Inline

or

Pathologically Polluting Perl

Andy Adler

There are some stunningly novel
ideas in Perl. Many are stunningly
bad, but that's always true of
ambitious efforts.

YAPC::CA, May 2003 Adler - Inline Perl 1

Outline

[0 Ways to link Perl to Other Stuff
[1 Using Inline::C
[0 Writing your own Inline::

[0 Experiences with Inline in a large
project

Why Inline?

] Isn’t Perl Perfect?
[J No. “"Perl” = “Perfect”

[0 However, “Perl” =~ /Per([fect]*)/
which is more than we can say for C,
Java, Python, etc..

Linking Perl to Stuff: XS

Good.:

[1 Powerful

Bad:

[0 Requires learning a new language

[0 Requires knowing about Perlguts,
even for simple stuff

[0 need to create many accessory files

Simple Example

[0 We need to link to library add

$ cat add.c
#1nclude <add.h> Running on cygwin

Need to use windows

int add(int a,int b) { $>r<itcekfi‘2‘r‘)’” (or be
return a+b;

}

$ cat add.h

1nt add(int a,int b);

$ gcc -shared -1. add.c -o libadd.dll

Using libadd

Using libadd from C
$ cat testadd.c

#include <add.h>
#1nclude <stdio.h>
int main() {
printf("Hello world, 2+2=%d\n",
add(2,2));
return O;

:
$ gcc -1. testadd.c add.dll -o testadd

Now, run it

$./testadd.exe
Hello world, 2+2=4

Using libadd from perl

[0 We want to be able to do this

use add.pm;
print “print 2+2”.add(2,2).”’\n”;

[0 How can this be done?
B XS
B Swig
B Inline

XS Approach

Library
Libadd.a

Header
add.h

ktﬁ h2xs

XS File
add.xs xsubpp

Wrd

bper

Wrapper.c

Perl Package
add.pm

Cmnmm[///////'

A 4

and Linker

add

Shared lib
.d11

XS Example

Use h2xs

$ h2xs -A -n add

wWriting add/ppport.h
writing add/add.pm
writing add/add.xs
wWriting add/mMakefile.PL
Writing add/README
Writing add/t/1.t
wWriting add/Changes
Writing add/MANIFEST

h2xs creates the module “add”. The
important file is add.xs

XS Example: add.xs

$ cat add/add.xs
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#include "ppport.h"

MODULE = add
int

PACKAGE = add

add(a,b)
int a
int b
CODE::
RETVAL = a+b;
OUTPUT:
RETVAL

— Add our own
Code starting
here

XS Example (cont'd)
1 Build

$ perl Makefile.PL

$ make

mv add.dl1l libadd.dll.a blib/arch/auto/add/
chmod 755 blib/arch/auto/add/add.dl]

Manifying blib/man3/add. 3pm

L1 Test (we don't want to make install)

$ perl -Iblib/arch/auto/add -madd
-e'print “2+2=".add::add(2,2)’

2+2=4

Good things about XS

[0 Complete access to perlguts
[0 Fairly straightforward for many uses

[0 Language is close to C

Issues with XS

[0 XS uses an unusual syntax

[0 Makefiles are autogenerated, and
need to be customized

[0 Doing testing with the XS directory
layout is awkward

[0 Doing anything more complicated,
like linking to external libraries,
requires lots more work than this
example

SWIG Approach

Library
1ibadd.a

Header
add.h Write it
<+ yourself
Interface file

add.1 SWIG

Wrd

bper

Wrapper.c

Perl Package
add.pm

A 4

Cmnmm[///////'

Shared lib

and Linker

add

.dl1

SWIG approach

Ngdec_l to hand generate an “interface” file:
add.i

%modu le add

%1

#1nclude “add.h”

%}

#include “add.h”

Then we run swig

swig —-perl5 add.1

Creates add_wrap.c

Now we write a Makefile.PL, etc.

Pros and cons: SWIG

Good:
Automates much of the build process
Bad:
Requires learning a new language
Not part of Perl distribution

Versioning issues
Needed special version for windows/perl
Reportedly works correctly now

Creates extra files

Philosophical Aside

Assertion: Creating lots of files is bad

[0 Many languages (notably Java) force
you to create files

O However, the raison d’étre of files is
to organize information for the user.
Any programming language with
interferes with this is evil, evil, evil

Now, back to your regularly scheduled
talk.

Inline Approach

Library Header -
: : . Tell inline
Libmatrix.a Matrix.h
where header
and library are
(if required)
Perl and C
code
\ 4
Shared lib

Matrix.dll

Inline Example

Inline puts the C code right into the file
$ cat exl.pl

use Inline C;

print "2+2=".add(2,2)."\n";

__ _END___

C
int add(int a,int b) {
return a+b;

}
$ perl exl.pl

2+2=4

Linking Perl to Stuff: Inline

Good:
Very DWIM (Takes care of details for you)
Almost no unnecessary syntax
Easy to learn
Can write One liners with Inline
Bad:
Not as powerful as XS

Can't distribute modules (easily) without
Inline (long winded approach as of 0.40)

Installing Inline

] Requirements

Parse::RecDescent

(Inline 0.44 doesn’t require it, but it's to build
it any other way)

1 Build

B Standard way: perl Makefile.PL ; make

B Warning: make test fails on cygwin perl
— but in installs/works fine anyway

Using Inline::C

CODE :
use Inline C => <<'END_C';
void greet(char *greetee) {
printf("Hello, %s\n"“,greetee);

¥
END_C

greet(“world”);
OUTPUT: Inline figured out
how to bind perl

Hello y WO rid strings to char *

Using Inline::C

CODE :
use Inline C;

pr"i Nt JAXH(‘Perl’) , Optionally, we could

__END_ return a char * pointer
to a static buffer

C
SV* JAxXH(char* x) {
return newSVpvT(
"Just Another %s Hacker\n", Xx);

:

OUTPUT :
Just Another Perl Hacker

Inline Use: (Win2K ActivePerl)

$ TIMEFORMAT="Time= %R"

$ time C:/perl/bin/perl ex2.pl
Just Another Perl Hacker
Time= 6.743

$ time C:/perl/bin/perl ex2.pl
Just Another Perl Hacker
Time= 0.239

Inline Directories

drwxr-xr-x O Nov 4 20:42 _Inline
-rw-r--r-- 135 Nov 4 20:39 ex2.pl
./_Inline:

drwxr-xr-x O Nov 4 20:42 build
-rw-r--r-- 221 Nov 4 20:42 config
drwxr-xr-x O Nov 4 20:42 1ib
./_Inline/build:

./_Inline/11ib:

drwxr-xr-x O Nov 4 20:42 auto
./_Inline/lib/auto:

drwxr-xr-x 0O Nov 4 20:42 ex2_pl1_1031
./_Inline/lib/auto/ex2_pl_1031:

-r--r--r-- O Nov 4 20:42 ex2_pl_1031.bs
-r-Xr-xr-x 20480 Nov 4 20:42 ex2_pl_1031.d11
-r--r--r-- 832 Nov 4 20:42 ex2_pl1_1031.exp
-rw-r--r-- 594 Nov 4 20:42 ex2_pl_1031.1inl

-r--r--r-- 2234 Nov 4 20:42 ex2_pl_1031.13b

Inline Syntax

] Usage:

use Inline Language => source-code,
config_option => value,
config_option => value;

[1 source-code
B String: use InlineC=>qg{ ... };
B Here Doc: use Inline C => <<END_C;
O END_: use Inline C;

Inline Syntax

Configuration Options:

[1 Using external libraries: Link to
libmylib.a
or

use Inline C => /“v“b-lib
DATA =>

LIBS => '-Imylib’,
PREFIX => 'my_';

Warning

The next slides contain windows
specific code.

Viewer discretion is advised

External Libraries

use Inline C => DATA => LIBS =>
'-luser32', PREFIX => 'my_';

MessageBoxA('Inline Message Box',

'Just Another Perl Hacker');
__END__

C
#include <windows.h>

1nt my_MessageBoxA(char* C, char* T){
return MessageBoxA(0, T, C, 0); }

External Libraries

$ cat ex3.pl ; perl ex3.pl
use Inline C => DATA => LIBS = °

ftinclude <windous
int my HessageBoxf

I

See Perl Run. Run Perl, Run!

Inline: :CPR -> Create C interpreter

#!/usr/bin/cpr

int main(void) {
printf("Hello, world\n");

}

See Perl Run even more

Call perl from C code

#!/usr/bin/cpr

int main(void) {

printf("I'm running under "
"Perl version %s\n',

CPR_eval ("use Config; "
"$config{version}"));

return O;

}

Running this program prints:
I'm running under Perl version 5.8.0

CPR behind the covers

L1 /usr/bin/cpr wraps c code like this

BEGIN{ mkdir('./_cpr', 0777) unless -d
‘./_cpr';}
use Inline Config => DIRECTORY => './_cpr/';
use Inline CPR;
cpr_main(Q);
__END__
_ _CPR__
int main(void) {
printf("Hello world");
return 42;

CPR iIssues

[0 Just before the talk I was trying to
get cpr working on cygwin

[0 However, cygwin has a bizarre notion
of execute permissions
B *.exe, *.bat etc have it, others don't
[0 Fix this by doing
B pl2bat /usr/bin/cpr.pl
B And some minor edits to cpr.bat
[0 Now use #!/usr/bin/cpr.bat

Other Inline Languages

ILSM = Inline Language Support Module

Inline
Acme

Inline:
Inline:
Inline:
Inline:
Inline:
Inline:
Inline:
Inline:

::CPP
:Inline::PERL
:Java

:Guile

:C

:Befunge
:BC

1T
:WebChat
:Ruby

In
In
In
In
In
In
In
In
In

ine

ine:
ine:
ine:
ine:
ine:
ine:
Ine:
Ine:

:Tcl
:Python
:Pdlpp
:Octave
:Basic
:Filters
: Awk
:ASM
:Struct

Creating an Inline Module

Techniques to link to Per]

B Compile to a dynamic library (*.so,*.dll)
and link to Perl at run time (::C, ::CPP,
::Java::API)

B Open a socket connection between Perl
and the other interpreter (::Python,
::Java)

B Pipe stdio,stderr between Perl and other
interpreter (::Octave). (using
IPC::0Open3)

Inline::Python example

0 $ cat ex python.pl

use Inline Python;
my $language = shift:
print $language, (match($1anguage "Perl')
? ' rules' : sucks'), " \n"'
__END__
__Python__
import sys
import re
def match(str, regex):
f = re. comp11e regex) ;
if f.match(str): return 1

return O
[l Test: ./ex python.pl Perl
B Perlrules, or

B Python sucks

How to create

Inline Module

Look at Inline::PERL (or Inline-API)

Inline::PERL gives

you the power of the

PERL programming language from

within your Perl

programs. ...

PERL is a programming language for

writing CGI appl
strength is that
unnecessary wa

ications. It's main
it doesn't have any

'nings or strictures.

Create Inline Module

[0 Create the following methods
B Register
B Build
m |Load
B Validate

[0 Object variables contains all the code
and administrative information

Inline::Octave

[0 Sample code
use Inline Octave ;

$c= new Inline::Octave::Matrix(
[[1552!3]![45!1!_1]])!

my $d= addone($c) x $c->transpose;
print $d->disp;

oct_plot([0..4], [3,2,1,2,3]); Custom Donthave
sleep(5); Octave number of
__ DATA__ function Output params
__Octave From perl5

function x=addone(u); x=u+1l; endfuncti

Inline::0Octave::oct_plot (nargout=0) => plot

Example of a “load” method

sub load {
my $o shift;
my Sobj = So->{API}{location};
open PERL OBJ, "< $obj" or croak
"Can't open $obj for output\n$!";

my $code = join '', <PERL OBJ>;
close *PERL_ OBJ;
eval

"package S$o—>{API}{pkg}; \nScode";
croak "S$obj:\nS$Q@" if $@;

Current Status of Inline

[0 Version 0.44 was recently released
B New, cleaner build
B Bug fixes

B New parser (Regexp instead of
RecDescent)

[Version 0.50 promises:
B Distribute modules without Inline
B Cleaner features

Real world example

[0 We had a biometric software
compiled as a client side ActiveX

[0 We needed it to run as a server
component with a SOAP protocol

] Tasks

B Convince the ActiveX to work like a
regular DLL

B Get the DLL to talk to SOAP::Lite
running in mod_perl in Apache

Real Client > Apache

|
A 4

mod_perl
. v
ActiveX berl
Component
(thinks its SOAP: :Lite
a client)
T Inline::C
v

DLL wrapper
to ActiveX [DLL generated

by Inline::C

Code Design

1 Modules:

B Biometriclnterface.pm
B SpecificVendor.pm

[0 Modifications to Apache Config
B set perl @INC

B Can't use directory with spaces in path -
Inline can’t handle this

B DLLs were put in C:/Apache directory, so
that perl would pick them up

SOAP::Lite in mod_perl

[0 Entry point *.cgi

use BiometricInterface;
use Specificvendor;

SOAP: : Transport: :HTTP: :CGI ->
dispatch_to(‘Specificvendor')
-> handle;

SpecificVendor Module

use Inline C => Config => MYEXTLIB =>
"C:/Apache/Specificvendor.11b";

use Inline C => <<END_OF_C_CODE;
#define DLLEXPORT __declspec(dllimport) __cdecl
DLLEXPORT int InitEngine() ;

DLLEXPORT int CreateTemplate(char * infile,
char * outfile);

int init_engine() {
return InitEngine();

}

int create_template(char * infile,
char * outfile) {

return CreateTemplate(infile, outfile);

Comments

Inline (and SOAP::Lite) allowed the proof of

concept to done very quickly (1 month)

Eventually it was replaced with a JSP +

JAVA native interface application

Inline is somewhat crude when emdedded.

Its hard to distribute

All paths are absolute
Inline module must be included

If file timestamps change, system looks for a
compiler to recompile code

End up writing lots of thin wrappers

Summary

OOWays to link Perl to Other Stuff
mXS
BSWIG
BInline

[dUsing Inline::C
OWriting your own Inline::

[DExperiences with Inline in a large
project

Comments?

References:

B Pathologically Polluting Perl,
Brian Ingerson, Feb. 06, 2001, www.perl.com

B Inline-FAQ, www.cpan.org

Inline with Perl.
YAPC::CA 2003. Andy Adler

O0O0O00

Perl's Inline module is a wonderful idea: write stuff in Perl
that is is best done in Perl, and write stuff in other
languages as required. The Inline module will then fit the
bits together, con_vertlng% between native types in each
language as required. Of course, being Perl, there are many
ways to do it. The official way to mix Perl and C is XS, and
several other solutions (such as SWIG) exist as well. Inline
has several key advantages:

Simplicity: it tries vary hard to "DWIM" (do what I mean).
Simplicity: no need to create Makefiles

Simplicity: all languages use the same Inline syntax and
Obfuscability: you can create One liner JAPH's with it.

We'll look at usinlg Inline for C code using (surprise)
Inline::C. We'll play with interpreted C code with
Inline::CPR. And we'll look at (some aspects of) writing an
Inline::* module.

