What does *Penh* measure?

Andy Adler
Greg Cieslewicz
Charlie Irvin

Background: Barometric Plethysmography

- An animal in a chamber causes breathing frequency pressure changes. Effects is from:
 - Heating and Humidification
 - Adiabatic compression

Background: Penh

- □ Proposed: *Hamelmann et al.*, 1997
 - Heuristic parameter: Penh
 - BALB/c mice tested
 - Results show correlation of Penh vs R_{aw}
- Advantages
 - Ease of use
 - Animal is preserved

Penh: definition

1. What does it mean?

- How does it relate to traditional parameters?
- ☐ Why such a complicated formula? Is it special?

2. Lack of physical support

Unfortunately:

Box pressure originates in:

- ☐ Adiabatic _____ related to P_L _____ to lung compression compression
- heating, humidification related to $V_T \rightarrow Dominates$ signal (>10x)

Lundblad et al., 2002

3. Experimental Problems

- Reports that it doesn't work well in C57BL6
- Equipment is difficult to calibrate, and results vary day to day

Species variability: Bert P., C.R. Soc. Biol., 1868

- □ Specific pressure change
 - large in duck, dog, cat, guinea pig, tortoise
 - small in rabbit, pigeon, snake, frog

Our study: experimental evaluation of Penh

Goals:

- Compare to traditional parameters (invasive and non-invasive)
- □ Test results in different strains: BALB/c and C57BL6

Parameters calculated

Plethysmography parameters

$$T_{I}$$
 T_{E} T_{Tot} T_{I}/T_{Tot} T_{R}

$$P_{I}$$
 P_{E} P_{IF} P_{EF} V_{T}

Pause Penh
$$V_T/T_I$$
 V_T/T_{tot} V_T/T_E

Invasive parameters

$$R_L$$
 C_L

Box pressure

Parameters versus R_I

versus R _L		BALB/c	C57BL6
"Best" in BALB/c	Pause	0.802	0.290
	Penh	0.809	0.288
"Best" overall	$T_{\underline{I}}$	0.714	0.418
Overali	T _E	0.745	0.703
	T_{I}/T_{Tot}	-0.283	-0.191
	P_{IP}	0.165	-0.385
Correlation coefficient (r)	P_{EP}	0.720	-0.038
	T_R	0.097	0.211
r>0.36 is Significant at p<.01	V_{T}	0.671	-0.069
	V_T/T_E	-0.460	-0.397

Penh vs. T_F ("best" correlators in BALB/c)

Discussion: Penh is

- Theoretically insensitive
- □ Not "special"
 - no better than respiratory timing
- Strain sensitive
 - no correlation in C57BL6
- Numerically unstable
 - \square Sensitive to T_R calculation.

What is *penh* measuring?

BALB/c immunized RL (cm H2O · s / ml) and control Our hypothesis: control of breathing 1. Penh separates treatment groups at concentration levels 10.00 where there is no difference in mechanics. 2.00 **First** 1.00

significant

dose level

12.5

Methacholine (mg/ml)

50

Is Penh measuring control of breathing?

- 2. Part of the breathing pattern response to agonists is due to reflex
 - Dogs (Phillipson, JAP, 1974)
 - Sheep (Wagner et al., JAP, 1999)

Is Penh measuring control of breathing?

- 3. Relative performances correspond to known differences between strains
 - BALB/c => longer, larger breaths
 - ☐ This is adaptive for an *airway* response
 - C57BL6 => change flow, small decrease in V_{τ}
 - ☐ This is adaptive for a *tissue* response

Strain differences

Non-treated

Localization of eosinophils in lung tissue.

sensitized

Takeda et al., Am. J. Physiol., 281: L394-L402

> sensitized and challenged

C57BL6

BALB/c

