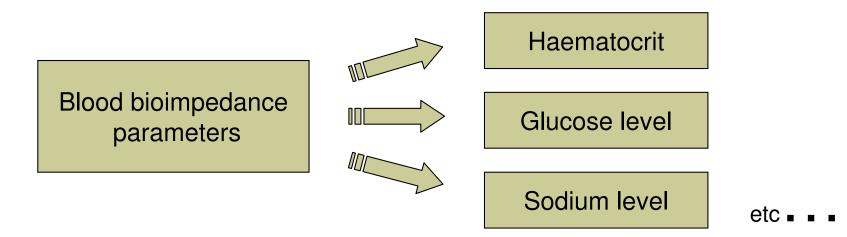
Blood Impedance Characterization from Pulsatile Measurements

Tao Dai Andy Adler

School of Information Technology and Engineering (SITE), University of Ottawa 2006/05

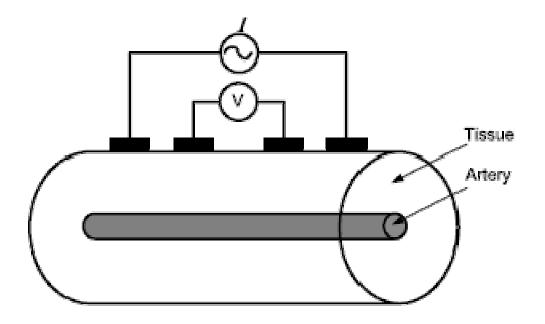
Bioimpedance Measurements have been widely applied because of


Iow cost

- easy application
- non-invasiveness
- on-line monitoring
- etc

- Bioelectrical impedance analysis (BIA)
- Bioelectrical impedance spectroscopy (BIS)
 - Body fluid measurement
 e.g. ECF, ICF, TBW.
 - Tissue volume change
 e.g. cardiac stroke volume
 - Tissue characterization
 e.g. ischemic organ identification.

Why do we characterize blood by bioimpedance method ?


-- to find correspondence between clinical indices and blood bioimpedance parameters.

Difficulties to measure blood impedance *in vivo*

- Physiological noises
- Body disturbances
- Heterogeneity

Modeling

A tetrapolar BIS sensor is applied on a finger segment (cylindrical model)

Modeling

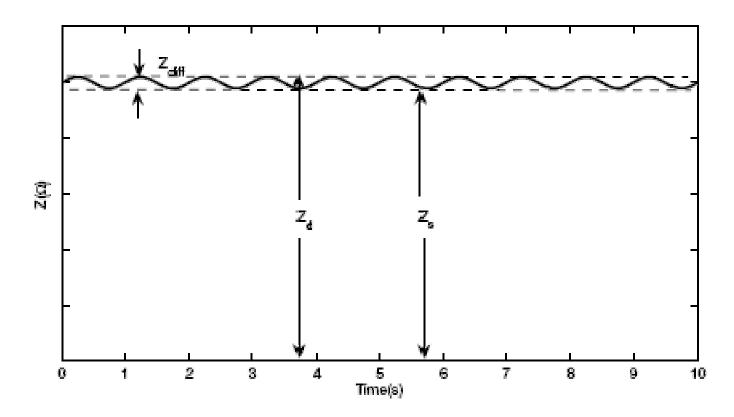
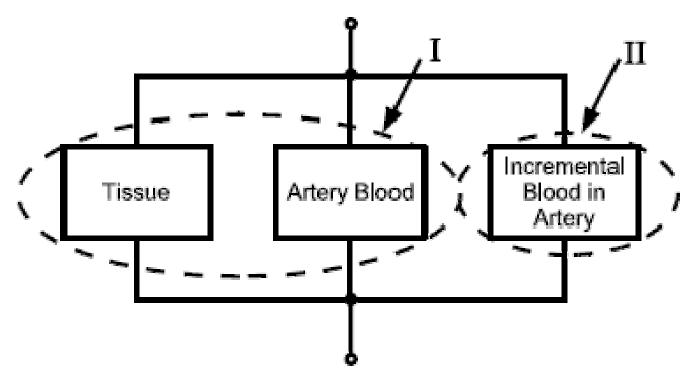



Illustration of the pulsatile impedance wave. Z_d : impedance corresponding to the heart diastole; Z_s : impedance corresponding to the heart systole; Z_{diff} : The difference between Z_d and Z_s

Modeling

The bioimpedance model of pulsatile wave is composed of three parallel impedances.

During diastole,
$$Z_d = Z_l$$

systole, $Z_s = Z_l || Z_{ll}$

A impedance spectrum from blood

-1000

-1500

-2000⊾ 500

Real (Ohm)

* Z_d + Z_s

$$Z_{d}(f) / / Z_{ib}(f) = Z_{s}(f)$$

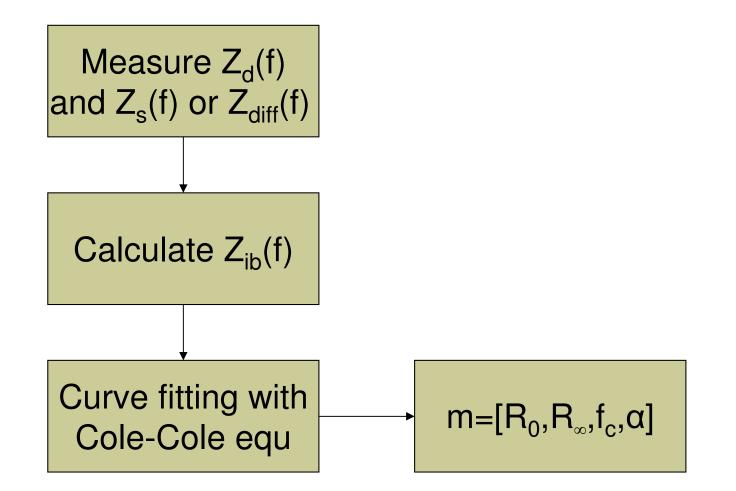
$$\bigcup$$

$$Z_{ib}(f) = \frac{Z_{d}(f)Z_{s}(f)}{Z_{d}(f) - Z_{s}(f)}$$

$$U$$

$$Z_{ib}(f) = \frac{Z_{d}(f)Z_{s}(f)}{Z_{d}(f) - Z_{s}(f)}$$

Cole-Cole Model


Cole-Cole equation

$$Z(f) = R_{\infty} + \frac{R_0 - R_{\infty}}{1 + j(f / f_c)^{1 - \alpha}}$$

Cole-Cole parameters

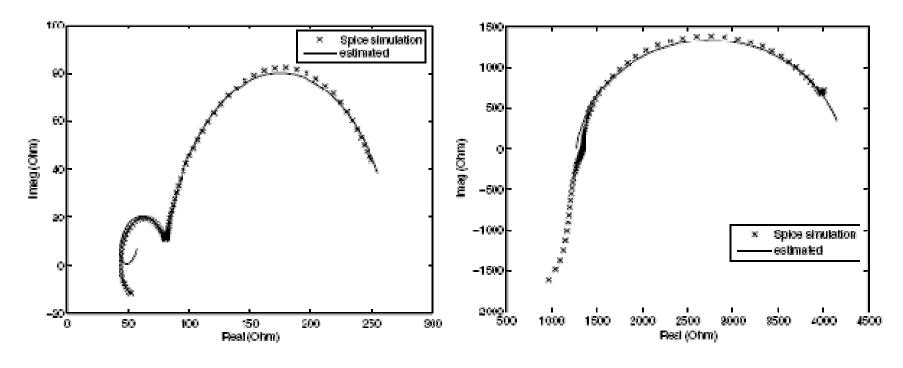
$$m = \left[R_0 \ R_\infty \ f_c \ \alpha \right]$$

Method Description

Simulations

A Pspice model is designed to simulate

- physiology structure of finger
- skin-electrode contact interface


Frequency range: <u>5k~100MHz</u>

Sweeping frequencies: <u>88 points, logarithmly</u> <u>distributed</u>

Artery volume change: <u>10%</u>

Nonlinear curve fitting: <u>LM (Levenberg-Marquardt)</u> <u>Method</u>

Simulations

 $Z_d(f)$ is fitted in an extended Cole-Cole model

the pulse curve $Z_{ib}(f)$ is fitted in a 1st order Cole-Cole model.

Simulations

NMSE-Normalized Mean Square Error: (1000 trials)

SNR(dB)	0	-5	-10	-20
Err $R_0(\%)$	0.1911	0.3240	0.6594	1.867
$\operatorname{Err} R_{\infty}(\%)$	0.5772	0.9659	1.511	5.791
Err $f_c(\%)$	0.884	1.614	2.453	8.302
Err $\alpha(\%)$	5.588	11.76	17.70	62.37

Measurement error and corresponding Cole-Cole parameter error, as a function of SNR. (Sampling rate is 1kHz)

Conclusions

- Advantages:
 - Parameters estimated are of a homogeneous medium--blood;
 - Inductive effect is alleviated;
 - No need to use multiple Cole-Cole model
- Disadvantage:
 - Due to poor SNR in real measurements, it is hard to estimate pulsatile impedance wave amplitude.