GREIT: Consensus EIT algorithm for lung images

Andy Adler, Richard Bayford, Bill Lionheart, *and many others*

Outline

- Why do we need GREIT
- "Roadmap"
 - Step 1: agree on "ingredients" present at Dartmouth EIT conf
 - Step 2: try "recipes" & evaluate
 - Step 3: algorithm consensus paper for special issue
- Ingredients and evaluation

Why do we need a new algorithm?

- EIT shows significant clinical potential to monitor ventilated patients.
- EIT can non-invasively image the lungs to better manage the patient's ventilation.
- Clinical and physiological research in lung EIT being done with old, poorly understood, ill-defined algorithms.

Example Problems

- Is that image feature physiological or artefact?
 - Implemented algorithm is uncalibrated (and is proprietary)
- Can we compare regional ventilation?
 - Implemented alg varies between regions

Are there better algorithms?

- Yes, lots, but:
 - Most work in mid-90's. Researchers working on "harder" problems.
- Problems with algs:
 - No careful measurement of performance and errors
 - No consensus on the choice of parameters
 - No detailed exposition including all the "secret sauce"

GREIT: a -

stands for: Graz consensus Reconstruction algorithm for Electrical Impedance Tomography

- Initial work at Graz EIT conf.
- Easy to pronounce

Aim is to get large representation of math/engineering and physiological communities. This will encourage EIT system vendors to

system vendors to provide it as standard Allows multi-centre EIT trials

What's in it for participants?

 There is no financial interest here. We not trying to achieve lock-in to benefit commercially

Benefits are:

- Intra-centre comparison
- Helping EIT perception
- Name on a cited paper.

GREIT: a

consensus

linear reconstruction algorithm for EIT images of the chest This work is limited to the reconstruction algorithm.

- No image interpretation
- No clinical/physiological tests specified

GREIT: a

consensus

linear reconstruction algorithm for EIT images of the chest *Linear* algorithm for time difference imaging.

- Fast reconstruction allowing real time
- Linear algs are better understood with noisy data
- No absolute reconstruction
- No advanced (eg. total variation) schemes

Algorithm units:

- Input: Transfer
 impedance (V/I = Ω)
 at time t1 and t2
- Output: Conductivity change (S-m)

2 & 3 ring electrode placement

- 16x1 and
 8x2 electrodes
 planes around
 chest
- Model is 3D, but output image is 2D
- Method suitable for arbitrary electrodes/planes

Algorithm is focused on lung EIT. Geometric models for

- Adult thorax
- Neonate thorax

• Cylindrical Phantom

Difference adult/neonate is electrode size

"Roadmap"

Step 1: Propose on "ingredients" in alg - paper at Dartmouth EIT conf. (April)

Step 2: Discussions/experience

- Test algorithm "recipes" (May-Sept)

Step 3: Consensus where possible - publish paper and software (Oct-Nov)

Expected outcomes

- Agreement on issues AND solutions
- Agreement on issues but NOT solutions
 - Eg. Strategies to calibrate systems,
 Managing contact impedance
- Some remaining disagreement issues
 - Hopefully few. Can establish research questions to determine

Step 1A: "basic ingredients"

- Dual model (2D coarse / 3D fine)
- Gauss Newton reconstruction
- Image prior with spatial filter
- Scaling for spatial uniformity
- Hyperparameter selection method

Dual Models

We reconstruct to square pixels, not FEM elems,

Gauss	Newton Recons	tru	ction		
$\hat{\mathbf{x}} = ig(\mathbf{\Sigma}_x \mathbf{J}^t$	$(\mathbf{J}\mathbf{\Sigma}_x\mathbf{J}^t + \lambda^2\mathbf{\Sigma}_n)^{-1})\mathbf{y}$		Tikhonov form		
$\hat{\mathbf{x}} \neq ((\mathbf{J}^t \mathbf{\Sigma}$	${}_{n}^{-1}\mathbf{J} + \lambda^{2}\boldsymbol{\Sigma}_{x}^{-1})^{-1}\mathbf{J}^{t}\boldsymbol{\Sigma}_{n}^{-1}$	$)\mathbf{y}$	Wiener filter form		
Post scaling	for				
units & spati	al _{Quantity}		symbol		
uniformity	Difference Measurements:	y =	$= \mathbf{v}^1 - \mathbf{v}^2$		
	Conductivity image:	$\hat{\mathbf{x}}$			
	Image prior covariance:	$\mathbf{\Sigma}_{x}$			
	Measurement covariance:	${old \Sigma}_{u}$			
	Jacobian:	\mathbf{J}			
	hyperparameter:	λ			

Image Prior: spatial filter

• Spatial filter priors are more flexible

Spatial filter type prior

Diagonal type prior

• Recommend exponential relationship with rate = 10% diameter

Image Prior: requirements

Image Prior choices

- Position error (ie. NOSER tends to "push" toward centre)
- Reconstructed shape
- Need to try many different priors
- Can add different priors into "recipe"

Scaling for spatial uniformity

 Total image amplitude must not vary with radial position

• Reconstruction matrix must be scaled to prevent (otherwise misinterpretation)

Hyperparameter selection

- We can't have user selectable λ
- We can't have λ depend on each image
- λ must depend on the equipment and configuration. It is chosen
 - mfg calibration
 - calibration via defined test procedure (with well defined phantom)

Hyperparameter selection

• I propose Noise Figure $NF = \frac{SNR_x}{SNR_y} = \frac{\frac{E_{\text{III}}}{std(\mathbf{X})}}{\frac{E[\|\mathbf{Y}\|}{std(\mathbf{Y})}}$

– NF depends only on λ and reconstruction parameters

- Another approach is to define image SNR for standard target
- Need to build consensus on λ selection strategy. This might be difficult

Step 1B: "advanced ingredients"

- Reconstruct at each stim pattern
 Vauhkonen et al 1998, Adler et al 2006
- Electrode movement compensation
 Soleimani et al, 2005

Update at each stimulation

Each stimulation occurs at different time.

Х

Update at each stimulation

- Reformulate problem as Temporal reconstruction (using augmented data and image terms)
- Reconstruct image at each stimulation in sequence
- General: should we use temporal reconstruction with nearby few data frames?

Electrode Movement artefacts

From Soleimani et al (2006)

$$\hat{\mathbf{x}} = \left(\mathbf{J}^{t} \frac{1}{\sigma_{n}^{2}} \mathbf{W} \mathbf{J} + \frac{1}{\sigma_{c}^{2}} \mathbf{R}_{c} + \frac{1}{\sigma_{m}^{2}} \mathbf{R}_{m}\right)^{-1} \mathbf{J}^{t} \frac{1}{\sigma_{n}^{2}} \mathbf{W} \mathbf{z}.$$
define $\mathbf{R} = \mathbf{R}_{c} + \mu^{2} \mathbf{R}_{m}$, and rewrite (6) as (using $\mathbf{W} = \mathbf{I}$),

Figure 2. Reconstructed images (256 element mesh) for phantom data with two nonconductive objects: one on the positive x-axis, the other on the negative y-axis. Arrows indicate each electrode's movement, and are scaled by $10 \times$. Left: Reconstructed image with standard method using $\lambda = 10^{-2}$ (AAM = 0.134). Right: Reconstructed image including electrode movement using $\lambda = 10^{-2}$ and $\mu = 10$ (AAM = 0.0273).

Arrows aren't accurate (conformal problem), but artefacts dramatically reduced

Step 1: "ingredients"

- Dual model (2D coarse / 3D fine)
- Gauss Newton reconstruction
- Image prior with spatial filter
- Scaling for spatial uniformity
- Hyperparameter selection method
- Update at each stimulation
- Electrode movement compensation

Paper for Dartmouth EIT conf

This algorithm is proposed for discussion:

- Ingredients
- Parameters for Algorithm
- Licensing
- Evaluation Methods

Important issues we defer for later:

- Contact impedance estimation
- Reciprocity error / electrode error detection
- Calibration protocols and phantoms
- Complex reconstruction and contact impedance

Features: parameters

Parameters for operator to set

• Distance (Lateral) across chest

Parameters for manufacturer:

- Regularization parameter (based on measured noise level)
- Electrode size

Licensing

- All algorithms, models and test data to be made available under an open source
 - Algorithm: as part of EIDORS (GPL)
 - Models/Data: Creative Commons Attrib
- Reconstruction algorithm (output of algorithm) is *public domain*.
- Authors disclaim any warranty
- Authors will state intention not to patent *this algorithm*

Evaluation Methods

- 1. Generate data
 - Numerical Models
 - Clinical sample studies
- 2. Develop test criterion
- 3. Develop/Collect algorithm candidates
- 4. Evaluate/Score results

Methods: Generate Data

- 1. Numerical Models
 - Adult
 - Neonate
 - Cylindrical tank

Electrodes

Methods: Data

Electrical impedance tomography

Acute lung injury

Surfactant treatment

- lung injury in pig
- Data from Günter Hahn Instillation of air/fluid into pleural cavity in pig

Methods: Evaluation

- Amplitude Response
- Position Error
- Resolution
- Noise Performance
- Boundary shape and electrode sensitivity
- Experimental data performance

we need to figure out how to objectively evaluate experimental data performance Model data

Experimental data

Evaluation methodology

Evaluation: selection

Criterion	Score	Expert Weightings		Avg Weight	Weighted score
Amplitude Response	?	Expert #1	Expert #2		
Position Error	?				
Resolution	?				
Noise Performance	?				
Boundary shape	?				
Experimental data	?				
Overall					