difference (LSD) is used to identify the number and location of the erroneous sensors

Example: EIT

