SYSC 4405: Midterm Exam (#:3) October 24, 2008 Carleton University, Systems and Computer Engineering

Background: You are working for a recording company that wants to make its music sound like it was recorded in a concert hall, rather than in a small recording studio. You are given the job of creating a DSP model of a concert hall, which can be applied to music during digital mastering.

To do this, you rent a conference hall, and conduct the following test. A musician plays her instrument on the centre of the stage, which is recorded at a microphone (as x(t)). In the centre of the audience, a technician records the sound at another microphone (y(t)).

You determine that the recorded sound is the sum of weighted contributions from four paths, each with a different delay. Thus

	1	6.8 m	20 ms	0.22
$y(t) = \sum (\text{Amplitude}_i)x(t - \text{Delay}_i)$	2	10.2 m	30 ms	0.08
i∈paths	3	13.6 m	40 ms	0.05

Path | Length | Delay | Amplitude

- 1. (1 point) Your exam is exam number 3. Write down this number.
- 2. (5 points) Write a difference equation for y(t) as a function of x(t).
- 3. (5 points) Signals x(t) and y(t) are sampled using an A/D converter with a sampling time $T_s = 0.04$ ms, producing x[n] and y[n]. Sketch the block diagram for the system with input x[n] and output y[n]. To show many delay elements in series, you may write: e.g. Delay $\times 15$.
- 4. (5 points) Characterize the system in terms of the following properties: a) linear, b) memoryless,
 c) shift-invariant, d) LSI, e) stable, f) causal. You only need to list *yes* or *no* for each property.

5. (5 points) The musician plays a note of E_8 (ie. E in the 8 th					
octave: $f = 5.274$ kHz). This note is composed of harmonics	h	1	2	3	4
as shown at right. $_4$	$A_i [mV]$	1.2	0.4	0.3	0.2
$x(t) = \sum A_i cos(2\pi h f t + \phi_i)$	ϕ_i [rad]	0	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$h{=}1$					

Show a phasor plot of x(t) as well as the frequency f_{max} above which aliasing occurs.

- 6. (5 points) The signal, x(t), is sampled at T_s to get x[n]. Show an equation for x[n] after accounting for aliasing. Indicate which harmonics, if any, are aliased. For aliased harmonics, indicate whether the are folding or non-folding.
- 7. (5 points) (For this question, assume that x[n] is uniformly distributed between -1.60 V and 1.60 V). The signal, x[n], is sampled with a 12-bit A/D differential converter with $X_{max} = -X_{min} = 2$ V. What is the SNR due to the quantization error?
- 8. (5 points) If you choose to implement the concert chamber filter with a DFT using block processing, is a DFT of length N = 2048 sufficient? Calculate values of L and M for this filter and sketch the block filtering process (indicate the length of any zero-padding and overlapping-signals)