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Outline

• Electrical Impedance Tomography
• Physics and Image Reconstruction
• Measurement Difficulties

– Electrode Errors

• Work in Progress
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Electrical Impedance Tomography

• Relatively new medical imaging 
technique (early 1990’s)

• Body Surface Electrodes apply current 
patterns and measure the resulting 
voltages

• Distribution of conductivity is calculated
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EIT: Block Diagram
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EIT: Applications

• EIT can image physiological processes 
involving movement of conductive fluids 
and gasses

• Lungs
• Heart / perfusion
• GI tract
• Brain
• Breast
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EIT: Advantages

EIT is a relatively low resolution imaging 
modality, but

• Non-invasive
• Non-cumbersome
• Suitable for monitoring
• Underlying technology is low cost
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Application: Breathing

Chest images of tidal breathing in normal
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Application: Heart Beat

EIT signal in ROI around heart and ECG
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Image Reconstruction:
Static Imaging

Static imaging reconstructs the absolute 
conductivity from measurements.

Algorithms:
• Iterative (Newton-Raphson)
• Layer Stripping
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Static Imaging Difficulties

• Extremely sensitive to uncertainties in 
electrode position

• Ill-conditioned problem
• Numerical instability
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Dynamic Imaging

• Calculate change in conductivity 
distribution from change in 
measurements

• Inverse problem linearized
• Much reduced sensitivity to electrode 

and hardware errors.
• Very suitable for physiological imaging: 

lung, heart, GI
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Inverse Techniques

• We can pose dynamic imaging as linear 
inverse, using a sensitivity matrix
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Parametrize Conductivity

• We want to parameterize conductivity
– So that all reconstructed valued are 

physically valid
– To reflect physical importance of low and 

high values

• Most common parameterization is
r = log( conductivity )
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Inverse Techniques

• Classic least-squares inverse
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Least squares inverse

However, problem is:
• ill-conditioned: measurements depend 

much more on data near electrodes 
than in centre

• ill-formed: more unknowns than 
measurements
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Regularized Imaging
Handwaving argument for regularization: 

used for ill-posed and ill-formed problems to 
find a solution with:

• Low error: small ( z – Hx )
• Stable: small change in x for small �z
• Good looking:

– Somewhat hard to define, but includes 
smoothness, clean edges, etc.
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MAP estimates

• MAP approach says choose x such that 
f(x|z) is maximized
– In other words, choose the image that is 

most likely, considering the measured data

• Bayes Rule
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MAP estimates 

f(z|x)   the distribution of measurements 
given an image
– Based on forward model and noise 

properties
f(z)      distribution of measurements

– Not a parameter of MAP estimate
f(x)      distribution of image

– Based on a priori knowledge of physically 
possible and likely images distributions
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Regularized Imaging

Given Linear Model:

Maximum A Posteriori (MAP) estimate is:
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Regularized Imaging
• Parameters Rx, Rn, x

�
, represent a priori

statistical knowledge of problem
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Choice of parameter Rx

• Parameter is a “penalty function”
• Many regularization approaches use a 

diagonal matrix
– Tikhonov regularization uses the scaled 

identity matrix
– This will penalize large amplitude pixels in 

image
• We choose a dense matrix

– Penalize image frequency content above 
maximum possible with measurements
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Choice of parameter Rx

• In order to avoid problems inverting Rx, 
we directly calculate the inverse
– Since Rx represents spatial low pass filter, 

Rx
-1 represents a high pass

• Choose a Gaussian high pass of form
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Regularization: Hyperparameters

Regularizations techniques must finally 
introduce a “hyperparameter” (µ)

where
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Regularization: Hyperparameters

µ is thus the ratio of image and noise 
amplitudes, 

it can be interpreted as a the noise figure 
of a signal receiver
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Regularized Inverse

Parameters:
• W: models measurement noise
• Q: penalizes image features which are 

greater than data supports
• :  represents the background 

conductivity distribution (heart,lungs,etc)
• �: “hyper-parameter” amount of 

regularization

∞x



A.Adler, May 29,2003 Electrical Impedance Tomography 27

Advantages of Regularization

• Stabilizes ill-conditioned inverse
• Introduction of a priori information
• Control of resolution-noise performance 

trade-off
• MAP inverse justifies the formulation in 

terms of Bayesian statistics
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Noise – Resolution Tradeoff

D: Meas: No Noise Reconst: NF= 0.4
E: Meas: -3dB SNR Reconst: NF= 0.4
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Noise – Resolution Tradeoff

F: Meas: No Noise Reconst: NF= 2.0
G: Meas: -3dB SNR Reconst: NF= 2.0



A.Adler, May 29,2003 Electrical Impedance Tomography 30

Electrode Measurement Errors

• Experimental measurements with EIT 
quite often show large errors from one 
electrode

• Causes aren’t always clear
– Electrode Detaching
– Skin movement
– Sweat changes contact impedance
– Electronics Drift?
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Example of electrode errors

Images measured in anaesthetised, ventilated dog
A. Image of 700 ml ventilation
B. Image of 100 ml saline instillation in right lung
C. Image of 700 ml ventilation and 100 ml saline

A                         B                           C

“Bad”
Electrode
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Measurements with “bad” electrode

“Bad” 
Electrode
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Possible solution:
zero erroneous data

• Set all measurement and injection 
data on “bad” electrodes to zero

• “Traditional solution” in the sense I’ve 
used it. I’m not aware of any formal 
description
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Solution: zero erroneous data

Issues
• Reduces amplitude of contrasts
• Error in reconstructed contrast 

Position
• Decreases image resolution
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Proposed solution:
Bayesian Imaging model

• Maximum a posteriori (MAP) models 
allow incorporation of known constraints 
into regularized image calculation

• Model electrode errors as a priori large 
measurement noise on all 
measurements using affected electrode
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Regularized Imaging Model
• Parameters Rx, Rn, represent a priori

statistical knowledge of problem

• If a �² = �, then inverse matrix will have 0 in 
corresponding position
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Simulation

Data simulated with 2D FEM with 1024 elements 
– not same as inverse model

“Bad” 
Electrode

Position in % of 
medium diameter

Small 
targets 
simulated at 
different 
radial 
positions
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Simulation results for opposite drive
No Electrode Errors

Zero Affected Measurements

Bayesian Inverse
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How does this work with real data?

A. Image of 700 ml ventilation
B. Image of 100 ml saline instillation in right lung
C. Image of 700 ml ventilation and 100 ml saline

A                       B                         C

“Bad”
Electrode
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Discussion
Image Approaches to Electrode Errors
• Set “bad data” to zero

– Works reasonably well > 25% diameter from 
electrode

• MAP model
– Works well up to 15% diameter from electrode
– Close to no errors for opposite drive
– Natural extension of Bayesian prior info

However, should also try to better understand 
the causes of electrode errors …
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Work in progress
Model Electrode Errors

– Physical modelling
• Electronics Drift
• Electrode movement
• Change in skin impedance due to sweat, irritation, etc.

– Numerical Modelling
• Finite element modelling of both mechanical and 

electrical properties of thorax

– We hope to be able to build better image 
reconstruction algs., using detailed prior 
knowledge
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Work in progress

• Automatic identification of erroneous 
electrode data

• Approach: for all electrodes (ei)
– Using all electrodes, except ei, 

reconstruct image
– Using image, estimate measurements on ei

– Compare measured vs simulated data
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Electrical Impedance Tomography: Image Reconstruction
with Electrode Measurement Errors. 
A. Adler, VIVA Lab Seminar, U. Ottawa, 29 May 2003

Abstract: Electrical Impedance Tomography (EIT) is a relatively new medical 
imaging technique which allows imaging of the change in conductivity 
distribution within a body using body surface current applications and 
voltage measurements. We are particularly interested in its use as a 
monitoring technique of lung and heart activity in anesthetized and critical 
care patients. EIT's advantages - non-invasive, non-cumbersome, and 
relatively low cost - make it ideal for this kind of monitoring application. 
Reconstruction of the conductivity change image involves the solution of a 
non-linear, ill-posed problem from noisy data. Stable solutions are typically 
achieved by the use of regularization. The talk will present an approach 
using Maximum a Posteriori (MAP) based regularization, in which the data 
and image priors are based on detailed modelling of image and noise 
priors. One of the most challenging problems in EIT – especially for long 
term monitoring applications - is dealing with errors in electrode 
measurements. Electronics drift, electrode movement and changing
electrode impedance due to sweat and irritation introduce difficult-to-model 
errors into the data. Our work in progress to deal with some of these 
effects will be presented. The regularized image reconstruction model is 
modified to account for known data errors in terms of Bayesian prior 
information, allowing for the calculation of remarkably good images in the 
presence of severe single electrode data errors.


