10 mistakes you can made
with XML and Perl

“more bugs, more quickly”

Andy Adler

Remember: It’s all fun and games ...
until someone laughs their head off.

What is XML?

m Andy's Answer:

ASCII syntax for data structures
m XML looks like HTML

However, conceptually very different
m Fairly simple spec

“Tons” of associated specs

m Standards mostly controlled by fairly sane
people
Broad support from open source to MS

Simple XML example

Tag

<simple_xml_example easyness="high">
<el>
teXt

<content attl="1" att2="2"> PCDATA
</content> 4/,’,,,’,,,,,,fff”””’
more text
<content att2="2" attl="1" />

</el>

<e2/>
</simple_xml_example>

‘\\\\\\ End Tag

More compilated example

 » File format for StarOffice 6.0 (ie
openoffice.org) is XML based

m [ext sections represented in XML
Images are referenced. File is zipped.

m Used the following document:

<H1>
Just another OpenOffice.org

hacker
</H1>

More complicated example

Processing
Instruction Document

<?xm1 version="1.0" encoding="UTF-8"7> Type
<1DOCTYPE office:document-content PUBLIC ‘*///////Béda“mon
"-//0penoffice.org//DTD OfficebDocument 1.0//EN"
"office.dtd">
<office:document-content
xmlns:office="http://openoffice.org/2000/o0ffice"
xmlns:text="http://openoffice.org/2000/text"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format"
xmlns:xTink="http://www.w3.0rg/1999/x11ink"
xmlns:math="http://www.w3.0rg/1998/Math/mMathMmL"
office:class="text"
office:version="1.0">
<office:script/>

Definition of XML

Namespe}ce Namespaces
“office” usage

More compilated example

<style:font-decl style:name="Albany"
fo:font-family="Albany"
style:font-family-generic="swiss"
style:font-pitch="variable"/>
</office:font-decls>

<office:automatic-styles/>
<office:body>
<text:sequence-decls> XML
colouring

<text:sequence-decl
text:display-outline-level="0" courtesy
text:name="Text"/> of vim
</text:sequence-decls>
<text:h text:style-name="Heading 1"
text:level="1">
Just another OpenOffice.org hacker
</text:h>
</office:body>
</office:document-content>

This is too easy ...

m | promised that I'd help you write buggy XML
code

m But this looks way too easy.

m How can we write
Hard-to-debug
Job-security-enhancing
Happen-only-occasionally

bugs with this stuff?

Just wait, my friends ...

Bug #1:
~ Confusing Attributes and Data

m Some people get worried when they need
to create a new XML format to encode

their data:

m Should | put the information in
attributes

or
text (PCData)?

Bug #1:
~ Confusing Attributes and Data
m Should | say:

<sandwich>
<ingredient name="marmite"
action="'spread" />
</sandwich>

Or

<sandwich>
<ingredient>
<name>marmite</name>

~ <action>spread</action>
</ingredient>
</sandw1ich>

Bug #1:
~ Confusing Attributes and Data

m Answer:
Both

m |n fact, alternate between them.
m After all, there’s more than one way to do it

Bug #2: Abusing bloated and
~ buggy standards
m Example #1: SOAP:

<?xml version='1.0"' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance

xmlns:xsd="http://www.w3.0rg/1999/XMLSchema" >

<SOAP-ENV:Body>
<nsl:execute xmlns:nsl="urn:facerec-service"

SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">

<command-1ist xmlns:ns2=

"http://schemas.xmlsoap.org/soap/encoding/"

Finally, xsi:type="ns%:Array")
- xmlns:ns3 urn:USER_NAME_SPACE

Something L ~
ns e=""ns3:Command[10]">

We care L
about <item Xsi: type_ 'ns3"DUR_DATA_HERE">

Bug #2: Abusing bloated and
~ buggy standards

m Example #2: MathML.:

<?xml version="1.0" encoding="1s50-8859-1"7>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<mi>F</mi>
<mrow> <mo> (</mo>
<m1'>y</m1'> "'h'll; - !

<mo>)</mo> 1
</mrow> Filyl = — Z SiILE.}f,k SRLGLE
<mo>=</mo> AT
<mfrac> J L k=1)
<mn>1</mn>
<mrow>
<mn>2</mn> All this XML
<mi>&p1;</mi> gets Us to
</mrow> the fraction

</mfrac>

Bug #2: Abusing bloated and
~ buggy standards

m Lots more examples:
XML Schema
RDF
Open office format

m Unfortunately, some aren’t too bad
SVG <= from Adobe no less!

Luckily, these are few

Bug #2: Abusing bloated and
~ buggy standards

m [here are 2 ways to parse these bloated
documents

Reach into the data structure and grab the
elements you care about

Or
Carefully parse the structure and check
everything

m The best part is: They’re both wrong!

Approach #1: only grab the

~ elements you care about
m Consider this document

<recipe for="coffee’>
<ingredient name="coffee beans”/>

</recipe>

m | parse with “/recipe/ingredient[1]@name”
This is XPath syntax — later

m Now, we get the following document

instead.:
<recipe for=“chile”>

<ingredient name="halepeno beans”/>
</recipe>

Approach #2: Carefully parse the
~ structure and check everything

m Our server carefully parses this SOAP message

<SOAP-ENV:Envelope xmlns:xsd=
"http://www.w3.0rg/1999/XMLSchema’ >

m [hen one day, our application breaks,
after lots of debugging, the client now sends:

<SOAP-ENV:Envelope xmlns:xsd=
"http://www.w3.0rg/2001/XMLSchema’ >

m How the *&"%"& is our application supposed to know
that the 2001 and 1999 schema specs are essentially
identical?

Bug #3:
~ Abusing bloated and buggy tools

m [he basic XML APl is the Document
Object Model (DOM)

m Here's a sample

my $nodes = $doc->
getElementsByTagName (''CODEBASE");
my $n = $nodes ->getLength;
for (my $i 0; $i < $n; $1++) {
my $node $nodes->item ($1i);
my $href = $node->
getAttributeNode (" HREF)
print $href->getvalue . "\n"

}

What's wrong with DOM

m Simple answer:

It goes against everything Perl stands for

What's wrong with DOM

m Lets compare long and painful XML API's to
string parsing in C

m [he fact that its painful, tends to encourage
people to take shortcuts for micro-optimization

m Example:
/* Remove .txt extension from file name */
filename[strlen(filename)-4] =0;

m Correct Solution:
$filename =~ s{ \.txt $}{}x;

What's wrong with DOM

m [his kind of shortcut is:
Hard to read
Hard to write
Tends to result in other bugs
Leaks of pointers, variables

m And worst of all

When your concentration is forced onto
painful code, you loose

cognitive momentum™

Bug #4: How to confuse validity
~and well-formedness

m Naturally, one would expect that a “valid”
document conforms to the specification.

Wrong!

m A document that conforms to the
specification is called “well-formed”
m A “valid” document conforms to its DTD

or maybe its schema,

or maybe its RELAX spec (or any one of the
many ways to specify the document syntax)

How is this a bug?

m Valid XML documents are rare
m Although in theory, DTD’s etc. are a good idea,
I've rarely seen them in practice.
Reasons include:
Industry time pressures
General sloppy thinking about testing

Lack of tool support

Specification overload: DTD’s were painful, but the
W3C replacement is worse

Important specs like SOAP don’t support validation

m [herefore:
Almost any XML document is invalid

More about validity

m Here’s some interesting information about SOAP

"Roger wolter[MS]" <rwolteronline@microsoft.com>
wrote 1n message> news:...
>This quote from the SOAP standard may
>clarify things:
>>A SOAP message MUST NOT contain a Document
>>Type Declaration. A SOAP message
>>MUST NOT contain Processing Instructions.

m Therefore SOAP requires invalid XML

Bug #5:
- Unreliable parsing with regexps

m You may think that there should be some
good packages out there to parse XML

You’'re right
m [here are lots of API's to parse XML
s DOM
s SAX

=« JDOM (Java DOM)

Bug #5:
- What about perl API's?

m [here are lots and lots of perl API's to

parse XML:
XML::SAX::PurePerl XML::Dumper XML::Simple
XML.::Config XML::Handler XML::LibXML
XML:: Twig XML::Filter::Digest DBIx::XML
XML::GDOME XML::Mini XML::SAX::Base
XML::SAX::Expat XML::Ximple XML::YYLex
XML::FOAF XML::Grove::Subst XML:: Template
XML::DOM PApp:: XML Meta::Lang::Xml
XML::RAX XML::Generator XML::Checker

RPC::XML::Parse XML::Xerces XML::ValidWriter

Bug #5:
- What about Perl API's?

There are lots and lots and lots of perl API’s
to parse XML.:

Home Authors Recent About

CPAN

Results 41 - 50 of 2231 Found

XML
in [an - CPAN Search |

ot s e [Pl i T T s T 0 e [

Bug #5:
- Unreliable parsing with regexps

m Many people have thrown in the towel and
said *&"%% it.
XML is text
Perl parses text
Therefore: I'll use a regular expression

m Even Tim Bray (a founder of XML) admits

to this
www.tbray.org/ongoing/When/200x/2003/03/16/XML-Prog

Bug #5:
- Unreliable parsing with regexps

m However, parsing balanced text with regexps is
(deliciously) unreliable

m Consider:
<sandwich> _
<ingreds name="marmite"
~action="spread"'/>
</sandwich>
m Parsing:
/ingreds name="[\"]*" action="[\"1*"/;
$name = $1; $action = $2;
m Problem: attribute order is not part of XML infoset

Bug #6:
~ Unreliable encoding with printf

m Example: encode passport data in XML
m Code:

printf “<passport>%s</passport>", $data;
m Problem: my passport data is
$data="CANADLER<<ANDREW<<<<":

m So now XML is:

<passport>
CANADLER<<ANDREW<<<<
</passsport>

Bug #6:
~ Unreliable encoding with printf

Unfortunately, there are good ways to get
around it in perl

m Quote your <&> tags:
s/</\< /g
m Use a module:
XML::Twig
XML::Writer
m Or use CDATA

print “<tag><[!CDATAL" .
$data . “]]l></tag>";

Bug #7:
~ Parsing to make your code crawl

m YOU say: use XML::DOM
or use XML::Simple

m which says: use XML::Parser

m which says: use Expat

m which uses: expat.xs

m which parses the text

Bug #7:
~ Parsing to make your code crawl

m Expat is a standard API for lots and lots of XML
code: Perl, Apache, Python, Mozilla

m lts fast and well understood

History: Created by James Clark, a British expat living
in Thailand

m Expat has some weirdnesses
It doesn’t validate
API calls don’t necessarily return full data elements
Statically linked with patches to many modules

m Using XML::Parser (or better expat.pm) directly is
a great source of code pain

Bug #8: Parsing to make your
~memory thrash

m Take this presentation, convert to openoffice.org format.
$ unzip yapc.ca-XMLtalk.sti content.xm]

$ 1s -1 yapc.ca-XMLtalk.sti content.xm]
291358 content.xml
47124 yapc.ca-XMLtalk.st1

m Now, lets parse this with XML::Simple
$ perl -MXML::Simple
-e'$t= cat content.xml ;'
—e'$r=xMLin($t);"';
m Size of $ris 4656k (cygwin perl, win2k)
Zipped data = 1

XML format = 6.2 times bigger
Perl objects = 100 times bigger

Bug #8: Parsing to make your
~memory thrash

m A common complaint is that XML is
bloated data format.

It's true

m However, compressing XML is good

Often *.xml.bz2 is smaller than an equivalent
bespoke binary format

m [he real bloat happens in the object
representation from the parser

Bug #9: How to abuse broken
'~ name spaces support

m Name space support is kind of like using a
local variable in perl

local $soap= ..
$soap->{command}= ..

m XML Example

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"“>
<SOAP-ENV:Body> ...

m [he use of “SOAP-ENV”, should be an
arbitrary (if usual) choice

Bug #9: How to abuse broken
'~ name spaces support

m Fortunately, for very many
implementations (especially of SOAP), the
namespace is hardcoded

m [his means that you can have:

XML documents that meet the spec that don't
work with the parser

XML documents that don’'t meet the spec (ie.
have the namespace point elsewhere) and
are still accepted and processed

Bug #10: How to modity your XML
~ during validation

m Here’s an underexploited bug: Did you
know that the “validation” process is
allowed to change the XML document?

m [he DTD (or schema) is allowed to specity
default attiributes that are inserted into the
document during validation

Bonus Bug #1: Store information

~ outside the infoset

Information that is not in the infoset should not
make any difference

m Character encoding
Example: é vs. é

m PCDATA vs CDATA

m Whitespace in elements

Example <foo att="bar”> VS.
<foo att ="“bar” >

m QOrder of attributes

Example <foo att1="bar1” att2="bar2”’>
<foo att2="bar2” att1="bar1”’>

Bonus Bug #1: Store information
~ outside the infoset

Non infoset information, cont’d
m Entities vs PCDATA

m Namespace names
SOAP Example:

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"“>
<SOAP-ENV:Body> ...

Versus

<ROPE-ENV:Envelope xmlns:ROPE-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"“>
<ROPE-ENV:Body> ...

Bonus Bug #2: Calling.
~ MethodsWithNamesThatAreWay Too
LongAndMakeCodeHard ToRead();

| call this effect JAVA itis

Bonus Bug #3: Backwards thinking
~ with callbacks

Warning:
code guru’s, plug ears now.

Bonus Bug #3: Backwards thinking
~ with callbacks

m Most of the sophisticated XML API’s require you
to use callbacks
m Example (with XML::Parser, others are worse)
use XML::Parser:;
$p=new XML::Parser(Handlers => {
Start => \&handle_start,

End => \&handle_end,
Char => \&handle_char});

$p->parse('<foo id="me">Hw</foo>"');

Bonus Bug #3: Backwards thinking
~ with callbacks

m Now we just need to write callback functions
sub handle_start {

Step l:get 1nput parameters
Step 2:fi1gure out where we are

¥

m Keeping track of state in the callback function is
a real pain.

We don’t have a proper object to store it
Tend to use hacks like static variables

Makes us do unnecessary mental gymnastics

Bonus Bug #4: Broken tools

m MSXML didn't work at all well until version
3. It still doesn't handle external entities

properly
m No Debuggers for XML parsers.
Now activestate has a visual XSLT

m No good tools for writing DTDs and
schemas. So most people don't bother

Bonus Bug #4: Broken tools in per!

m Lets try to install SOAP::Lite from CPAN
Just to be clear SOAP::Lite is a great module
m Look at prerequisites
m SOAP::L1te
MIME: :L1te
= MIME: :Parser
MIME: :Tools
= |O::Stringy
= Mail::Field
= Mail::Header N
= Mail::Internet
XML : i Parser
HTTP::Daemon . et cetera
LWP::UserAgent
URI

Actually, there’s lots good about
- XML. slashdot.org quote:

Re:But XML is great for computers... (Score:5, Insightful) by Ed Avis (5917)
<ed@membled.com> on Tuesday March 18, @08:48AM (#5535893)

You mean like most other non-xml config files in /etc, like say hosts, DNS
zone files, named.conf, passwd/shadow, hosts.allow/deny, sendmail.mc or
resolv.conf (etc. etc.)? These have standard layouts, text-based, can be

edited by hand and can be easily parsed.

You just gave the best argument for adopting XML as widely as possible.
Yes, all these can be parsed (with the possible exception of sendmail's
config files which may be Turing-complete) but they all require *different*
code for each config file. If they were in XML you'd still need different
semantic code, of course, but a whole wodge of syntax issues (how do |
qguote strings, how do | escape newlines, how do | mark nested scopes,
what happens when the string delimiter character occurs inside a string,
how do | deal with comments, what is the character set, is there a formal
grammar for the document, etc etc) would be dealt with. ... But they
would be dealt with *once*. No need to learn a new or almost-the-same-
but-slightly-different set of syntactic conventions for every single config file.

Non Bug #1: XML Is text

m Unfortunately, XML doesn’t have a bizarre
binary encoding like ASN-1 (or msword).

m Even worse, XML has a consistent, clean
implementation of Unicode UTF-8.

Unlike what JAVA or MS say, Unicode is not a 2
byte character, that's the BMP-1 subset of UTF-16

UTF-8 is compatible with ASCII, and allows C style
strings (with null termination)

m Your best bet for bugs is to badly integrate
broken unicode support in JAVA

Unfortunately, this talk is about Perl

Non Bug #2: clean separation of
- syntax and semantics

m Unfortunately, XML is now quite well
understood to be a data structure

Some think it's a programming language
Some think it's HTML
m Rigid definition of well-formedness

Unlike pdf, where Adobe writes a spec, but
actually parses documents differently

Style sheets allow conversion of XML data to
different presentation formats
(and are slow, slow, slow)

XML Advice

m Don't hand parse XML

m Be careful hand creating XML
need to “quote”, <, >, &

m Don't use XML::DOM
Don't use XML::Parser

Advice:use XML::Simple

m Use XML::Simple
$xml_struct = XMLIn(
xml file or string)
gives a hash of arrays data structure
$xml_string = XMLout ($xml_structure)

m Good for small XML documents.

m Lots of options to control how structure is
created. / don't like the default options

Advice: use XML::XPath::Simple

m Xpath is like a regexp language for XML

use XML::XPath::Simple;
$Xp = new XML::XPath::Simple(
xml => $xmlstring,
context => '/');
$content = $xp->valueof(
'/doc/c[2]/d[1]@id");

Future of XML and Perl

m XML will not be well used until there is good
in-language support (a la Perl regexps)

m |t must be easier to use XML than to invent
an *ini style file format

m Require “under the covers” caching

m Perl XML support is too scattered -we need
ess and better modules.

m [he Perl way is/should be to make it easy to
right thing, the Java way is to forbid the
wrong thing. We must perlize XML.

Ten Mistakes with XML and Perl,
Andy Adler, YAPC::CA, Ottawa, May 15, 2003

Abstract: XML will enable universal data interoperability by providing a vendor
independent, OSI level 7 presentation layer, semantic capable,
interoperable data format. Since XML is so easy to use, it is unclear why
there is a need for talks on how to use it. Fortunately, with the power of
Perl, and a few helpful tips, anyone can add hard to track bugs to their XML
handling code. We will focus on the following techniques:

m Confusing Attributes and Data
m Abusing bloated and buggy standards

m Abusing bloated and buggy tools

m How to confuse validity and well-formedness
m Unreliable parsing with regexps

m Unreliable encoding with printf

m Parsing to make your code crawl

m Parsing to make your memory thrash

m How to abuse broken name spaces support

m How to modify your XML during validation
Now, new and improved, including 4 bonus bugs.

