Inline
or
Pathologically Polluting Perl

Andy Adler

Nonsense in the intellect promotes

corruption in the will
-C.S.Lewis

Outline

Ways to link Perl to Other Stuff
History of Inline
Using Inline::C, Inline::Java

Writing your own Inline::

Why Inline?

e Isn’t Perl Perfect?
 No. “Perl” = “Perfect”

« However, “Perl” =~ /Per([fect]”)/
which is more than we can say for C,
Java, Python, etc..

Linking Perl to Stuff:

Powerful

Requires learning a new language

Requires knowing about Perlguts,
even for simple stuff

need to create many accessory files

Linking Perl to Stuff:

Automates much of the build process

Requires learning a new language

Not part of Perl distribution

Versioning issues (May be solved now)
Creates extra files

Philosophical Aside

Creating lots of files is bad

* Many languages (notably Java) force you
to create files
« However, the raison d’étre of files is to

organize information for the Any
programming language with interferes with

this is
back to your regularly scheduled talk

Linking Perl to Stuff:

Very DWIM (Takes care of details for you)
Almost no unnecessary syntax

Easy to learn

Can write One liners with Inline

Not as powerful as XS

Can’t distribute modules without XS
(to be removed in ver 0.50)

Using Inline::C

use Inline C => <<'END C';
void greet (char *greetee) {
printf ("Hello, %s\n“, greetee);

}
END_C

greet (“world”);

Hello, world

Using Inline::C

use Inline C;
print JAxH('Perl‘);
__END
C
SV* JAxH (char* x) {
return newSVpvf (

"Just Another %s Hacker\n", x);

}

Just Another Perl Hacker

Inline Use: (Win2K ActivePerl)

S TIMEFORMAT="Time= $%R"

$ time C:/perl/bin/perl ex2.pl
Just Another Perl Hacker

Time= 6.743

$ time C:/perl/bin/perl ex2.pl
Just Another Perl Hacker

Time= 0.239

Inline Directories

S 1s -1R .

drwxr—-xr—-x O Nov 4 20:42 Inline
—rw—r——r—-— 135 Nov 4 20:39 ex2.pl1
drwxr—-xr—-x O Nov 4 20:42 build
—rw—r——r—— 221 Nov 4 20:42 config
drwxr—-xr—-x O Nov 4 20:42 1ib

drwxr—-xr—-x O Nov 4 20:42 auto

drwxr—-xr—-x O Nov 4 20:42 ex2_pl_ 1031

e o O Nov 4 20:42 ex2_pl_1031.bs
—r—Xr—Xr—x 20480 Nov 4 20:42 ex2_pl 1031.d11
—Yr——r—-—r—-— 832 Nov 4 20:42 ex2_ pl 1031.exp
—rw—r——r—— 594 Nov 4 20:42 ex2 pl 1031.inl
—Yr——Yr——Y-—— 2234 Nov 4 20:42 ex2_ pl 1031.1ib

Warning

* The next slide contains windows specific
code.

* Viewer discretion is advised

External Libraries

use Inline C => DATA => LIBS => '-
luser32', PREFIX => 'my ';
MessageBoxA ('Inline Message Box',
'Just Another Perl Hacker');
END

C

#include <windows.h>

int my MessageBoxA (char* C, char* T) {
return MessageBoxA (0, T, C, 0),; }

External Libraries

¢ C:/perl/binsperl ex3.pl

i vessooe Tl

Just Anakther Perl Hacker

See Perl Run. Run Perl, Run!

Inline::CPR -> Create C interpreter

#!/usr/bin/cpr
int main (void) {

printf ("Hello, world\n");
}

Inline::

Acme::Inline::PERL

Inline::
Inline::
Inline::
Inline::
Inline::
Inline::
Inline::
Inline::

Inline ILSMs

= Inline Language Support Module

CPP

Java
Guile

C
Befunge
BC

TT
WebChat
Ruby

Inline:
Inline:
Inline:
Inline:
Inline:
Inline:
Inline:
Inline:
Inline:

Tcl
:Python
:Pdlpp
:Octave
:Basic
‘Filters
:Awk
:ASM
:Struct

Creating an Inline Module

Techniques to link to Perl

— Compile to a dynamic library (*.so,*.dll) and
link to Perl at run time (::C, ::CPP, ::Java::API)

— Open a socket connection between Perl and
the other interpreter (::Python, ::Java)

— Pipe stdio,stderr between Perl and other
interpreter (::Octave). (using IPC::Open3)

How to create Inline Module

Look at

Inline::PERL gives you the power of the
PERL programming language from within
your Perl programs. ...

PERL is a programming language for writing
CGl applications. It's main strength is that
it doesn't have any unnecessary warnings
or strictures.

Create Inline Module

 Create the following methods
— Register
— Build
— Load
— Validate

» Object variables contains all the code and
administrative information

Example of a “build” method

sub load {
my So = shift;
my Sobj = $So->{API}{location};
open PERL OBJ, "< $obj" or croak
"Can't open $obj for output\n$!'";

close *PERL_OBJ;

croak "$obj:\n$@" if $Q;

Current Status of Inline

» Stayed at Version 0.43 for a long time.

» Version 0.44 has just been released
— New, cleaner build
— Bug fixes
* Version 0.50 promises:
— Distribute modules without Inline
— Cleaner features

