

Electrode Placement Strategies for EIT

Brad Graham

School of Information and Technology, University of Ottawa Ottawa Canada

graham.bm@sympatico.ca

Andy Adler

Department of Systems and Computer Engineering , Carleton University Ottawa Canada

adler@sce.carleton.ca

School of Information Technology and Engineering

Goal of this work

- Many ways to place electrodes in 3D
- How much difference do the variations make with repsect to performance?
- What is most important factor?
- Is any EP Strategey clearly superior to the others?

Constraints

- Desire to validate simulated results with available equipment
 - GOE MF II TypeTomography System
 - 16 Electrode machine intended for 2D planar arrangement with adjacent drive protocol

2D Planar Arrangement

Reconstruction Algorithm

difference image
$$x = (H^T W H + \lambda^2 R)^{-1} H^T W z^{\text{measurements}}$$

R is diag (H^TH), the prior used in NOSER³ λ is selected with $BestRes^1$ W models the system noise¹, we assume that all measurements have equal noise variance x and H are in a nodal basis
Model is solved using the Nodal Inverse Solver of [5] z is difference data

2 Electrode Arrangements

Aligned Offset

Electrode Sequencing

- The 2 arrangements combined with sequencing gave us 7 EP strategies to evaluate
 - Planar
 - Planar-Offset
 - Planar-Opposite
 - Zigzag
 - Zigzag-Offset
 - Zigzag-Opposite
 - Square

Planar

Planar-Offset

Zigzag

Zigzag-Offset

Planar-Opposite

ZigZag-Opposite

Square

Simulated Data

• Impulse Contrast located at r/2 and moved through 28 vertical locations

Led to 28
 reconstructions per
 EP Strat

Eval Criteria

- Resolution
- Radial Position Error (PE)
- Vertical PE
- Image Power
- Qualitative (artefacts)
- Immunity to Noise
- Imunity to systematic Electrode Placement Errors
 - Offset Error
 - Layer Separation Error

Resolution – no noise

Radial PE – no noise

Vertical PE – no noise

Image Power- no noise

- Planar
- Planar-Opposite
- Planar-Offset
- Square

• Sperical Shaped reconstruction

Zigzag

• Vertically elongated shape

• Zigzag-Opposite

Artefacts reaching to electrodes

• Zigzag-Offset

 Bannana shaped artefact

Results - Noise

- AWGN Added in 6 steps from 0.1 to 0.6%
- Zigzag, Zigzag-offset failed for noise>0.2%
- Square failed for noise>0.3%
- The 2 Opposite EP Strategies worked up to 0.6% but with degraded resolution and PE
- Planar, Planar-Offset very robust to noise
 - performance degraded slowly

Offset Error

• Data simulated with aligned arangement, reconstructed using offset arrangement

• Data simulated with offset arangement, reconstructed using aligned arrangement

Results – Offset Error

- All strategies showed degraded resolution with Zigzag-Opposite being worst
- Planar-Opposite: conductivity increases were reconstructed as conductivity decreases
- Planar, Planar-Offset, Zigzag all produced good images without shape artefacts
 - ...all were rotated in position by about 20 deg

Layer Separation Error

 Data was reconstructed with electrode planes 11 cm apart

 Data was simulated with electrode planes separation from 11cm to 20cm in 9 steps

Results -Layer Separation Error

- Radial PE, Vertical PE and Image power not significantly affected
- All strategies produced vertical elongation artefacts
- Square and opposites most affected
- Zigzag, Zigzag-offset less so
- Planar, Planar-Offset least affected

Significant Observations

- Made many observations; here we cover the important ones
- Planar produces largest signal, most spherical image (least artefacts) for contrasts in the middle section
- Most robust to noise
- Robust to Layer Sep error and Offset error

Summary

	Res	VPE	RPE	Qual	Noise	Offset Error	Layer Sep Error
Planar				+	+	+	+
Planar-Offset				+	+	+	+
Planar-Opposite	-			+			
Zigzag				-		+	-
Zigzag-Offset						-	-
Zigzag-Opposite	-			-			
Square				+	-		

Conclusion

- Planar and Planar-offset strategies are the most robust to noise and systematic electrode errors
- *in vivo* placement may be most important issue
- We recommend the Planar EP Strategy

Recommended 3D electrode placement

