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‘-HM Problem Definition

= Consider the following problem:

d=Gm+n

where d .measured data
m.original image
G :system matrix

n:noise vector

The goal is to solve for an estimate m



‘.EW Regularization Methods

Deal with all difficulties related to ill-posed problems

= Solution existence
= Solution uniqueness
= Solution Stability

Inclusion of Prior knowledge to stabilize the solution
in face of noise

Smooth the data

Constrain the solution in order to avoid noise
amplification



‘-LW Direct Tikhonov regularization

= Direct incorporation of prior information to the
original least squares cost function

AN

m . (&)=argmin Hd — GmHj + OJHLmHz

= Common choices for operator “L":
| |_=I
= L=D



‘-LW Direct Tikhonov regularization

= The minimizer of the least-square formulation can be
expressed as normal equations:

(G'G+al Lym =G d

= Equation can be solved by:
= Matrix inversion
= Factorization methods (QR, SVD, Cholesky)
= Iteration



‘-LW Regularization parameter o

L-curve for direct Tikhonov method
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‘-LW Direct Tikhonov regularization

= Advantages:

= Provide good solutions for small-scale problems
= L-curve can be used to select the regularization parameter

= Disadvantages:

= Inefficient for large problems = Large amount of storage
= Image must be smooth - Blur edges



‘.EW [terative Methods

= [terative techniques:

« Very efficient for large size problems
»« Can be viewed as regularization methods

= Restored images are monitored at each
iteration



‘.HM [terative Methods

= # of iterations V= amount of regularization

1 # Tterations Vi

= Low-frequency vs High-frequency components



‘-HM [terative Methods: CG, CGLS

=) Conjugate Gradient (CG) techniques are able to solve positive
definite equations of the form:

Ax=b

=) CGLS solve the following least-square form

min [|Gm —d |l

by applying CG to the normal equations :
(G'"Gm =G"d)

= Stop the algorithm when |Gm, - d|, < &



‘-LW CGLS Iterative Technique

= CGLS L-curve for hyper-parameter selection (V)
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Test data

Original Image Blurred Noisy Image
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*W CGLS Iterative Technique

s Results:
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‘.LM CGTik [CGLS+Tikhonov]

= likhonov combined with CGLS

m (@) = argmin |d - G|, +a|Ln],

and

m CGTik(a) =

New Least — square problem is expressed as follows :

I;’l cor (O6) = argmin H Cm—data Hj

G d
where C = and data =
ol 0

3)

(4)



‘-EW CGLS + Tikhonov (L=D)

- HDmH becomes a measure of the variability
or roughness of the solution

= Forces image estimates with limited high-
frequency energy

= Captures prior belief that solution images
should be smooth



‘.Hm CGTik (L=D)

- Regularization parameter (« )
- Stopping time of the algorithm (/)
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‘-LW Back to the initial problem...

PRE-SELECTED range of o 's for the initial problem:

1x107°
1x107°
1x10~*
1x107°
10x107
20x107°

30x10°
40x107
50x107°
100x107°
300x107°
500x107°




‘-LW CGLS+Tikhonov (L=D)

= L-curves for different hyper-parameters:
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SIMULATION RESULTS
AND
COMPARISON
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‘.HM ISNR Curve for 25 iterations
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Results of CGTik (L=D) restoration

= Advantages:
= Quality of image is enhanced
= Noise is reduced
= Details in image are well recovered

= Disadvantages:

= o and stopping time NV must be re-selected for different
problem

= Image must be smooth in order to have an efficient noise
removal without edge blurring

= [radeoff between noise and amount of blur



