Instructions:

- This quiz lasts 30 minutes. Answer all questions (on both sides of the sheet)
- You may have a 8.5" $\times\,11$ " sheet of notes and a non-network-connected calculator
- Q1a: (10 marks) Describe two facts about Canada's classification system for medical devices (two sentences each). (e.g. What the levels are, criteria used to assess a device)

Q2a: (10 marks) Multiple measurements of a strain guage sensor yield the following values (at right)

Length (mm)	10.0	10.0	10.0	10.5	10.5	10.5
Resistance (Ω)	81.0	80.0	79.0	89.5	89.5	91.0

(a) Estimate the sensitivity of this sensor (with units)

(b) Explain one situation in which it's useful to have a sensitive strain guage (1 sentence)

- (a) What is $V_d = V_+ V_-$? (b) What is $V_{cm} = \frac{1}{2}(V_+ + V_-)$? (c) What is V_o ?
- (d) Why is high CMRR important for this circuit?

Instructions:

- This quiz lasts 30 minutes. Answer all questions (on both sides of the sheet)
- You may have a $8.5" \times 11"$ sheet of notes and a non-network-connected calculator
- Q1b: (10 marks) From a regulation point of view, what is the key difference between a "medical device" and a consumer product (such as health / lifestyle wearables products). Briefly explain (two sentences) and give one example.

Q2b: (10 marks) Multiple measurements of a thermistor sensor yield the following values (at right)

Temperature (^{o}C)	30.0	30.0	30.0	30.5	30.5	30.5
Resistance (Ω)	41.0	40.0	39.0	59.5	59.5	61.0

(a) Estimate the sensitivity of this sensor (with units)

(b) Explain one situation in which it's useful to have a sensitive thermistor (1 sentence)

- Q3b: (20 marks) In the circuit at right, $R_A = R_B = R_C = 200 \Omega$. R_D is a strain guage which is currently at 201 Ω . The amplifier is an AD620 instrumentation amplifier with a gain set to 100.

 - (a) What is V_d = V₊ − V₋?
 (b) What is V_{cm} = ¹/₂(V₊ + V₋)?
 (c) What CMRR is required so that the contribution of V_{cm} to V_o is $100 \times$ less than the conribution of V_d ?

Instructions:

- This quiz lasts 30 minutes. Answer all questions (on both sides of the sheet)
- You may have a $8.5" \times 11"$ sheet of notes and a non-network-connected calculator
- Q1c: (10 marks) Describe two facts about Canada's classification system for medical devices (two sentences each). (e.g. What the levels are, criteria used to assess a device)

Q2c: (10 marks) Multiple measurements of a strain guage	Length (mm)	10.0	10.0	10.0	10.5	10.5	10.5
sensor yield the following values (at right)	Resistance (Ω)	81.0	80.0	79.0	89.5	89.5	91.0

(a) Explain how would you estimate the precision of this sensor (numerical values and one sentence)?

(b) What is the difference between accuracy and precision for this sensor (one sentence)?

- Q3c: (20 marks) In the circuit at right, $R_A = R_B = R_C = 2 \,\mathrm{k}\Omega$. R_D is a strain guage which starts at $2 \,\mathrm{k}\Omega$. The amplifier is an AD620 instrumentation amplifier with a gain set to 100, and infinite CMRR.

 - (a) What is V_o under no strain? (b) What is V_o when an applied strain makes $R_D = 2.01 \text{ k}\Omega$? (c) What is the sensitivity (in $\Delta V / \Delta \Omega$?)

