### IMPACT OF POSE AND GLASSES ON FACE DETECTION USING THE RED EYE EFFECT

Yednekachew Asfaw, Bryan Chen and Andy Adler University Of Ottawa

March 2003

### Face Detection

### Applications for face detection

- Surveillance
- Input to face recognition systems
- Human computer interface

Current systems typically rely on processing visible image, and aren't 100% reliable

### Red Eye effect for face detection

Red eye effect is caused by reflection off the retina due to coaxial illumination



# **Research Objectives**

- Research face detection using red-eye data
- Evaluate and classify impact of variables
  - Fixed distance from camera
  - Pose
  - Glasses
  - Eye color and skin tone

# Image Analysis Techniques

- Goal: develop face detection algorithm to account for variables
- Face detection algorithm stages
  - Normalization
  - Localization
  - Blurring
  - Validation

### 1.Normalization

- Purpose:
  - Normalize overall intensity of the image

### Technique:

- Morphological Opening from Matlab image processing toolbox
- Creates a uniform background to image
- Subtracting background to original produces an image with a normalized intensity

# 1.Normalization cont'

#### □ Example:

#### 1. Given the original



#### **Original Image**

### 1.Normalization cont'

# 2. Generate a uniform background



#### Background

### 1.Normalization cont'

# 3. Subtract background from original



**Original-Background** 

# 2.Localization

- Purpose
  - Isolate Possible candidates for pupils
- Technique
  - Based on overall intensity of image
  - Calculate the mean intensity and standard deviation of the image
  - Threshold image based on mean and standard deviation

Threshold value = mean + stand dev/3

# 2.Localization cont'

Example

 Change Image to B&W by applying Dynamic threshold



**Black and White** 

# 3. Blurring

- Purpose
  - Blur the image to eliminate background noise
- Technique
  - Using mean filtering
  - Create a sample mean kernel
    - □ Kernel (3x3 matrix)
  - Carryout a 2D convolution

# 3.Blurring cont'

#### Example

#### 1. Blur using Conv2





## 3.Blurring cont'

#### 2. Dilate Image





## 3.Blurring cont'

# 3. Label all white areas



# 4. Validation

#### Purpose

To isolate the pupils from possible candidates

### Technique

- Using the holistic approach:
  - Pupil distance ranges from 40 to 50 pixel
  - □ Head motion from 0 to 20 degrees
  - Defining Probable Activity Area

# 4. Validation cont'

#### Example

- 1. Outside of Active Region
- 2. Improper angle
- 3. Improper distance
- 4. Real Data



### Results



### Results

□ 80-85% detection success

### All experimental variables classified:

Current techniques sufficient for locating eyes without glasses

# Effect of Variables



## Effect of Variables

- Eye Color
  - The intensity level of the red eye lower on darker eye colors
- IR placement
  - On axis IR placement produces better result on 0 degree pose

### Recommendation

- Research into other image extraction techniques
  - Frame differential

Use this technique in conjunction with other face detection methods

### Abstract

In current image-processing algorithms for face detection performance is not completely reliable, especially in situations with variable lighting, and with low-resolution images. One possible approach to implement face detection is the use of the "red-eye" effect: the reflection produced by human eyes when exposed to co-axial infrared (IR) light. We investigated the effectiveness of the red-eye technique for variability in: skin tone, eye color, pose, angle of IR illumination, scene illumination, and the effect of shine from glasses. Algorithms were developed to detect eye locations from a single IR image. Image processing steps involved: normalization, blurring, dynamic threshold calculation, and candidate eye position validation. Average eye position estimation accuracy approaches 80 to 85 percent.