Human vs. Automatic Measurement of Biometric Sample Quality

Andy Adler, Tanya Dembinsky
University of Ottawa

Background

- Measures of biometric quality are notoriously difficult
- Typically, we have considered (implicitly or explicitly) humans to be the correct judge of quality
- We wanted to understand the relationship between human quality measures and those from machines

Experiments

	Face	Iris	
	Mugshot DB	Our DB	
Human Quality	8 subjects	8 subjects	
Biometric Quality	6 algorithms	1 algorithm	
Image Quality Measures	IQM ¹	IQM ¹	

¹www.mitre.org/tech/mtf/

Human Quality Evaluation

Issues in Human Evaluations

- Scale differences
 - Analysis cannot compare raw values
- Training Effect
 - Users were allowed to familiarize with database
- What is evaluated?
 - Instructions were: "assess biometric image quality"

Quality from Match scores

Model: *MS from genuine comparisons is due to image qualities*

Except:

- Identical comparisons
- Different pose / age / etc.

$$MS_{i,j} = Q_i Q_j$$
 0< MS<1

Quality from Match Scores

$$\log MS_{i,j} = \log Q_i + \log Q_j$$

Match Score Table

	1	2	3	4
1	1.0	.9	.8	
2		1.0	.7	
3			1.0	
4				1.0

[1	1	0	$0 \rceil$	$\lceil \log Q_1 \rceil$	log.9
1	0	1	0	$\log Q_2$	log.8
(A)	1	1	0	$\log Q_3$	log.7
			•	$\lfloor \log Q_4 floor$:

Comparisons

- Are humans consistent with each other?
- Are algorithms consistent with each other?
- Are humans consistent with algorithms, or other quality measures?

Are humans consistent?

Face

- Yes (p<.001)
- Average correlation coefficient *r*=.613

Iris

- Yes (p<.001)
- Average correlation coefficient r=.723

Are algorithms consistent?

Face

- Yes (p<.001)
- Average correlation coefficient r=.534
- Highest correlations not between different versions of same vendors SW

Iris

Could not analyse (only one alg.)

Humans vs. algorithms

Face

Iris

	Mean	Mean	IQM
	Human	FR Alg	
Mean		.234	.159
Human			
Mean	.175		.003
Alg			
IQM	.458	-0.036	

← Best Faces

Worst Faces →

Human Selections

Algorithm Selections

→ Best Irises

Human Selections

Algorithm Selections

Worst Irises →

Discussion

- Work done on Face / Iris.
 - Fingerprints are different because there are fingerprint experts
- Humans are consistent
- Algorithms are consistent

 But, humans are not consistent with algorithms

What does this mean?

 Naïve ideas about quality measures may not be relevant to algorithms

- Some countries are vetting submitted passport photos for Face Rec
 - How useful is this really?

Comment: Quality

- Quality is a value laden term
- Can we tell users this?

Maybe we need another term: Clarity?