Biometrics: Machines recognizing people

Biometrics & Authentication Technologies: security issues

> Andy Adler Systems and Computer Engineering, Carleton

Finger anatomy

Fingerprint: Rolled ink

Ink Roller

Cleaned fingerprint

Get features: minutiae

Fingerprint: Compare

Optical Scanner 1998 Capacitive Scanner 2004

Get features: minutiae

1998

Fingerprint examples Thumbs from my family

Age 4Age 6Age 34Age 35Age 65

Are fingerprints unique?

What do you mean by unique?

Real Question: Are fingerprints distinguishable?

What does Unique mean?

- No differences at all
 - But then fingers change every day
- Detectably different
 - But our detection algorithm keep getting better
- How informative is a fingerprint
 - "the decrease in uncertainty about the identity from a biometric measurement"

Face Recognition:

same person?

Same person?

Yes

 I have just demonstrated a massively parallel face recognition computer

Question:

Are computers better or worse than people at faces?

How do computers recognize

THE AN ACCOUNTS ON A PROPERTY AND A

Eigenfaces

Today's FR algs are better than half of people

Results

- Error rates are high
- Significant improvement in SW 1999-2006
- Most recent algs outperform about half of people
- No significant difference male/female

Iris

Iris: Processing

How is this used?

What can go wrong? Very approximate values! Depends on all sorts of things Face Finger Iris Failure to enroll 3% 7% 0% Failure to 3% 10% 10% acquire **False Match** 1% 10ppm 10ppm False non-match 5% 1-5% 1-5%

Biometrics Vulnerabilities

Taxonomy (from Maltoni et al, 2003):

- Circumvension
- Covert acquisition
- Collusion / Coercion
- Denial of Service

Biometrics Security Issues

- Biometrics are not secrets
- Biometrics cannot be revoked
- Biometrics have secondary uses

Spoofing

Who manages registration?

Who	What	Example
Government	Passport	Iris for fast passenger processing
Industry	Credit card	Voiceprint. Callback to validate sales
Individual	Cell Phone	User locks phone with fingerprint

Vulnerable 🗱 Secure	Pass- port	Credit Card	Cell phone
Theft			
Duplication			
Theft and modification	1/2	1/2	×
Registration fraud	1/2	×	×
Spoofing	1/2	1/2	X
Phishing		X	×
"Dumpster Diving"		X	
Secondary use of data	1/2	X	
Privacy worries	×	×	

More details / my research ... Biometrics Security

- Biometric uniqueness / entropy
- Biometric template protection
- Flaws in biometric encryption

information content of a biometric measurement?

Or

 How much do we learn (about identity) from a biometric image

Or

 How much privacy do we loose on releasing a biometric image

Example: measure Height

- Measure #1 (at doctor's office, ie. accurate)
- Measure #2 (via telescope, ie. inaccuate)

Example: measure Height

How much information learned?

	Average	Tall
	(5½ tall)	(71⁄2' tall)
Measure #1	Low	Quite a lot
Measure #2	Almost zero	Low

Proposed measure: relative entropy D(p||q)

- Given biometric feature vector x
- Distributions
 - **intra-person distribution**, $p(\mathbf{x})$
 - **u** inter-person distribution, $q(\mathbf{x})$
- D(p||q) measures inefficiency of assuming q when true distribution is p

Or,

• D(p||q) measures extra information in p than q

Applications: biometric

- Meta algorithm
 - Evaluate a new biometric feature
- Biometric Performance limits
 - Template size limits
 - Inherent match performance limits
- Feasibility of Biometric Encryption
 Limits to Key Length

Applications: abstract

- Quantify privacy
 - What is the privacy risk due to the release of certain information?
 - What is the privacy gain in obscuring faces?
- Uniqueness of biometrics
 - Approach to address: "Are faces / fingerprints / irises unique?"

Biometric template security

It is claimed to be impossible or infeasible to recreate the enrolled image from a template.

Reasons:

- templates record features (such as fingerprint minutiae) and not image primitives
- templates are typically calculated using only a small portion of the image
- templates are much smaller than the image
- proprietary nature of the storage format makes templates infeasible to "hack".

Images can be regenerated ...?

Typical Biometric processing

Hill-climbing: begin with a guess, make small modifications; keep modifications which increase the match score Results:

Improved regenerated image

Average of 10 Best Estimates

Target Image

• Recently, this approach has been extended to fingerprint images (Uludag, Ross, Capelli)

Implications: image regeneration

- 1. Privacy Implications
 - ICAO passport spec. has templates encoded with public keys in contactless chip
 - ILO seafarer's ID has fingerprint template in 2D barcode on document

Implications: image regeneration

- 2. Reverse engineer algorithm
 - Regenerated images tell you what the algorithm 'really' considers important

Implications: image regeneration

- Crack biometric encryption
 Biometric encryption seeks to embed a key into the template. Only a valid image will decrypt the key
 - Since images vary Enrolled image + $\Delta =>$ release key
 - However

Enrolled image + Δ + ϵ => no release

If we can get a measure of how close we are, they we can get a *match score*

Biometric Encryption

- Recent paper by Ontario Information and Privacy Commissioner
 - Biometric Encryption: A Positive-Sum Technology that Achieves Strong Authentication, Security AND Privacy"
 - A. Cavoukian, A. Stoianov

My concern:

 Biometric Encryption (and biometric cryptographic schemes in general) only offer benefits if they are cryptographically secure.

From: http://www.ipc.on.ca/images/Resources/up-1bio_encryp.pdf

Crack biometric encryption

- Construct *match-score* from number of matching elements in *link table*
- Use quantized template reconstructor

Fuzzy Vaults for fingerprints (Clancy, 2003)

Collusion Attack

- Users' fingerprints may be associated with many vaults.
 - Ex: In the smart card implementation, users will likely carry multiple smart cards associated with different companies, each locked with the same fingerprint.
- Fuzzy Vault is insecure when the same fingerprint is used to lock multiple vaults

Biometrics in Canada (Gov't)

- Passports
- Immigration
- Customs
- Defence
- Natural Resources
- Public Safety
- RCMP

Epilogue: Our future?

Operator: "Thank you for calling Pizza Hut."

Customer: "One All-Meat Special..."

- Operator: "Thank you, Sir. Your voice print verifies with your National ID Number: 6102049998"
- Customer: (Sighs) "I'd like to order an All-Meat Special pizza..."

Operator: "I don't think that's a good idea, sir."

Customer: "Whaddya mean?"

Operator: "Sir, your medical records indicate that you've got very high blood pressure and cholesterol. Your Health Care provider won't allow such an unhealthy choice."

Customer: "Darn. What do you recommend, then?"

Epilogue:

Operator: "You might try our low-fat Soybean Yogurt Pizza. I'm sure you'll like it"

Customer: "What makes you think I'd like something like that?"

Operator: "Well, you checked out 'Gourmet Soybean Recipes' from your local library last week, sir."

Customer: "OK, lemme give you my credit card number."

Operator: "I'm sorry sir, but I'm afraid you'll have to pay in cash. Your credit card balance is over its limit."

Customer: "@#%/\$@&?#!"

Operator: "I'd advise watching your language, sir. You've already got a July 2012 conviction for cussing ... "