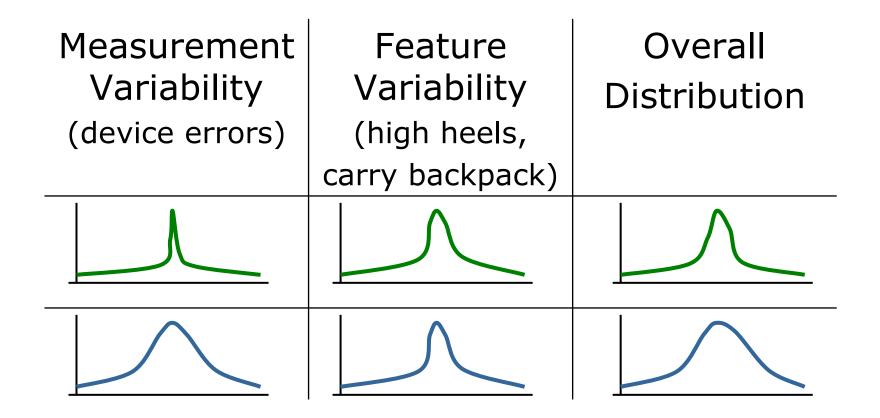
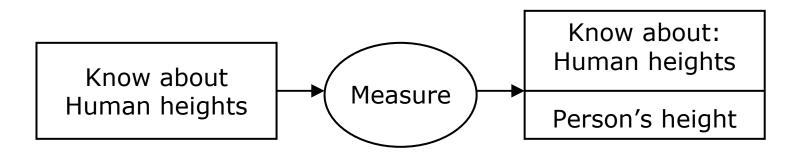
Information content of biometric features

Andy Adler, Richard Youmaran, Sergey Loyka


University of Ottawa, Canada

Question: How much information is in a biometric measurement?

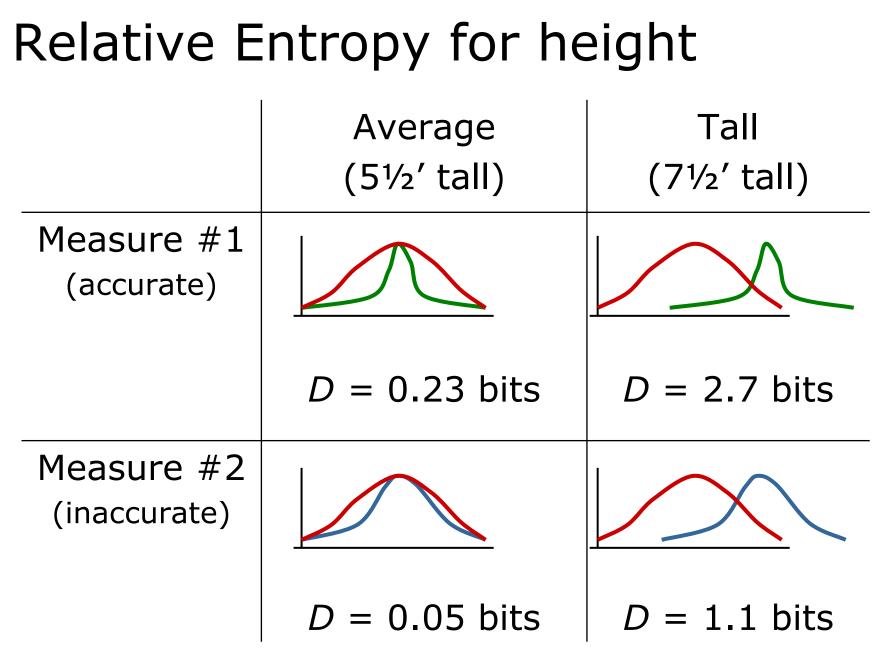

- Or
- How much do we learn (about identity) from a biometric image
- Or
- How much privacy do we loose on releasing a biometric image

Example: measure *Height*

Measure #1 (at doctor's office, ie. accurate)
Measure #2 (via telescope, ie. inaccuate)

Example: measure *Height*

How much information learned?


	Average	
	(5½' tall)	(7½' tall)
Measure #1	Low	Quite a lot
Measure #2	Almost zero	Low

Proposed measure: relative entropy D(p||q)

- Given biometric feature vector x
- Distributions
 - intra-person distribution, $p(\mathbf{x})$
 - inter-person distribution, $q(\mathbf{x})$
- \square D(p||q) measures inefficiency of assuming q when true distribution is p
- Or,
- \square D(p||q) measures extra information in p than q

Relative entropy $D(p \parallel q) = \int p(\mathbf{x}) \log_2(p(\mathbf{x}) / q(\mathbf{x})) d\mathbf{x}$

- Need to calculate feature distributions
 - Population (q)
 - Individuals (p)
- Real features are correlated (eg. height and weight)
- **\Box** Entropy, $H(\mathbf{x})$, is not appropriate
 - Doesn't account for individual variability (p)
 - Example: if hair is blue in face image, that is not information for identity

Adler et al., Information Content of Biometric Features

Example 2: Face Recognition

Motivation:

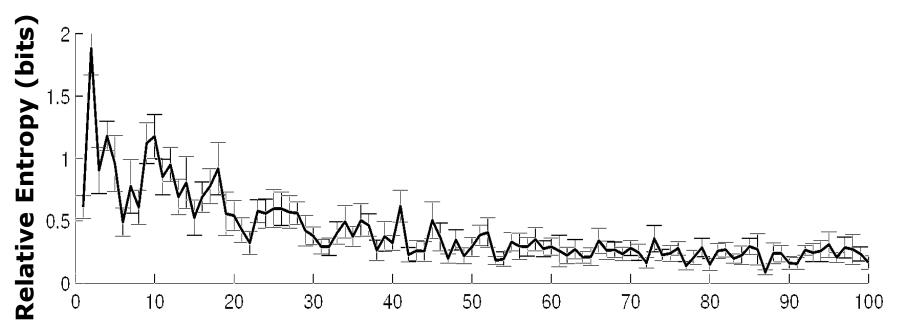
- Eigenface feature dimensionality is constant (unlike FP minutiae)
- Our work with biometric encryption with FR fit about 20 bits of key
- Explore ways to understand human ability to identify faces

Approach

Decompose faces to eigenface features

Fit features to Gaussian
Mean μ_q, μ_p
Covariance Σ_q, Σ_p
Calculate D(p||q) for each individual
Average D(p||q) for all indivduals

Face Database


Used Aberdeen Face database

- 18 frontal images of 16 persons
- Variability in lighting and expression between images

Correlation calculations are limited

- Given 18 images, Σ_p is non-singular for more than 17 features
- Don't calculate overall information

Average Information per feature

Eigenface Feature Number

Most informative feature: #2
Decreasing information with EF number

Applications: *biometric*

- Meta algorithm
 - Evaluate a new biometric feature
- Biometric Performance limits
 - Template size limits
 - Inherent match performance limits
- Feasibility of Biometric Encryption
 - Limits to Key Length

Applications: *abstract*

Quantify privacy

- What is the privacy risk due to the release of certain information?
- What is the privacy gain in obscuring faces?
- Uniqueness of biometrics
 - Approach to address: "Are faces / fingerprints / irises unique?"

Issues with biometric features

- Calculation requires feature representation
- Feature dimension may not be constant
 - Fingerprint minutiae
- Raw images must be aligned and scaled
 - Errors in pre-processing will affect measure

Issues with Entropy measure

Features are correlated

- e.g. height and weight
- Multiple measures of same underlying feature (PCA vs. ICA Face Rec.)

Feature distributions are complex

- Gaussian model used is not correct for minutiae angle
- Lots of data required to model
 - Currently researching approaches using less data

Conclusions

Approach to measuring information content of a biometric system

Relative Entropy is appropriate measure

Help explain *legal, social, performance* issues