Vulnerabilities in biometric encryption systems

Andy Adler

School of Information Technology and Engineering University of Ottawa

Security issues

- Biometrics only provides identity
 Need to be coupled to a system
- These systems are also vulnerable to all of the traditional security threats
 - as well as all sorts of new ones
 - and interactions between old and new ones

Security of biometric templates

Many biometric vendors have claimed its impossible or infeasible to recreate the enrolled image from a template.

Reasons:

- templates record features (such as fingerprint minutiae) and not image primitives
- templates are typically calculated using only a small portion of the image
- templates are much smaller than the image
- proprietary nature of the storage format makes templates infeasible to "hack".

Images can be regenerated ...?

Typical Biometric processing

Automatic image *regeneration*?

Technique: *Hill-climbing*Begin at a reasonable spot
Repeat

Take a small random step
If you went up hill → stay there
If you went down → step back

Only difficult bit. Need an idea of a Reasonable step

Requirement: access to a match scores

Results

- Tests were performed against three commercial face recognition algorithms
 Two of the vendors participated in the 2002 face recognition vendor test
- Regenerated image always compared at over 99.9% Prob.Correct Verification

Results

	Initial Image	Iteration 200	Iteration 600	Iteration 4000	Target Image
A					
B	TO BTA Workshop Biometrie	Coct 18-20, 2004)			9

Results: Confidence vs. iteration

Improved regenerated image

Average of 10 Best Estimates

Target Image

Extensions to this approach

- Recently, this approach has been extended to fingerprint images
- U. Uludag *et al* developed an approach to modify a collection of minutiae
- A. Ross *et al.* has developed a fingerprint image regenerator

Protection:

According to BioAPI

- "...allowing only discrete increments of score to be returned to the application eliminates this method of attack."
- Idea: most image modifications will not change the match score

Modified "hill-climbing"

Results: modified "hill-climbing"

Implications: image regeneration

- 1. Regenerate images for spoofing
 - ICAO passport spec. has templates encoded with public keys in contactless chip
 - ILO seafarer's ID has fingerprint template in 2D barcode on document

Implications: image regeneration

- 2. Reverse engineer algorithm
 - Regenerated images tell you what the algorithm 'really' considers important

Implications: image regeneration

- 3. Crack biometric encryption
 - Biometric encryption seeks to embed a key into the template. Only a valid image will decrypt the key
 - $\Box \quad \text{Since images vary} \\ \text{Enrolled image } + \Delta => \text{release key}$
 - However
 - Enrolled image + Δ + ϵ => no release
 - If we can get a measure of how close we are, then we can create a *match score*

Biometric encryption (Soutar, 1998)

- Average pre-aligned enrolled image (f₀)
- Calculate template from Wiener filter

 $H_0 = F^* R_0^* / (F^* F + N^2)$ where R_0 has phase $\pm \pi/2$, ampl = 1

• Each bit of secret is linked to several bits of H_0 with same phase

Crack biometric encryption

- Construct match-score from number of matching elements in link table
- Use quantized hill climber

Summary

- There is a tendency to use results from cryptography in biometrics security
- However, biometrics images are not random data
- Such correlations may be exploitable in many biometric encryption systems