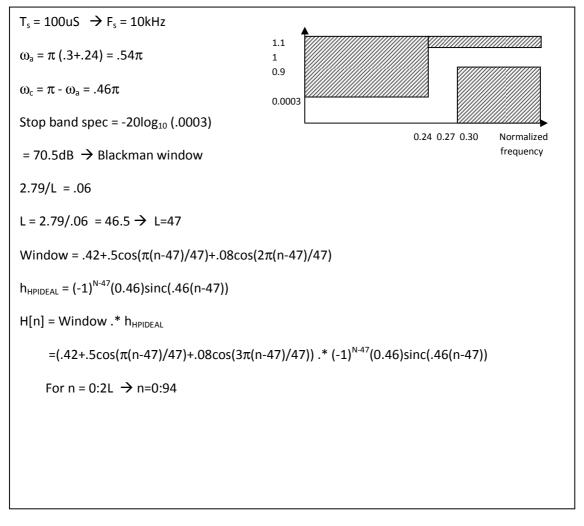
SYSC 4405 In-class Quiz 3A: Nov 14, 2011


Question 1 (1 point): What is your name and student number?

Name: ______

Lab Section: _____

Student Number: _____

Question 2 (4 points): A DSP system is sampled at T_s =100µs, you need to design a windowed high pass FIR filter, h[n], with the following attributes: Accept frequencies above 3000Hz (to within 10%) and reject frequencies below 2400Hz by at least .03%. Show the expression for a causal FIR filter h[n], including window function, ideal filter function, ω_c and length L.

some useful formulas

$$h_{LP}[n] = \frac{\omega_{e}}{\pi} \operatorname{sinc}\left(\frac{\omega_{e}}{\pi}n\right), \ h_{LP}[n] = \frac{\operatorname{sin}(\omega_{e}(n-L))}{\pi(n-L)}, \ \operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x},$$
$$h_{HP}[n] = (-1)^{n} \frac{\omega_{e}}{\pi} \operatorname{sinc}\left(\frac{\omega_{e}}{\pi}n\right), \ \omega_{c} = \pi - \omega_{a}$$
$$h_{BP}[n] = 2\cos(n\,\omega_{0})\frac{\omega_{e}}{\pi}\operatorname{sinc}\left(\frac{\omega_{e}}{\pi}n\right)$$

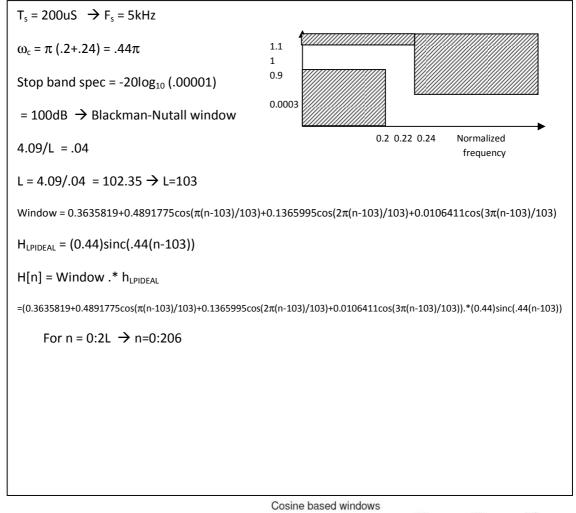
Cosine based windows

 $W[n+L] = a_0 + a_1 \cos(\frac{\pi n}{L}) + a_2 \cos(2\frac{\pi n}{L}) + a_3 \cos(3\frac{\pi n}{L})$

Centre at n=L for FIR

Window name	Stop band Attenuation (dB)	Transition band width (/L)	a_0	<i>a</i> ₁	a ₂	a ₃
Rectangular	20.8	0.46	1	0	0	0
Hann	43.9	1.56	0.5	0.5	0	0
Hamming	53.9	1.90	0.53836	0.46164	0	0
Blackman	75.3	2.79	0.42	0.5	0.08	0
Blackman-Nutall	112.7	4.09	0.3635819	0.4891775	0.1365995	0.0106411

SYSC 4405 In-class Quiz 3B: Nov 14, 2011


Question 1 (1 point): What is your name and student number?

Name: _____

Lab Section:

Student Number: _____

Question 2 (4 points): A DSP system is sampled at $T_s=200\mu s$, you need to design a windowed low pass FIR filter, h[n], with the following attributes: Accept frequencies below 1000Hz (to within 10%) and reject frequencies above 1200Hz by at least .001%. Show the expression for a causal FIR filter h[n], including window function, ideal filter function, ω_c and length L.

some useful formulas

$$h_{LP}[n] = \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c}{\pi}n\right), \ h_{LP}[n] = \frac{\sin(\omega_c(n-L))}{\pi(n-L)}, \ \operatorname{sinc}(x) = \frac{\sin\pi x}{\pi x},$$
$$h_{HP}[n] = (-1)^n \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c}{\pi}n\right), \ \omega_c = \pi - \omega_a$$
$$h_{BP}[n] = 2\cos(n\,\omega_0)\frac{\omega_c}{\pi}\operatorname{sinc}\left(\frac{\omega_c}{\pi}n\right)$$

 $W[n+L] = a_0 + a_1 \cos(\frac{\pi n}{L}) + a_2 \cos(2\frac{\pi n}{L}) + a_3 \cos(3\frac{\pi n}{L})$

L for EID

) at	n=L	for	FIR

Window name	Stop band Attenuation (dB)	Transition band width (/L)	a ₀	<i>a</i> ₁	<i>a</i> ₂	a ₃
Rectangular	20.8	0.46	1	0	0	0
Hann	43.9	1.56	0.5	0.5	0	0
Hamming	53.9	1.90	0.53836	0.46164	0	0
Blackman	75.3	2.79	0.42	0.5	0.08	0
Blackman-Nutall	112.7	4.09	0.3635819	0.4891775	0.1365995	0.0106411