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EIT: Applications

EIT can image physiological processes 
involving movement of conductive fluids 
and gasses

• Lungs

• Heart / perfusion

• GI tract

• Brain

• Breast



EIT: Advantages

EIT is a relatively low resolution imaging 
modality, but

• Non-invasive

• Non-cumbersome

• Suitable for monitoring

• Underlying technology is low cost



Application: Breathing

Chest images of tidal breathing in normal



Application: Heart Beat

EIT signal in ROI around heart and ECG
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Dynamic Imaging

• Calculate ∆ conductivity 
from ∆ measurements

• Inverse problem linearized

• reduced sensitivity to electrode and 
hardware errors.

• Suitable for physiological imaging: lung, 
heart, GI



Image Reconstruction

• Forward Model (linearized)
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Image Reconstruction

Regularized linear Inverse Model
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Measurement Norm

Penalize measurements by the SNR of each 
channel (ie 1/noise variance)
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Image Reconstruction

Image Penalty Function
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Image Reconstruction

• Penalty functions: Image Amplitude
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Image Reconstruction

• Penalty functions: Image Smoothness

–
Expected

image

1

1

1

1

1

1

-½

-½

-½

-½

-½

-½

-½

-½

-½

-½

Laplacian prior

2



Compare Penalty Functions

Images Priors Penalties
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Noise – Resolution Tradeoff
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Applications …

• Electrode Errors

• Electrode Movement

• Temporal Filtering



Electrode Measurement Errors

Experimental measurements with EIT 
quite often show large errors from one 
electrode

Causes aren’t always clear

– Electrode Detaching

– Skin movement

– Sweat changes contact impedance

– Electronics Drift?



Example of electrode errors

Images measured in anaesthetised, ventilated dog

A. Image of 700 ml ventilation

B. Image of 100 ml saline instillation in right lung

C. Image of 700 ml ventilation and 100 ml saline

A                         B                           C

“Bad”
Electrode



Measurements with “bad” electrode
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“Zero bad data” solution

“Traditional solution” (in the sense that I’ve 
done this)
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Regularized imaging solution

Electrode errors are large measurement 
noise on affected electrode
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Simulation

Data simulated with 2D FEM with 1024 elements 

– not same as inverse model

“Bad”
Electrode

Position in % of 
medium diameter

Small 
targets 
simulated at 
different 
radial 
positions



Simulation results for opposite drive
No Electrode Errors

Zero Affected Measurements

Bayesian Inverse



How does this work with real data?

A. Image of 700 ml ventilation
B. Image of 100 ml saline instillation in right lung
C. Image of 700 ml ventilation and 100 ml saline

A                       B                         C

“Bad”
Electrode



Electrode Movement

Electrodes move

• with breathing

• with posture change

Simulations show broad 

central artefact in 

images

A B



Imaging Electrode Movement

• Forward model image includes movement

= ×
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now includes

measurement change
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+ noise
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movement



Image and movement

Penalty: Image and movement Smoothness
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Images of electrode movement

Simulation: tank twisted in 3D

y                                                             x
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EIT makes fast measurements. 

Can we use this fact?

……

0-1 +2 +n+1-2-n

past   now   future
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Temporal Reconstruction

Temporal Penalty Functions
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Kalman Filtering

= × + noise
nHxz +=
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Kalman Filtering

Two stage process

• Prediction:

1−

− =
kk

Axx

Estimate of now based 
on old data only

• Update:

( )−− −+=
kkkkk

HxzKxx̂

• K is Kalman gain:

– Need to update at each step

– Depends on ( )
kkk

xxP −= ˆcov



Reconstructed Movies

Netgen simulation of 
moving ball,

Using 100,000 elements 
per frame

Total simulation time =
3 days

Measurements of 
moving plexiglas rod

in saline tank
(thanks to IIRC)

Total model time =
60 seconds

• Algorithm is regularized one-step 
Gauss-Newton using Laplace prior



Gauss-Newton vs. Kalman

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Kalman solver

Solve time = 29.6 min

Data with added 0dB SNR noise



Gauss-Newton vs. Kalman

(0dB SNR)

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Kalman solver

Solve time = 29.6 min



We need a faster solver

We can improve on Kalman in two ways

• We can go faster. 

– Kalman calculates the temporal prior. We can 

directly tell the algorithm

• Use future and past data

– Most EIT reconstruction is post-processing

– For online images, we can delay by a few 

frames (≈ 100ms)



Direct temporal solver

……
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Direct temporal forward model
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Direct temporal inverse model
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Temporal Priors
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One-step inverse

We formulate the one step inverse as:

( ) WzHRWHHx

xHxz
RW

tt 12

222
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Need to cut matrix afterward, we only want 
to estimate current image from data

Problem is size of matrix inverse: 

For 2 time steps, we have 5 x num_elems
square



Underdetermined formulation

We formulate the one step inverse as:

( )

( ) zWHHRHRx

WzHRWHHx
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Now matrix inverse is smaller: 

For 2 time steps, we have 5 x num_meas
square

R-1 and W-1 are modelled directly. No need 
to take the inverse



GN vs. Temporal Inverse

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Temporal solver
(4 time steps)

Solve time = 34.81 s
(with caching) = 0.60 s

1. Noise free data (IIRC tank)

2. Data with added 6dB SNR noise



Gauss Newton vs. Temporal 

Inverse (6db SNR)

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Temporal solver
(4 time steps)

Solve time = 34.81 s
(with caching) = 0.60 s



EIDORS: community-based 
extensible software for EIT
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EIDORS Tutorial

• Introduction to EIDORS

– Goal

– Features

• Examples (worked together)

– Forward solutions

– Inverse solutions

• Examples (worked alone)

– Based on EIDORS tutorial (with V3.1)



Goal: software community
Electrical 
Impedance and 
Diffuse 
Optical 
Tomography 
Reconstruction 
Software

Project:



Blobby the Walrus?

1. EIT images blobby objects in aqueous media; 

Blobby the Walrus is a fat animal that lives in 

water. 

2. Walrus is EIDORS logo

3. Walruses are much funnier than a talk about 

software architecture. 

Images credit: www.biosbcc.net

© Genny Anderson



EIDORS Features

Open-source:

• License: GNU General Public License. 

• Free to use, modify, and distribute modifications. 

• May be used in a commercial product

Hosted on Sourceforge.net

• Software is available for download (version 2.0)

• CVS access to latest developer versions

• Group members can modify

• Anyone can read and download
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This
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Features

Language independence: 

• Octave (octave.org, ver≥ 2.9) 

• Matlab (version ≥ 6.0). 

Usage examples:

• new software is based on demos.

• simple and more complex usage examples. 

Tests:

• Software is intrinsically difficult to test.

• Numerical software is probably more difficult

• Implement of regression test scripts



Features

Pluggable code base:

• Object-oriented: Packaging and 
Abstraction.

• Don’t use the Matlab OO framework 

• Instead, EIDORS designed as "Pluggable" 
software using function pointers. 



Features

Automatic matrix caching: 

• Save computationally 
expensive variables

– ie Jacobian , Image priors. 

• Caching complicates 
software

• Caching managed in 
eidors_obj



Features

Generalized data formats:

• EIT has a wide variety of stimulation, 
measurements

• general EIT data format : fwd_model
– electrode positions
– contact impedances
– stimulation and measurement patterns. 

Interface software for common
EIT systems:

• Load data from some EIT systems 

• Please contribute



getting started 

• Download

– Run tutorial examples

• Join Mailing list

eidors3d@listserv.umist.ac.uk

• Sign up as developer at: 
sourceforge.net

• Contribute your code



Tutorials

Tutorials

Also tutorial.shtmltutorial.shtmltutorial.shtmltutorial.shtml
In eidors-v3.1 distribution



Discussion

• EIT and Image Reconstruction

– Electrode Errors

– Electrode Movement

– Temporal Filtering

– EIDORS Project

• Significant recent developments in EIT 
image algorithms will improve EIT’s clinical 
applicability


