Instructions:

- This quiz lasts 30 minutes. Answer all questions (on both sides of the sheet)
- You may have a $8.5^{\circ} \times 11^{\circ}$ sheet of notes and a non-network-connected calculator

Q1a: An instrumentation amplifier is connected to a sensor which gives [in Volts]: $V_s = 1.0 + 0.002 \sin(\omega t)$, where $\omega = 2\pi (1 \text{ kHz})$. The output impedance of the sensor is 20 kΩ. Initially, assume all components are ideal.

- 1. (5 marks) Calculate R_G so that the output [in Volts], $V_o = 10 \sin(\omega t)$.
- 2. (5 marks) As the temperature increases, the internal resistors in the instrumentation amplifier change (and become unbalanced) so that CMRR = 80 dB. Calculate the new V_o .
- 3. (5 marks) Sketch V_o if the slew rate, SR = 50 V/ms. (Assume again that $CMRR = \infty$)

- Q2a: (15 marks) The graph below shows the an ECG signal measured by an ADC. The centre graph is a zoomed-in version of the region in a black box on the right. There is an interference from 60 Hz power-line noise.
 - 1. (5 marks) Label the P,Q,R,S and T waves in the ECG. Briefly explain (1 sentence) what happens during the P wave.
 - 2. (5 marks) Based on the figures, there is at least one problem with the ADC configuration chosen. Is there a problem with the i) ADC range, ii) ADC resolution, iii) Sampling frequency? Briefly justify (1 sentence) why.
 - 3. (5 marks) For the parameter (ADC range, ADC resolution, or Sampling frequency) that you have identified above, estimate ($\pm 10\%$) its value in the ADC system.

Instructions:

- This quiz lasts 30 minutes. Answer all questions (on both sides of the sheet)
- You may have a $8.5" \times 11"$ sheet of notes and a non-network-connected calculator

Q1b: An instrumentation amplifier is connected to a sensor which gives [in Volts]: $V_s = 2.0 + 0.002 \sin(\omega t)$, where $\omega = 2\pi (1 \text{ kHz})$. The output impedance of the sensor is $5 \text{ k}\Omega$. Initially, assume all components are ideal.

- 1. (5 marks) Calculate R_G so that the output [in Volts], $V_o = 2.5 \sin(\omega t)$.
- 2. (5 marks) As the temperature increases, the internal resistors in the instrumentation amplifier change (and become unbalanced) so that CMRR = 70 dB. Calculate the new V_o .
- 3. (5 marks) Calculate V_o if the input bias current, $I_B = 100$ nA. (Assume again that CMRR = ∞)

- Q2b: (15 marks) The graph below shows the an ECG signal measured by an ADC. The centre graph is a zoomed-in version of the region in a black box on the right. There is an interference from 60 Hz power-line noise.
 - 1. (5 marks) Label the P,Q,R,S and T waves in the ECG. Briefly explain (1 sentence) what happens during the QRS.
 - 2. (5 marks) Based on the figures, there is at least one problem with the ADC configuration chosen. Is there a problem with the i) ADC range, ii) ADC resolution, iii) Sampling frequency? Briefly justify (1 sentence) why.
 - 3. (5 marks) For the parameter (ADC range, ADC resolution, or Sampling frequency) that you have identified above, estimate (±10%) its value in the ADC system.

1/2

Instructions:

- This quiz lasts 30 minutes. Answer all questions (on both sides of the sheet)
- You may have a $8.5" \times 11"$ sheet of notes and a non-network-connected calculator

Q1c: An instrumentation amplifier is connected to a sensor which gives [in Volts]: $V_s = -1.5 + 0.002 \sin(\omega t)$, where $\omega = 2\pi (1 \text{ kHz})$. The output impedance of the sensor is $10 \text{ k}\Omega$. Initially, assume all components are ideal.

- 1. (5 marks) Calculate R_G so that the output [in Volts], $V_o = 1.5 \sin(\omega t)$.
- 2. (5 marks) As the temperature increases, the internal resistors in the instrumentation amplifier change (and become unbalanced) so that CMRR = 60 dB. Calculate the new V_o .
- 3. (5 marks) Calculate V_o if the G·BW product, $f_T = 150$ kHz. (Assume again that CMRR = ∞)

- Q2c: (15 marks) The graph below shows the an ECG signal measured by an ADC. The centre graph is a zoomed-in version of the region in a black box on the right. There is an interference from 60 Hz power-line noise.
 - 1. (5 marks) Label the P,Q,R,S and T waves in the ECG. Briefly explain (1 sentence) what happens during the T wave.
 - 2. (5 marks) Based on the figures, there is at least one problem with the ADC configuration chosen. Is there a problem with the i) ADC range, ii) ADC resolution, iii) Sampling frequency? Briefly justify (1 sentence) why.
 - 3. (5 marks) For the parameter (ADC range, ADC resolution, or Sampling frequency) that you have identified above, estimate (±10%) its value in the ADC system.

