
Quiz 3 Answer book

Background: You're building a portable music recorder and playback system. The system has recorded a sample sound for playback. The input, x(t), at the microphone is: $x(t) = 10 \sin(600\pi t) + 5 \sin(4100\pi t) \text{ mV}$

 $sin(wt) = (e^{jwt} - e^{-jwt})/2j$ A. Show the Fourier transform, $X(\Omega)$, as a phasor plot. $= -(e^{jwt}-e^{-jwt})j/2$ Answer: $x(t) = 10 \sin(600\pi t) + 5 \sin(4100\pi t) \text{ mV}$ $= 10 \sin(300 (2\pi t)) + 5\sin(2050(2\pi t)) \text{ mV}$ $= -5j e^{j(300(2\pi t))} + 5j e^{-j(300(2\pi t))} - 2.5j e^{j(2050(2\pi t))} + 2.5j e^{-j(2050(2\pi t))} mV$ $= 5e^{j600\pi t} (e^{-j\pi/2}) + 5e^{-j600\pi t} (e^{j\pi/2}) + 2.5e^{j4100\pi t} (e^{-j\pi/2}) + 2.5e^{-j4100\pi t} (e^{j\pi/2}) mV$. X(jΩ) 5j 2.5j -2050 -300 300 2050 Freq (Hz) Freq (rad/s) x2π x2π x2π x2π 2.5j 5j

B. Without using any type of anti-aliasing filter, the signal is sampled at 1000 samples/s, giving a sampled sequence x[n]. Calculate x[n] showing each term in it's lowest frequency form.

Answer: $x(t) = 10 \sin(600\pi t) + 5 \sin(4100\pi t) \text{ mV}$

Fs = 1000 Hz

 $x[n] = x(n/Fs) = 10 \sin[600\pi n/1000] + 5 \sin[4100\pi n/1000] mV$

 $= 10 \sin[(0.3) 2\pi n] + 5 \sin[(0.05) 2\pi n + 4\pi n] \text{ mV}$

 $= 10 \sin[(0.3) 2\pi n] + 5 \sin[(0.05) 2\pi n] \text{ mV}$

C. Calculate the Nyquist frequency for this sampling rate, and calculate at what frequency the aliased representation of $sin(4100\pi t)$ will appear in the sampled signal. Is this signal aliased?

Answer: $Fs = 1000Hz \rightarrow Nyquist frequency = Fs/2 = 500Hz$

Yes the signal is aliased

The 300Hz component is fine (not aliased) The 2050Hz component is aliased to 50Hz

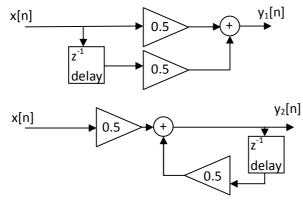
D. Calculate the value of x[n] for $n = 0 \dots 3$.

Answer: $x[n] = 10 \sin[0.2*2\pi n] + 5 \sin[0.05*2\pi n] \text{ mV}$

 $x[0] = 10 \sin[0.2*2\pi 0] + 5 \sin[0.05*2\pi 0] \text{ mV} = 0 \text{ mV}$

 $x[1] = 10 \sin[0.2*2\pi 1] + 5 \sin[0.05*2\pi 1] \text{ mV} = 11.0557 \text{ mV}$

 $x[2]=10 \sin[0.2*2\pi 2] + 5 \sin[0.05*2\pi 2] mV = -2.9389 mV$


 $x[3] = 10 \sin[0.2*2\pi 3] + 5 \sin[0.05*2\pi 3] \text{ mV} = -1.8328 \text{ mV}$

E. Input *x*[*n*] is sent into two filters:

Filter 1: $y = f_1(x)$:	$y_1[n] = \frac{1}{2}(x[n] + x[n-1])$
Filter 2: $y = f_2(y)$:	$y_2[n] = \frac{1}{2}(x[n] + y[n-1])$

Show the block diagram for each filter. Calculate $y_1[n]$ and $y_2[n]$ for $n = 0 \dots 3$, and $x[n] = \delta[n]$. Assume initial conditions are zero.

Answer:

n	$x[n] = \delta[n]$	y ₁ [n]	y ₂ [n-1]	y ₂ [n]
-1	0	0	0	0
0	1	1/2	0	1/2
0	0	1/2	1/2	1⁄4
0	0	0	1⁄4 ▲	1/8
0	0	0	1/8	1/16

F. Calculate the impulse response $h_1[n]$ and $h_2[n]$, for each filter

Answer:

$$h_1[n] = 0.5 \ \delta[n] + 0.5 \ \delta[n-1]$$
$$h_2[n] = 0.5 \ (0.5)^n \ u[n]$$

- G. The filters f_1 and f_2 are combined in various ways. Calculate the impulse response of the following combined filters
- i) $x \xrightarrow{--->} \underline{f_1} \xrightarrow{--->} \underline{f_2} \xrightarrow{--->} y$

Answer: \rightarrow h₁[n] * h₂[n] (convolution)

$$= (0.5 \ \delta[n] + 0.5 \ \delta[n-1]) * 0.5 \ (0.5)^{n} \ u[n]$$

= 0.5 \delta[n] * 0.5 \delta[0.5]^{n} \u03c0[n] + 0.5 \delta[n-1] * 0.5 \u03c0[0.5]^{n} \u03c0[n]
= 0.5^{2} \u03c0[0.5]^{n} \u03c0[n] + 0.5^{2} \u03c0[0.5]^{n-1} \u03c0[n-1]

ii) $x \xrightarrow{--->} \underline{f_2} \xrightarrow{--->} \underline{f_1} \xrightarrow{--->} y$

Answer: \rightarrow h₂[n] * h₁[n] (convolution)

$$= h_1[n] * h_2[n]$$
$$= 0.5^2 (0.5)^n u[n] + 0.5^2 (0.5)^{n-1} u[n-1]$$

$$iii)x \xrightarrow{+->} f_{\underline{2}} \xrightarrow{---} y$$
$$|-> \underline{f_{\underline{1}}} \xrightarrow{----}$$

Answer: $\rightarrow h_2[n] + h_1[n]$

$$= (0.5 \,\delta[n] + 0.5 \,\delta[n-1]) + 0.5 \,(0.5)^{n} \,u[n]$$