Vulnerabilities in biometric encryption systems

Andy Adler

School of Information Technology and Engineering University of Ottawa

Traditional Biometric Verification

Traditional Biometric Verification

Issues

- Templates and Tokens must be available unencrypted, somewhere
- Crack of biometric system will allow release of Tokens
- Biometric cannot be directly used as a password replacement
- Privacy Issue: system admin will have access to biometric templates

Biometric Encryption Systems

Biometric Encryption Systems

Advantages

- Token is bound to biometric
- Neither template nor token are available unencrypted
- Improved Privacy and Security

Disadvantages

- Biometric Feature variability
- Reduced FAR/FRR performance

Algorithm: Soutar et al. (1998)

Original algorithm for fingerprints (modified for face)

Average pre-aligned enrolled image (f₀)

bits of H_0 with same phase

 Calculate template from Wiener filter
 H₀ = F^{*}R₀^{*} / (F^{*}F + N²)
 where R₀ has phase ±π/2, ampl = 1

 Each bit of secret is linked to several

Enrolled Image

Algorithm: Clancy et al.(2003)

Enrollment

 Add 'chaff' to minutiae in template

• Encode token using Fuzzy Vault Scheme

Decryption

- Using live fingerprint, estimate correct minutiae
- Given enough correct minutiae (and few chaff), Fuzzy Vault will decrypt token

Valid Key is a single point in Key Space

Genuine Biometric is a region is Biometric Space

Hill-Climbing

- If biometric comparison releases information on partial match, then "Hillclimbing" is possible
- Concept (iterate over steps):
 - Take a step (ie. Modify Biometric Image)
 If step climbs hill (more info) stay there
 If step goes down (less info) step back

Why sloping sides to match curve?

Very difficult to design ideal algorithm

- □ Since images vary
 - Enrolled image $+\Delta =>$ release key
- Definition However Enrolled image + Δ + ε => no release
- Current schemes based on Error Correcting Codes (ECC's)
 - □ Hamming Distances (Soutar et al.)
 - □ Reed-Solomon ECC (Clancy et al.)
- ECC's inherently give a measure of the distance to the nearest code point -> which is a match score

Hill-climbing for quantized data

Example attack: algorithm of Soutar et al. (Modified for face)

- Construct match-score from number of matching elements in *link table*
- Use quantized hill climber

Results

Initial Image

Initial Image

Summary

- Biometric Encryption schemes show significant promise to address security and privacy issues
- Little work has been done to attack these schemes
- This paper shows one general attack scheme based on Hill-Climbing
- There is a tendency to use results from cryptography in biometrics security; however, biometrics images are not random data
- Such correlations may be exploitable in many biometric encryption systems