Electrical Impedance Tomography: *advances in Image Reconstruction*

Andy Adler

Systems and Computer Engineering, Carleton U, Ottawa, Canada

Outline

- Electrical Impedance Tomography
 - Imaging the lungs
- Measurement Difficulties and solutions
 - Electrode Errors
 - Electrode Movement
 - 3D Imaging / Electrode Placement
 - Temporal Filtering
- EIDORS Project

A: image of section thorax due to $\Delta VL 800$ ml

B: image due to a Δ VL 400 where left main stem bronchus was plugged.

- Volume estimates by EIT, Pao and Pes, after step volume increases of 100ml, 500ml, 900ml.
- Note that EIT signal does not display overshoot

Pulmonary Oedema: model using fluid instillation

Change in lung liquid volume by EIT vs liquid volume instilled

Iterative (Absolute) Image Reconstruction

Absolute Imaging Difficulties

- Extremely sensitive to uncertainties in electrode position
 - Need to know where electrodes are to and electrode shape to 1mm
 - "Absolutely" must do 3D
- Numerical instability
- Slow reconstructions
- Is muscle in chest isotropic?

Difference Imaging: Example

Difference Imaging

• Calculate Δ conductivity from Δ measurements

- Inverse problem *linearized*
- reduced sensitivity to electrode and hardware errors.
- Suitable for physiological imaging: lung, heart, GI

Image Reconstruction

• Forward Model (linearized)

System is underdetermined

Image Reconstruction

Regularized linear Inverse Model

Noise – Resolution Tradeoff

Lots of Regularization (large penalty)

Little Regularization (small penalty)

Applications ...

- Electrode Errors
- Electrode Movement
- 3D Imaging / Electrode Placement
- Temporal Filtering

Electrode Measurement Errors

Experimental measurements with EIT quite often show large errors from one electrode

Causes aren't always clear

- Electrode Detaching
- Skin movement
- Sweat changes contact impedance
- Electronics Drift?

Example of electrode errors

Images measured in anaesthetised, ventilated dog

- A. Image of 700 ml ventilation
- B. Image of 100 ml saline instillation in right lung
- C. Image of 700 ml ventilation and 100 ml saline

Measurements with "bad" electrode

01	X	X		*	*			X
12	X	X	X	*	*			
23		X	X	X	*			
34	*	*	X	X	X	*	*	*
45	*	*	*	X	X	X	*	*
56				*	X	X	X	
67				*	*	X	X	X
70	X			*	*		X	X
	01	12	23	34	45	56	67	70

- * "bad" measurement
- X measurement at current injection

"Zero bad data" solution

"Traditional solution" (in the sense that I've done this)

Regularized imaging solution

Electrode errors are large measurement noise on affected electrode

Data simulated with 2D FEM with 1024 elements

- not same as inverse model

Simulation results for opposite drive

Zero Affected Measurements

Regularized Image

How does this work with real data?

Electrode Movement

Electrodes move

- with breathing
- with posture change

Simulations show broad central artefact in images

Imaging Electrode Movement

• Forward model *image* includes movement

3D Electrode Arrangements using 16 electrodes

Electrode Sequencing

- Can put electrodes anywhere; algorithm knows and can interpret data
- Electrode Placement strategies to evaluate
 - Planar
 - Planar-Offset
 - Planar-Opposite
 - Zigzag
 - Zigzag-Offset
 - Zigzag-Opposite
 - Square

Planar-Offset

Zigzag-Offset

Planar-Opposite

ZigZag-Opposite

Square

3D placement summary

Planar			+	+	+	+
Planar-Offset			+	+	+	+
Planar-Opposite	-		+			
Zigzag			-		+	-
Zigzag-Offset					-	-
Zigzag-Opposite	-		-			
Square			+	-		

Recommended 3D placement

- Planar and Planar-offset strategies are most robust.
- Planar
 placement is easiest

EIT makes fast measurements. Can we use this fact?

Temporal Reconstruction

Temporal Penalty Functions

likely

quite likely

unlikely

Standard EIT approaches to not take this into account

GN vs. Temporal Inverse

- 1. Noise free data (IIRC tank)
- 2. Data with added 6dB SNR noise

Gauss-Newton solver

Solve time = 5.33 s(with caching) = 0.22 s Temporal solver (4 time steps) Solve time = 34.81 s (with caching) = 0.60 s

Gauss Newton vs. Temporal Inverse (6db SNR)

Gauss-Newton solver

Solve time = 5.33 s(with caching) = 0.22 s

Temporal solver (4 time steps) Solve time = 34.81 s (with caching) = 0.60 s

Non-blurring EIT

- Traditional EIT will dramatically blur reconstructed contrasts
- Iterative (ie slower) techniques exist to remove blur
- Problem still low spatial resolution

Figure 1. Two points A and B can be connected by several paths. All of them have the same TV.

(a) TV solution at 8^{th} iteration (b) L^2 solution at 8^{th} iteration

Figure 10. Reconstructions of Phantom B with 2.5% AWGN.

EIDORS: community-based extensible software for EIT

Andy Adler¹, William R.B. Lionheart²

¹Systems and Computer Engineering, Carleton University, Ottawa, Canada

²School of Mathematics, University of Manchester, U.K.

EIDORS Tutorial

- Introduction to EIDORS
 - Goal
 - Features
- Examples (worked together)
 - Forward solutions
 - Inverse solutions
- Examples (worked alone)
 - Based on EIDORS tutorial (with V3.1)

Goal: software community

Project: Electrical Impedance and Diffuse Optical Tomography Reconstruction Software

Blobby the Walrus?

- EIT images blobby objects in aqueous media; Blobby the Walrus is a fat animal that lives in water.
- 2. Walrus is EIDORS logo
- 3. Walruses are much funnier than a talk about software architecture

Images credit: <u>www.biosbcc.net</u> © Genny Anderson

EIDORS Features

Open-source:

- License: GNU General Public License.
- Free to use, modify, and distribute modifications.
- May be used in a commercial product

Hosted on Sourceforge.net

- Software is available for download (version 2.0)
- CVS access to latest developer versions
- Group members can modify
- Anyone can read and download

Web Site

Language independence:

- Octave (octave.org, ver≥ 2.9)
- Matlab (version \geq 6.0).

Usage examples:

- new software is based on demos.
- simple and more complex usage examples.

Tests:

- Software is intrinsically difficult to test.
- Numerical software is probably more difficult
- Implement of regression test scripts

Pluggable code base:

- Object-oriented: *Packaging* and *Abstraction*.
- Don't use the Matlab OO framework
- Instead, EIDORS designed as "Pluggable" software using function pointers.

Automatic matrix caching:

- Save computationally expensive variables

 ie Jacobian , Image priors.
 - Caphing complicator
- Caching complicates software
- Caching managed in eidors_obj

Generalized data formats:

- EIT has a wide variety of stimulation, measurements
- general EIT data format : *fwd_model*
 - electrode positions
 - contact impedances
 - stimulation and measurement patterns.

Interface software for common EIT systems:

- Load data from some EIT systems
- Please contribute

getting started

- Download
 - Run tutorial examples
- Join Mailing list eidors3d@listserv.umist.ac.uk
- Sign up as developer at: sourceforge.net
- Contribute your code

Tutorials

Also tutorial.shtml In eidors-v3.1 distribution

EIDORS - Microsoft Internet Explorer

Edit * Address http://eidors3d.sf.net/putorial/tutorial.shtml

File

EIDORS Main Documentation Examples **Tutorials** Basics – Data structures **Tutorials** Modifying models Netgen More Netgen Imaging – 2D Imaging 3D Imaging Moving Objects Cheating

Download

EIDORS Examples

To run these tutorials, you need to <u>download and install</u> EIDORS and then run this command in a matlab (or octave) session.

>>run /path/to/eidors3d/startup.m

- EIDORS Basics
- Basic EIDORS Data structures

EIDORS: Electrical Impedance Tomography and

Diffuse Optical Tomography Reconstruction Software

Modifying EIDORS models

Summary

- EIT and Image Reconstruction
 - Electrode Errors
 - Electrode Movement
 - Temporal Filtering– EIDORS Project
- Significant recent developments in EIT image algorithms will improve EIT's clinical applicability

Is backprojection bad?

Yes

- No Mathematical Model poorly understood artifacts
- Pushes objects into centre
- Can't handle arbitrary electrode placements
- No 3D
- Must be done on a circular thorax
 No
- Handles position Error
- Maybe good enough for rough model

What do clinical people want from algorithm people?

- Better accuracy?
- More stable
- Automatic detection of errors
- How much more accurate data (ie. electrode placement) are clinical people prepared to make