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Abstract

Biometrics are increasingly deployed in domains ranging from social media authenti-

cation right up to border control. An important operational requirement for biometric

systems is the supposed uniqueness and permanence of biometric records: physiolog-

ical changes occurring between enrolment and veri�cation are referred to as template

ageing, and increase the likelihood of a misidenti�cation. Its magnitude is hard to

estimate, and the factors a�ecting it are relatively little studied.

This work proposes a measure of template ageing, called biometric permanence,

and develops a methodology to estimate it in the presence of confounding factors.

The measure is applied to a database of �ngerprints obtained over a seven year pe-

riod, using bootstrap resampling to obtain con�dence intervals for the estimates of

e�ect size. Fingerprint quality metrics are evaluated in terms of their ability to pre-

dict classi�cation performance, and the subject-dependence of �ngerprint quality is

explored using the ideas of a �biometric menagerie�. Statistically signi�cant demo-

graphic factors underlying biometric quality and template ageing are highlighted and

discussed.

The results of this work may have implications for the procurement and adminis-

tration of biometric systems: for example, in ensuring consistent performance across

a broad population demographic, and in the choice of credential lifetime and re-

enrolment policy.
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Chapter 1

Introduction

Biometrics refers to the use of certain characteristic attributes of an individual's

person or behaviour in order to identify them or con�rm their claimed identity �

from the individual's face, �ngerprint, or pattern of vasculature to their voice, gait or

even heartbeat. They are deployed in applications ranging from unlocking a personal

communication device such as a cellphone or tablet, authenticating to social media

and banking apps, right up to government-issued identity documents such as biometric

passports, visas and electronic travel authorizations.

1.1 Problem statement

The desireable properties of a biometric characteristic, enumerated by Jain in Hand-

book of Biometrics [42] are:

1 Universality

2 Uniqueness

3 Permanence

4 Measurability

1
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5 Performance

6 Acceptability

7 [resistance to] Circumvention

Some of these properties are easy to comprehend. By Universality for example,

we mean that the chosen trait should (for both operational and ethical reasons)

exclude from participation as few individuals as possible: a gait-based biometric

would exclude wheelchair users, while iris biometrics may disadvantage individuals

with certain types of eye disease, such as cataracts [76]. Measurability addresses

concerns of acquisition convenience, and leads us to favour �ngerprints over toe-

prints for example, since access to the former is less likely to require removal of

clothing. Resistance to circumvention encompasses anti-spoo�ng measures such as

sensor fusion [62] and liveness detection [24].

Meanwhile Performance has a natural de�nition in terms of the binary classi-

�cation problem [19], by which an individual's biometric presentation is classi�ed

as either a �match� or a �non-match� according to some decision rule, with well-

established metrics � the Type I and Type II error rates, conventionally termed False

Match Rate (FMR) and False Non-Match Rate (FNMR) in the biometric context �

and comparison tools such as the Decision Error Tradeo� (DET) curve [83].

The properties of Uniqueness and Permanence are less well established. In the

context of a biometric Identity Management System (IDMS), they concern the ability

to distinguish unambiguously between any two individuals in a given cohort, and to

continue to do so for as long as required by the particular application - such as the

duration of a biometric electronic travel authorization (ETA). While several biometric

modalities have established track-records of utility in such applications, this does

not necessarily establish that they provide a permanent and unique record of an

individual.
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The concept of the uniqueness of a single object (such as a biometric record)

is a di�cult one, both philosophically and mathematically. In the mid twentieth

century, Kolmogorov and others developed the notion of algorithmic complexity (see

for example Li & Vitányi §2.8 [50]) to quantify the information in an object in terms

of its shortest possible description in some universal programming language. To the

author's knowledge, no attempt has been made to apply such methods in the �eld

of biometrics: instead, biometric uniqueness is approached practically in terms of

classi�cation performance. That is, a biometric record is considered unique if it can

reliably be distinguished from any other record.

In the particular case of �ngerprints, Tabassi et al. in the US National Institute for

Standards and Technology (NIST) have used machine learning techniques to identify

sets of features that are likely to result in good classi�cation accuracy (high genuine

match score, low imposter match score) resulting in the public release of the NIST

Fingerprint Quality (NFIQ) algorithms [74, 73].

From an information-theoretic point of view, a �nite length string or data record

can only convey a �nite amount of information about an individual: in particular,

there is an obvious lower bound of log2M bits required in order to uniquely index the

members of a cohort of sizeM . The Data Processing Inequality (see for example Cover

& Thomas §2.8 [9]) asserts that no subsequent processing can increase information

content: so the sequence of steps from a physical attribute (such as a �nger), to an

image of that attribute, to a set of features (such as a �ngerprint minutia record)

describing that attribute each tends to reduce its information content � and hence its

uniqueness. In the information-theoretic view, permanence becomes a question of the

extent to which the mutual information between a biometric record and the physical

attribute upon which it is based remains constant: that is, biometric template ageing

expresses a decrease in mutual information over time. Some questions that arise

naturally are:
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� How should we de�ne biometric permanence (or template ageing) in a way that

is operationally meaningful?

� How can we estimate the magnitude of such ageing, in the presence of confound-

ing factors such as environment and operator acclimation?

� Where di�erent biometric capture technologies and feature extraction algo-

rithms exist within a modality, is template ageing observed consistently between

them?

� Do currently available measures of biometric quality adequately predict classi-

�cation performance?

� To what extent can such biometric quality metrics be used to improve the overall

classi�cation performance of a biometric IDMS?

� What demographic factors a�ect biometric quality (and, by extension, biometric

IDMS performance)?

� Are the same demographic factors signi�cant in the observed template ageing?

It should be noted that while we may refer throughout this work to properties

such as quality and permanence as characteristics of a biometric, they are (to the

extent that we can evaluate them) in fact properties of a whole biometric system,

in which everything from the underlying physiological trait, through the capture,

processing and storage of a biometric record, to the match scoring and classi�cation

algorithm play their roles. In particular, when we consider (in Chapters 6 and 7) the

demographics of �ngerprint quality and classi�cation performance, it is important

to note that the design of the capture systems, the selection of features, and the

training of scoring and classi�cation algorithms may be as important as any intrinsic

demographic factors of the underlying trait.
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In the case of template ageing, one might suspect that physical degradation of

the sensor (such as scratching or marring of the platen) could be a signi�cant non-

physiological factor. In principle, one might try to minimize this by procuring a

number of identical devices from each manufacturer and using a new one for each

data collection phase. Unfortunately such a procedure was beyond the scope of this

study.

1.2 Goals

The goal of this work is �rstly to develop an operationally meaningful estimate of

biometric template ageing, and to apply it in a multi-year longitudinal �ngerprint

matching study. Secondly, to investigate the relationships between available measures

of biometric quality, subject demographics, and classi�cation performance in the same

data. Finally to apply these �ndings on quality and demographics to the problem of

template ageing.

1.3 Contributions

1.3.1 Methodology for estimating biometric permanence

In Chapter 4 we develop and de�ne a measure of template ageing which we call bio-

metric permanence PB, based on the change in FNMR (at a given FMR) between the

template ageing interval under test, and a short-time test. While intuitive, this de�-

nition of PB is practically di�cult to apply to estimate small changes in permanence

in a longitudinal study subject to experimental error and visit-to-visit systematic bi-

ases. To address this issue, we introduce the �matched delta� method. Comparisons

of these methods are performed using simulated data, and it is determined that the

new method showed dramatically reduces sensitivity to systematic biases.
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1.3.2 Observation and quanti�cation of template ageing

In Chapter 5 we apply the preceding methodology to data collected in a multi-year,

multi-vendor experimental �ngerprint acquisition and matching study, involving over

350 participants, with a gallery size in excess of 12,000 ISO/IEC standards-compliant

two-�nger biometric enrolment templates obtained with a variety of commercially-

available �ngerprint sensor technologies. Con�dence intervals for template ageing

are estimated using non-parametric methods. The behaviours of di�erent vendors'

devices are compared and contrasted, and limitations of the methodology identi�ed

and discussed.

1.3.3 Investigation of the e�ect of biometric data quality on classi�-

cation performance

In Chapter 6 we apply the NIST NFIQ �ngerprint quality measures to the images

collected in our study, comparing and contrasting the results for NFIQ-1 and NFIQ-2

across di�erent device technologies. We investigate the relationship between reported

quality and match score, for both genuine and imposter matches, and between quality

score and classi�cation performance. In particular, we con�rm that the overall clas-

si�cation performance may be improved by rejecting a fraction of �ngerprints based

on their quality.

Interestingly, for our data, we �nd that NFIQ-1 and NFIQ-2 are equally e�ective at

identifying any given fraction of low-quality presentations: the operational advantage

of NFIQ-2 is that its more expressive quality scale allows the rejection fraction to be

chosen much more precisely.
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1.3.4 Observation and demographics of a biometric menagerie

In Chapter 7 we adapt a taxonomy �rst introduced by Doddington [17] in order to

identify subsets of `Goats', `Lambs', and `Wolves' in our data. We establish that these

categorizations are to a large degree common across di�erent �ngerprint capture de-

vices, and hence substantially re�ect intrinsic properties of the underlying biometric.

The demographics of the taxonomic subsets are explored: we �nd that, for our data,

females and older individuals are overrepresented in the Goat subset (those individ-

uals whose �ngerprints contribute disproportionately to the FNMR), while younger

individuals are overrepresented among the Lamb and Wolf subsets (the individuals

whose �ngerprints contribute disproportionately to the FMR). We discuss the extent

to which these di�erences might be explained by training bias in the classi�cation

algorithms. Finally, we examine the impact of the Goat subset on template age-

ing, observing a signi�cant improvement in biometric permanence when the subset is

removed.

1.3.5 Outline for a biometric channel model

While the development of a comprehensive information-theoretic treatment of bio-

metrics has remained an aspirational goal, it proved out of reach of the present work.

However some steps towards a biometric channel model are outlined in the concluding

chapter.

1.4 Publications

The following publications are based on the work presented in this thesis:

� In Proceedings of the 2017 Annual IEEE International Systems Conference

(SysCon): J. Harvey, J. Campbell, S. Elliott, M. Brockly and A. Adler Bio-

metric Permanence: De�nition and Robust Calculation [31]
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� In IEEE Transactions on Instrumentation and Measurement : J. Harvey, J.

Campbell and A. Adler Characterization of Biometric Template Aging in a

Multiyear, Multivendor Longitudinal Fingerprint Matching Study [30]



Chapter 2

Background and literature review

2.1 History and early application of biometrics

While in its broadest sense, the term biometrics has historically been used to denote

the measurement and statistical analysis of biological data in general [10] � which

nowadays might more likely be referred to as biostatistics � it is now almost universally

understood to mean the use of biological traits to establish or con�rm the identity

of an individual [42]. Among the biometric traits (or modalities) that have been

studied and/or employed for this purpose include the features and morphology of

the face [54], an iris image [46], a pattern of blood vessels [7], or an analysis of the

individual's voice [69] or gait [51]. The focus of this work is the biometric modality

of �ngerprints [53].

Interest in the features of the human hand has a long cultural history from the

point of view of their purported usefulness for divination or �cheiromancy� [6], but

its modern development as a biometric modality really begins during the nineteenth

century: Galton [25] gives a more-or-less contemporary (albeit subjective) account.

Although his own primary interest seems to have been what the study of �nger-

prints might reveal about heredity, biological symmetry (homochirality) and specia-

9
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tion, Galton devotes a whole chapter to their application to personal identi�cation;

in particular, the use of �signs-manual� in place of conventional written signatures in

the attestation of contract documents, the pioneering of which he attributes to Sir

William Herschel (and which was subsequently reported by him [33]). Galton also

discusses the then-emerging forensic use of �ngerprinting, �rst noting its distinction

as a �much more di�cult� one-to-many (identi�cation) task rather than a one-to-one

(veri�cation) task, and going on to consider how even a relatively simple �A.L.W.�

(arch-loop-whorl) �ngerprint classi�cation scheme might greatly improve the utility

of the French anthropomorhic system [3] of Bertillonage. Such a scheme was then

already in use by police in Calcutta (now Kolkata), India under the direction of

Henry [32] and latterly substantially attributed to Haque [70]. Roughly contempora-

neous contributions in other jurisdictions, especially those of Vucetich in Argentina

and Brazil, are also noted in a historical survey by Polson [59].

It should be noted that the Henry-Haque classi�cation scheme was based on a

coarse attribution of each �nger's dominant feature, rather than the kind of minutia-

based classi�cation of single �ngers provided by the devices used in the present work

- although Galton (op. cit.) at least was familiar with the concept and terminology of

�ngerprint minutiae: one of the appealing features was its ability, after application of

a coding scheme due to Bose [4], to be transmitted telegraphically � a valuable factor

given the rise of mass transportation and the increased mobility of criminal suspects.

2.2 Modern biometrics

While much of the early history and development of biometric techniques focused on

the identi�cation and apprehension of criminal suspects, progress in automated cap-

ture, feature extraction, and algorithmic matching technologies has allowed biometrics

to expand into the �elds of large-scale identity management systems (IDMS). Such
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schemes include those for machine readable travel documents [29], trusted traveller

programs [78], and governmental personal identity veri�cation (PIV) programs [28].

2.2.1 Renewable biometric references

Password and public key infrastructure (PKI) based authentication systems provide

the ability for an issuer to revoke and renew credentials simply by deleting passwords

or keys and inserting new, randomly generated, ones. In contrast, raw biometric

records provide limited opportunity for revocation or renewal - as noted by Shreier

et al., �we have one face, two irises, 10 �ngers� [66]. Considerable interest has been

directed to addressing this de�ciency in order to develop what have become known as

renewable biometric references (RBRs) [39]. A key goal of such e�orts is to protect

the personally identi�able information (PII) of the individual [44, 43] while providing

su�cient immunity to a variety of potential compromizes including attacks via record

multiplicity (ARM), surreptitious key-inversion (SKI), and blended substitution at-

tacks (BSI) [65].

2.2.2 Forensic applications

The matching of latent �ngerprint (or partial �ngerprint) images recovered from

scenes-of-crime remains an important application of biometrics [52], with much cur-

rent attention given to pre-processing of latent �ngerprints [49], especially using chem-

ical [21] and spectroscopic [11] techniques. Unlike many other biometric applications,

that are dominated by one-to-one (or biometric veri�cation) matches, forensic biomet-

rics may include one-to-many (or biometric identi�cation) tasks, such as identifying

a list of suspects from an existing criminal database, as well as the association of

criminal cases based on collection of latent �ngerprints from an unknown common

subject [52]. Biometric quality and template ageing are surely relevant to these ap-

plications, however they may have additional domain-speci�c aspects that are not
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addressed in the present work - such as assessing the biometric quality of partial

prints.

2.3 Biometric template ageing

An assumption underlying the deployment of biometric IDMS systems is the stability

of the chosen biometric features � that is, that the biometric trait will remain, over

the expected lifetime of the credential, su�ciently similar to that of the template to

enable a positive comparison. In applications such as biometrically-enabled passports,

stability over a period of �ve or ten years is desirable in order to align with current

renewal policies for such credentials [36]. From a physiological point of view however,

it is natural to expect some change in traits over time. For example, a subject's loss

or gain in weight may a�ect measurements of hand geometry [68], while the onset

of degenerative disease, injury, or occupational damage may a�ect �ngerprints [18,

12]. As an instrumentation and measurement problem, biometric capture has in this

respect something in common with many clinical monitoring and medical imaging

systems: that is, the systems should be sensitive to clinically signi�cant changes (in

the case of biometrics, a change of identity) while remaining relatively insensitive to

benign morphological changes arising from simple ageing or weight gain for example.

Slow changes in biometric features over time are typically referred to as template

ageing [82, 79], and the performance of large-scale systems can be in�uenced by this

e�ect. Unfortunately template ageing is hard to measure, because it is very sensitive

to the visit-to-visit variability inherent in such a study (e.g. test personnel [5], test

equipment and weather [20, 71]).

Attempts to quantify biometric permanence in fact go right back to Galton (op.

cit.), who devoted an entire chapter to observations on the persistence of �ngerprint

minutiae in an (admittedly small) sample of 15 individuals. In one case, the inter-
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val between observations was as large as 31 years, while in another he was able to

record prints of a juvenile individual (aged approximately two-and-a-half years) and

subsequently compare them to those obtained at age 15 years. Galton estimated that

he could identify, on average, 35 �points of interest� (minutiae) from each digit, and

that of the 700 such points provided by a full set of 10 �ngerprints, 699 could be �in-

ferred� to remain throughout an individual's life (and beyond - based on �ngerprints

apparently having been obtained from Egyptian mummies).

Modern attempts to quantify permanence (or template ageing) are generally based

on statistical analyses of large numbers of biometric enrolments. The age progression

of biometric traits has perhaps received most attention within the facial recognition

and iris recognition modalities. Manjani et al. [54] evaluated both 2D and 3D facial

recognition algorithms on a dataset of sixteen participants acquired over a period

of ten years, comparing genuine acceptance rate (GAR) at 0.1% false acceptance

rate (FAR) for short-term intervals (less than three months between enrolment and

veri�cation) versus long-term intervals (more than �ve years between enrolment and

veri�cation). Unlike the present work, the intervals were not blocked into absolute ac-

quisition times i.e. all intervals greater than �ve years were taken together. They were

able to reject at α = 0.05 the null hypothesis that the short- and long-term genuine

scores were drawn independently from normal distributions of equal mean and vari-

ance (t-test), or from the same continuous distribution (Kolmogorov-Smirnov test).

In the case of the algorithm that performed best over the long-term intervals (�3D

Region Ensemble: Product�), they found weak evidence against the corresponding

hypotheses for the imposter scores: this is consistent with our model, in which the

imposter distribution was assumed to be constant.

Lanitis & Tsapatsoulis [48] proposed a measure of biometric ageing that they called

�Aging Impact� (AI), derived from the homogeneity and dispersion of a collection of

templates. Although the primary focus of their work concerned facial images, �nger-
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and palm-print images were also considered; however they applied their method to

individuals within di�erent age classes, rather than to repeated measures of the same

individuals over time as in the present work. The focus of much subsequent work

has been the development and evaluation of arti�cial age progression algorithms for

forensic applications [47, 58], rather than for biometric IDMSs.

Template ageing has also been reported in the iris modality [22, 26]. Hofbauer

et al. [34] noted some controversy about its existence, and discussed the di�culty

of controlling confounding factors independently � in particular, the cases of illumi-

nation and pupillary dilation. There was only a single long-term time interval � in

this case of four years � while the study consisted of data from 47 subjects. The

authors considered two schemes for re-normalization of pupil diameters: a �rubber

sheet model� (RSM) and a �biomedical model� (BMM). They showed that while such

re-normalizations were somewhat e�ective in improving long-term match accuracy,

there was still a decrease in performance between intra-year and inter-year compar-

isons. This suggests that while systematic changes in pupillary diameter are a factor

in iris template ageing, they are not the only such factor. Signi�cant degradation

over time in genuine iris match scores have been reported elsewhere [13].

Fingerprint ageing might be expected to share some of the same physiological

factors as face ageing � in particular, skin textural changes and loss of tissue elasticity

� and has been reported by Uludag et al. [77], who addressed the case of typicality

and/or variability between presentations of the same biometric using novel template

selection algorithms, based either on clustering or on mean distance. They then

used this template selection to evaluate a number of template update schemes. They

found that a scheme in which an original template was updated selectively using

later presentations (�AUGMENT-UPDATE�) outperformed one in which the original

template data were discarded altogether (�BATCH-UPDATE�). From this, we might

infer that the magnitude of the template ageing e�ect was not signi�cantly greater
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than that of the intraclass variance, at least over the relatively short interval of their

study (approximately four months). Template ageing has recently been reported in

two non minutia based �ngerprint matching schemes [45]: FingerCode (FC), a Gabor-

�lter based technique similar to the widely adopted IrisCodes of Daugman [14]; and

Phase Only Correlation (POC).

Template ageing has also been observed in speech biometrics [82].

Meanwhile, the in�uence of biometric sample quality on template ageing was

highlighted by Ryu et al. [64], who found that lower sample quality (evaluated using

the NIST NFIQ measure [74]) was associated with an increased number of matching

errors.

The social and ethical implications of biometric ageing have also received recent

attention [61]: most notably the potential role of biometrics in the �problematisation

of ageing and of older people�. The authors are careful to distinguish between a bio-

metric subject's chronological age and biometric template ageing: their arguments

for the exclusionary potential of the former (which is known to a�ect biometric sys-

tem performance [67]) are stronger than those for the latter, which rely on a rather

subtle semiotic analysis of the relationship between biometric features, subject, and

biometric system as a whole.

2.4 De�nition and evaluation of biometric data quality

Jain [42] identi�es a number of properties that are desirable in a biometric char-

acteristic, including uniqueness and permanence; performance and (resistance to)

circumvention. Performance here may be interpreted as the system's ability to cor-

rectly identify the biometric presentation of a genuine subject, and to correctly reject

the biometric presentation of an imposter subject. As with any such pattern classi-

�cation problem, these abilities are inherently con�icting, and represent the Type I
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and Type II error probabilities of a classical Neyman-Pearson hypothesis test [57]

or signal detection problem. As such, biometric systems typically reduce the deter-

mination to a one-dimensional similarity score which may be thresholded in order

to obtain a match/non-match decision; by appropriate choice of the decision thresh-

old, the system integrator or operator may trade o� security (lower false accept rate,

FAR) against convenience (lower false reject rate, FRR) to suit the requirements of

the particular IDMS application.

At any particular threshold, the fundamental performance (i.e. the minimum ob-

tainable FRR at a chosen FAR, or vice-versa) will be intrinsically limited by the

separability of the subjects' biometric characteristics over some biometric feature

space. In the case of �ngerprints (the focus of this proposed work), the feature space

is usually a space of extracted �ngerprint minutiae types and locations. In general,

we would expect a feature space of higher dimensionality (more independent fea-

tures) to permit higher classi�cation accuracy. Features are, however, not always

informative: in particular, the set of features that best describes a population may

not coincide with that which best discriminates between its classes. Thus in the case

of facial recognition for example, linear classi�ers based on discriminant analysis (so-

called �Fisherfaces�) may outperform those based on principal component analysis

(PCA) [2] (or �eigenfaces�).

If biometric performance is de�ned in terms of classi�cation accuracy in this way,

then uniqueness is essentially a measure of intrinsic performance (i.e. the classi�cation

accuracy that might be obtained in the absence of any variability in the collection

and/or processing of the biometric). Permanence becomes a measure of how well

discriminability is maintained over time. These three characteristics each represent

aspects of the informativeness of the biometric; in fact Adler et al. have sought to

de�ne biometric information formally in this sense as

�the decrease in uncertainty about the identity of a person due to a set of
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biometric measurements� [1]

In this view, one might expect a biometric's resistance to circumvention also to

be related to its performance, since an attacker would need to expend more e�ort

to spoof a more informative record - although in practice, external measures such

as liveness detection and/or multi-factor authentication requirements are likely to be

more signi�cant.

Grother & Tabassi were among the �rst to formalize the evaluation of biometric

quality as a predictor of genuine match score [27]. In particular, they addressed the

fact that de�ning quality in this way necessarily involves the interaction of at least

two biometric presentations1 whereas, to posses utility, the quality measure so de-

rived should be applicable to a single presentation. They discuss the appropriateness

of various quality combination functions in order to explore the dependence of simi-

larity score on match pairs of di�ering quality, as well as the useful number of levels

of quantization of biometric quality. Distinctions were highlighted between positive

identi�cation (veri�cation) applications, in which an enrolled subject is �motivated

to submit high quality samples�, and negative identi�cation (blacklist) applications,

where an individual is perhaps enrolled unwillingly and may be motivated to obscure

or obfuscate their biometric: in the former case, they identi�ed the key performance

metric as false non-match rate (FNMR), while in the latter it is false match rate

(FMR). They demonstrated the dependence of similarity score on quality in the pos-

itive identi�cation case through the use of error versus reject curves. The notion of

an ideal quality metric for the positive identi�cation case was developed as follows:

Suppose a system is operating at a FMR determined by operational security re-

quirements. There will be an associated FNMR x-%, meaning that x-% of genuine

biometric classi�cation scores fall below the decision threshold for that FMR, and are

misclassi�ed as imposters. An ideal quality metric for this case would be one that

1It may be more than two, since template generation may be based on multiple enrolment pre-
sentations.
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identi�es exactly these presentations, and removes them from consideration - thereby

reducing the FNMR to zero.

This formalism was applied in the development of the NIST NFIQ [74] and NFIQ-

2 [73] �ngerprint quality algorithms used in the present work.

2.5 The biometric menagerie

Doddington introduced the idea of a �biometric zoo� [17] to describe the subject-

dependence of biometric classi�cation errors, originally applying it in the speaker

veri�cation modality. Four categories of individuals were posited: those whose bio-

metric matched poorly against itself, and which therefore contributed disproportion-

ately to the FNMR, were labelled �Goats�; those whose biometric was easily imper-

sonated2 as �Lambs�, and those whose biometric is easily mis-attributed to such lambs

as �Wolves�, with Lambs and Wolves together contributing disproportionately to the

FMR. Remaining individuals were classi�ed, by elimination, as �Sheep�. Similar cat-

egorizations have since been established in the face [81], iris [72] and �ngerprint [80]

modalities; the latter identifying Lambs and Wolves in a multi-�nger dataset obtained

from 510 individuals; Goats could not reliably be identi�ed because of the relatively

small number of genuine matches3.

The biometric menagerie has subsequently been re�ned by considering the in-

teractions of genuine and imposter scores [84]. The question of whether such cate-

gorizations generalize across biometric matching algorithms and data sets has been

investigated by Teli et al. [75]. More recently, the concept of a biometric menagerie

has been applied to biometric template update procedures [60] and to biometric fu-

sion [63]. We believe that the present work is the �rst to extend the concept speci�-

2The term impersonation does not necessarily imply an actively malicious actor here: we are
often interested in so-called zero e�ort imposters � individuals whose biometric naturally closely
resembles that of another.

3Although the number of individuals was larger than that of the present study, only a single
enrolment-veri�cation pair was collected for each.
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cally to the subject-dependence of biometric permanence.

2.6 Relationship between template ageing, quality, and

demographics

A recent large-scale longitudinal study by Yoon & Jain examined both genuine and

imposter match scores versus template age, NIST NFIQ �ngerprint quality, and sub-

ject demographics [86]; the latter consisting of subject age, sex, and a binary race

variate. The study size was large, consisting of 10-�nger records of more than 15,000

subjects, with intervals between acquisitions ranging from �ve to twelve years. Boot-

strapped estimates of mean genuine match score showed clear decreasing trends with

time interval (i.e. template age), subject chronological age, and NFIQ score with only

marginal dependence on the other factors.4 Of the three signi�cant predictors, NFIQ

score was found to be the strongest. Although the e�ect size was large enough, for

these factors, to be estimated with high con�dence, the genuine and imposter score

distributions remained su�ciently separable over the duration of the study that there

was no observed change in either the true acceptance rate (i.e. 1− FRR) or false

acceptance rate (FAR).

Finally, Kirchgasser & Uhl attempted to relate observed biometric template age-

ing, over a four year interval, in the �ngerprint modality to decreases in biometric

quality [45], again using the NIST NFIQ metric of Tabassi (op. cit.) as well as

BRISQUE - a non �ngerprint speci�c measure of image spatial quality. However �

perhaps due to the relatively small study size of only 49 participants � they were

unable to do so, even observing some counter-intuitive negative correlation between

NFIQ score and genuine match score among false non-matches.

4A decreasing trend because NFIQ scores from 1 (best) to 5 (worst).
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2.7 Open questions

Yoon & Jain's study demonstrates an important feature of biometric template ageing:

namely, that changes in match score do not necessarily result in observable changes

in classi�cation performance - at least, not over the time periods available for study.

An open question therefore is how should we characterize template ageing in a way

that is operationally meaningful?

Comparing the results of Yoon & Jain with those of Kirchgasser & Uhl highlights

another important question: how can we estimate the magnitude of template ageing

robustly in smaller cohorts, where we do not have the advantages of large sample size

to reduce estimation variance?

Turning to issues of biometric quality, we would like to know how well the publicly-

available NFIQ metrics perform as predictors of classi�cation accuracy, in an indepen-

dent dataset collected under di�erent conditions and protocols than those on which

their classi�ers were trained. Demographic factors a�ecting biometric quality have

been reported by Yang [85], but the analysis did not consider the demographics of

classi�cation accuracy (or of template ageing) directly.

The study described in this thesis is somewhat larger than that of Kirchgasser &

Uhl and, although far smaller than that of Yoon & Jain, we believe that it supports

their main conclusions concerning template ageing in the �ngerprint modality, as well

as providing valuable additional evidence for the role of biometric quality and subject

demographics.



Chapter 3

The �Norwood� dataset

3.1 History and demographics

The data used for this study were collected in four phases between 2006 and 2013. The

�rst two phases, in 2006 and 2008, were collected as part of a study on biometric sys-

tem interoperability undertaken on behalf of the International Labour Organization

(ILO) and known as the �Seafarers' Identity Documents Biometric Interoperability

Test�, or ISBIT. Data collection in these phases, known as ISBIT-3 and ISBIT-4,

was undertaken by Bion Biometrics, Inc. with subject recruitment from a general

population in and around Ottawa,Canada.

In 2012, Carleton University, in collaboration with Bion Biometrics, obtained

funding from the National Research Council (NRC) in Canada for a project entitled

�E�ect of template ageing and sensor technologies in �ngerprint recognition� 1. The

project was to leverage and extend the database and software from the ISBIT studies,

with a re-focus towards template ageing. Funding was su�cient for a further two

phases of data collection, which were undertaken in 2012 and 2013. Vendors who had

provided �ngerprint capture devices and API software for the ISBIT studies were

approached to permit their use in the new study, and to renew software licences

1NSERC CRD428240-11

21
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Table 3.1: Pseudonymized devices and sensor technologies.

©2018 IEEE

ID Sensor technology Image dimensions (pixels)
A. Optical 420x480
B. Optical 456x480
C. Optical 524x524
D. Optical 640x480
E. Optical 416x416
F. Optical 512x512
G. Optical 524x524
H. Multispectral optical 352x524
J. Optical 524x524
K. Optical 620x620
L. Capacitive semiconductor 256x360

where required: one vendor declined to participate, and their device was eliminmated

from the study. The remaining available devices and technologies are summarized in

Table 3.1 using their pseudomomized identi�ers from the ISBIT study reports [37,

38].

In order to minimize confounding factors due to API software and library dif-

ferences, operating systems and vendor supplied software were frozen at their 2008

release points and steps were taken to isolate the experimental setup from further

updates.

Recruitment for the new phases began in January 2012, under the oversight of

Carleton University Research Ethics Board `B' (CUREB-B). Approximately 40% of

the original studies' participants were re-recruited into the new study (Figure 3.1);

taken together with the ISBIT phases this provided intervals of approximately one,

two, four, �ve, six, and seven years between biometric enrolment and veri�cation

events (Table 3.2).

Note that although the periods of Visit 7 and Visit 8 overlap, no individual sub-

ject's data was recorded in any later visit before an earlier one; the dates simply

re�ect di�culties in scheduling appointments for a small number of the subjects in
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Table 3.2: Dates of data collection visits

Visit start (YYYY-MM-DD) Visit end (YYYY-MM-DD)
1 2006-02-07 2006-03-03
2 2006-02-22 2006-03-24
3 2008-09-26 2008-10-15
4 2008-10-13 2008-10-27
5 2012-02-12 2012-03-03
6 2012-03-12 2012-03-31
7 2013-03-06 2013-04-22
8 2013-04-05 2013-04-27

the cohort.

Figure 3.1: Overlap of participants between data collection phases (the 2013 collec-
tion is omitted for clarity; it overlaps almost completely with 2012).

©2018 IEEE
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3.2 Data collection protocol

In our study, data were collected in four phases, each consisting of a pair of subject

visits separated by approximately two weeks in each of the years 2006, 2008, 2012 and

2013. Approximately 200 participants were recorded in each phase, with more than

100 taking part in at least two phases and over 70 being present in all four (Figure 3.1).

The protocol for each subject visit consisted of a sequence of two-�nger enrolments,

followed by a sequence of single-�nger veri�cation presentations [37, 38]. Preferred

�ngers for enrolment were right and left index in the �rst instance; however if either

of these was unavailable (or failed to enrol) alternate �ngers were o�ered in the order

right thumb, left thumb; right middle, left middle; right ring, left ring; and �nally

right and left �pinky� �ngers. In subsequent enrolments, previously enrolled �ngers

were preferred in order to maximize the number of potential genuine matches. Three

bitmapped images of each candidate �nger were captured during each enrolment,

and a further six images (in two distinct three-presentation veri�cation attempts) per

enrolled �nger during each veri�cation, such that a typical visit resulted in eighteen

single-�nger images per subject per device. In each subject visit, the order in which

devices were presented for both enrolment and veri�cation was randomized under

software control in order to counterbalance for subject and operator acclimation.

In order to minimize labelling errors, the captured images were examined at in-

tervals during or immediately after every visit by an experienced human operator2.

While this procedure cannot guarantee that �nger labelling is correct (i.e. that an

image labelled as �Subject k, �nger d� does in fact come from that subject-�nger) it at

least ensures, with high probability, that the labelling is consistent across all records

for a particular subject-visit. Images that were corrupted (due to malfunctions of

the device hardware or capture software for example) were also �agged during this

examination, and removed from the dataset at this stage.

2Dr. John Campbell, Bion Biometrics, Inc.
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Table 3.3: Numbers of genuine and imposter scores.

©2018 IEEE

ID Genuine Imposter ID Genuine Imposter
A 92243 24418495 G 62476 15301808
B 93630 25282974 H 61698 14901522
C 91326 24352257 J 57803 13646908
D 98725 27124531 K 98872 27125117
E 56047 14296890 L 99328 27350928
F 98874 27215472 Tot. 911022 241016902

A custom data acquisition software program isbitDirector was provided as an in-

kind contribution to the project by Bion Biometrics, Inc. . In order to make the

subject visits more interesting (for both subjects and test operators), the veri�cation

protocol programmatically generates a pre-determined fraction - by default, 20% -

of imposter matches. These �online� matches are recorded in the database but are

not used for the data analysis: instead, a separate �o�ine� process isbitGrinder was

used to extract and crossmatch the desired sets of veri�cation images and enrolment

templates.

Twelve di�erent commercially-available �ngerprint sensor devices were initially

present in the study, representing multiple vendors and technologies: single-spectral

optical, multi-spectral optical and capacitive. One device became unreliable in the

later phases, and was dropped from the capture protocol. One further device became

unavailable due to software licensing restrictions and was removed from the study

altogether (Table 3.1). To our knowledge, all of the optical sensors are based on

frustrated total internal re�ection. Ages of the participants at the time of the most

recent collection ranged from 15 years to 70 years. In excess of 15,000 ISO/IEC

standards-compliant two-�nger biometric enrolment templates were generated, and

nearly 200,000 bitmapped single-�nger veri�cation images were collected: together,

these allowed us to synthesize nearly 250 million single-�nger match transactions,

with approximately 900,000 genuine (same subject, same �nger) matches (Table 3.3).
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3.2.1 Carleton modi�cations to the software and protocol

Because the ISBIT study was focused on vendor interoperability, the original isbit-

Grinder software was written to perform cross-matches between veri�cation images

obtained on one vendor's equipment and enrolment templates recorded by another

vendor's. For the purpose of this work, the software was modi�ed to eliminate these

inter-vendor cross-matches in favour of inter-visit matches.

3.3 Study terminology and notation

In this work, a visit comprises a sequence of biometric enrolments and veri�cation

attempts conducted on a set of subjects over a short contiguous period (typically 2-4

weeks). Match scores are generated between veri�cation images collected in the nth

visit, Vn and biometric templates obtained during the mth visit, Em (Table 3.2).

Although the - inherited - protocol used in this study is based on a two-�nger

biometric template, match scores are evaluated separately for each enrolled �nger.

Hence we de�ne a match score, sjinm between an image of subject-�nger j presented

during veri�cation visit Vn and the minutia record of subject-�nger i recorded during

enrolment visit Em. Although in principle both i and j are composed of a subject

identi�er (k say) and a �nger identi�er (d = 1, 2, . . . , 10), in practice the o�ine match

generating software isbitGrinder only makes same-�nger matches, i.e. barring mis-

labelling, genuine scores always correspond to same subject to same subject matches,

while imposter scores are between same �ngers of di�erent subjects.

It is important to note that whereas the veri�cation protocol takes the form of

a two-attempt transaction involving multiple individual presentations of a pair of

�ngers, all the performance metrics used in this work are based on single-�nger match

scores. So, for example, classi�cation performance is quanti�ed in terms of false match

rate, FMR, and false non-match rate, FNMR, rather than transactional measures such
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as false accept rate (FAR) or false reject rate (FRR).

3.4 Biometric record storage and retrieval

Along with data acquisition and match score generation software, Bion Biometrics,

Inc. provided data from the ISBIT phases of the study as a Microsoft SQL Server

(MSSQL) database. The database was re-used and updated to include the Norwood

phases at Carleton, with schema extensions as required to support the scienti�c ob-

jectives of this work � for example, additional tables for the biometric quality metrics

and attempted taxonomies of Chapter 6.

3.4.1 Database structure

The MSSQL database provides the primary interface to the biometric records, col-

lection timestamps and subject demographics whose analysis forms the basis of the

present work. Descriptions of some of the more frequently used database tables are

provided in Table 3.4. In addition to these, an `Algorithm' table is used when it is

required to map internal (proprietary) device designators to either the pseudonymized

identi�ers used for the experimental arrangement (�B (1)�, �H (2)� etc.) or those used

for the purpose of reporting (�Device L�, �Device A� and so on).

Although not used in the generation of match scores (which are based on compar-

isons between VerifyImage and EnrolTemplate records), the images captured during

enrolment, from which the template minutiae are extracted, are recorded in table

EnrolImage. These are used in the examination of biometric quality in Chapter 6.

Quality assessment was performed externally on both enrolment and veri�cation im-

ages, and additional tables were created as required to hold the re-imported quality

scores.

Sample MSSQL queries are provided in Appendix A.
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Table 3.4: More frequently used database tables

Table name Description
Subject Contains pseudonymized subject identi�er and demographic in-

formation (birth year, sex, geographic region of origin, occupa-
tional exposure)

Subject_Visit_Map Records start and end timestamps of each subject visit, plus
visit-speci�c observations such as �ngers that are unavailable
(due to injury, for example)

EnrolTemplate Encapsulates an ISO standard two-�nger biometric information
template and hash, along with numeric identi�ers of the primary
and secondary �ngers enrolled

EnrolOnline Primary enrolment record: maps an EnrolTemplate to a speci�c
subject, enrolment visit, and algorithm (hardware product)

VerifyImage Encapsulates a single uncompressed bitmap image presented
during a veri�cation attempt and its hash. May contain �on-
line� match information (which is ignored in this work).

VerifyOnline Primary veri�cation record: maps a VerifyImage to a speci�c
subject, veri�cation visit, and algorithm (hardware product)

MatchPresentation The (o�ine generated) biometric match scores, re-imported into
the database along with identifying VerifyImageId and EnrolOn-
lineId keys

3.4.2 Binary Biometric Information Record (BIR) structure

The biometric templates obtained during this study are stored in the database as

varbinary typed Binary Large OBjects (or BLOBs), in the cross-vendor format de-

veloped for the original ILO ISBIT study [37].

For certain parts of this work, it was necessary to unpack the binary Biometric

Information Record (BIR) structures. The API is described fully in [38], AnnexB:

each record consists of a 16 byte, little-endian header, followed by a big-endian data

segment consisting of up to 52 5-byte minutia records for each of two enrolled �ngers,

preceded by a 22-byte record header. A collection of Python routines was implemented

to unpack and manipulate these BIR records, a selection of which are included in

Appendix B.

The unpacked minutia records are also valuable as an aid to visualization of bio-

metric features (Figure 3.2).
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Figure 3.2: The author's own left and right index �ngers, annotated with the minu-
tiae obtained during enrolment on Device L



Chapter 4

Biometric permanence: de�nition and

robust calculation

4.1 Introduction

Biometric systems allow identi�cation of people based on analysis of images of their

biometric features [41]. When a biometric is used for veri�cation, a biometric sample

image is tested against a previously captured sample from the person to be veri�ed

[53]. In veri�cation, the performance of the system is measured in terms of its Type-I

and Type-II error rates. One key criterion for a biometric modality is the stability of

the underlying features. For example, for �ngerprint recognition, the structure of the

friction ridges is considered to be a unique and stable characteristic of each individual

[53].

However, it is widely known [82, 22, 55] that, for any biometric modality, some

degree of variation in the biometric features occurs over time. An example is the

damage that can occur to �ngerprints, which is more common in certain population

groups and occupations [18]. Variation in biometric features over time, known as tem-

plate ageing, results in a decrease in biometric recognition accuracy over time [40].

30
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The importance of template ageing varies across di�erent applications of biometrics.

It is especially signi�cant for many government programs, such as border security, in

which stored templates are intended to be used for comparison over years or decades.

There have been several studies done in assessing or describing the impact of template

ageing [64, 77]. However, many of these studies have very small datasets (in terms of

sample sizes and time periods). Several challenges associated with permanence were

identi�ed, including those associated with speci�c occupations and other environmen-

tal factors [20, 67]. Although biometric permanence has seen some investigation, to

our knowledge no statistical measures have been de�ned to measure it or calculate

it robustly. To address this de�ciency, we de�ne a new term, biometric permanence,

PB, and develop methods to calculate it. PB has an inverse signi�cance to template

ageing: a biometric modality with high PB shows little change over time.

We �rst propose a de�nition for biometric permanence, PB, and a reference method

to calculate it based on a traditional detection error trade-o� (DET) analysis. Next,

we consider how to measure PB robustly for a given biometric modality. A sam-

ple population is recruited and biometric measures are performed at intervals over

time (∆t), from which a complete set of cross comparisons is calculated [37]. When

calculating PB, the major di�culty in analysing these data arises in separating the

visit-dependent factors from the ∆t values, which are of course implicitly dependent

on the absolute times of the visits. Since the e�ects of ageing can be small, the eval-

uation of changes is highly sensitive to estimation variance. To address this issue, we

propose a strategy to improve the measure, which we call the matched delta method.

4.2 Methodology

An overview of the matched delta method is presented in Figure 4.1. We base the test

protocol on that of [37]: in this Chapter however, we synthesize appropriate match
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scores as described in Section 4.3. No actual human subject data is involved.

To calculate PB under this protocol, data are required from a test crew of subjects

who are biometrically tested over time at a series of visits. At each visit, k, enrolment

Ek and veri�cation Vk biometric samples are acquired. When biometric comparisons

are made, match scores are calculated and assigned to a bin corresponding to the time

di�erence (∆t) between visits. Thus, a comparison between Em and Vn would be in

bin ∆tnm. The highest match scores should be those from the same visit � during

which no changes due to template ageing occur. Thus, comparisons of Em to Vm have

∆tmm = 0. Given this set of biometric data, Figure 4.1 shows how DET curves from

the match scores in each bin are calculated. At a selected value of false match ratio

(FMR), the false non-match ratio (FNMR) is calculated for ∆t = 0 and compared

to that for a chosen value of ∆t, from which PB is calculated. We do not impose

criteria on the selection of FMR; however, it should be chosen at some operationally

meaningful level.

4.2.1 De�nition

Given these data, we de�ne biometric permanence, PB(∆t), for a given elapsed time

∆t, as follows:

PB(∆t,FMR) =
1− FNMR∆t

1− FNMR0

(4.1)

where FNMR∆t is calculated from match scores in the ∆t bin, and the �base� level,

FNMR0 is calculated from scores based on data captured during the same visit

(i.e. ∆t = 0). Some features of this formulation are:

� PB → 1 as FNMR∆t → FNMR0 i.e. if there is no increase in FNMR over time,

then the permanence is high;

� PB decreases as FNMR∆t → 1 i.e. as FNMR increases over time, permanence

decreases.
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Figure 4.1: Overview of the method: (a) empirical match score distributions imme-
diately after enrolment (top), and after some time interval (bottom); (b) change in
classi�cation accuracy represented on a decision error trade-o� (DET) curve: arrows
indicate the directions of increasing security and convenience; (c) permanence PB

derived from the change in FNMR at �xed FMR according to Eq. 4.1.

©2018 IEEE
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In the pathological case where FNMR∆t < FNMR0, PB will be greater than 1.

4.2.2 Robust calculation

Given the above de�nition, it would appear relatively straightforward to calculate

biometric permanence from a set of repeated biometric captures. Unfortunately,

robust calculation of PB is complicated. Primarily, the issue is that the e�ects of

interest (small changes in the biometric features) occur in the context of many other

changes which are di�cult to control experimentally.

For example, in a longitudinal study over several years, there are changes in:

� weather: tests at di�erent times of the year expose subjects to � not yet well un-

derstood � physiological changes which a�ect biometric performance (e.g. levels

of skin dryness) [71].

� test administrators: over a period of several years there is inevitably some turn-

over in test sta�. Not all sta� are equally well trained. Some will be more

attentive in ensuring proper positioning and placement during biometric tests

than others [5].

� test administrator training: Even it it were possible to eliminate turn-over of

sta�, the training level of test sta� will adapt over time as they become more

familiar with the procedure.

� ageing of the biometric sensors: Biometric sensors are typically built of con-

sumer grade electronics and not intended for many years of useful life. Degra-

dation of some components in the sensors (e.g. lighting) can occur.

We address these issues with the matched delta methodology proposed in this section.

In overview, match score data are used to estimate the visit-speci�c factors (which

incorporate the variability above) and to separate them from the changes in match
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scores caused by template ageing e�ects. These visit-speci�c factors may then be

removed, leaving only the e�ect of template ageing.

Since we collect both enrolment templates and veri�cation images during each

visit, we can match all of the enrolment templates against all of the veri�cation images

and then visualize the available single-�nger match transactions as an N ×N matrix

(N the number of visits in the study) in which the upper triangle elements are the

`forward time' matches and the lower triangle are the `reverse time' matches. Along

the diagonal are the baseline (∆t = 0) scores in which each �nger image is matched

against a template taken only a few minutes before, i.e. at ∆t = 0. The essence of our

proposed methodology is that we can substantially remove the per-visit score biases

by looking at the di�erence in scores between a suitably chosen combination of visits

and the corresponding baseline visits, and applying these to a composite distribution

of the averaged baseline scores.

Our �matched delta� methodology is motivated by a simple additive model for

the measurement errors in the similarity scores. In the following section, a biometric

presentation refers to a single, �xed resolution, uncompressed bitmapped image of

a �ngerprint, while a template refers to a record of �ngerprint minutiae types and

locations extracted during subject enrolment, as described in [37, 38]. We assume

there is some true score sjinm between biometric presentation j in the nth veri�cation

visit, and a template i from the mth enrolment visit. In the context of �ngerprints,

i and j index a speci�c �nger of a speci�c subject; j = i therefore correspond to

genuine matches, and j ̸= i to imposter matches. Then we postulate the following

error terms:

� a pair of visit biases am, bn representing systematic di�erences in the conditions

of the data collections such as operator training, subject acclimation, humidity

and so on;

� a stochastic term W ji representing the natural variability between repeated
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presentations of the same biometric.

Without loss of generality we can choose theW ji to be zero-mean. In our protocol,

we collect six images (in two contiguous veri�cation attempts, each consisting of three

presentations) and their averaged scores may then be modelled as

sjinm = sjinm + am + bn +W
ji

(4.2)

This presentation averaging step is not essential to the methodology that follows;

however it is expected to reduce the variance of the stochastic error term. We then

observe that, in our experimental protocol, both enrolment templates and veri�cation

images are obtained from the same subject cohort at each visit. This allows us to

evaluate the average di�erence, forward and backward in time, between the match

score of biometric presentation j against template i with template age |∆tnm|, relative

to the average score at ∆tnn = ∆tmm = 0, as

∆sjinm (am, bn,Wij; ∆tij) =
1

2

(︂
sjinm + sjimn − sjimm − sjinn

)︂
=

1

2

(︂
sjimn + am + bn +W

ji

0

−sjimm − am − bm −W
ji

1

+sjinm + an + bm +W
ji

2

−sjinn − an − bn −W
ji

3

)︂

where the W
ji

k are assumed i.i.d. variables with the distribution of W
ji
, i.e.

∆sjinm (Wij; ∆tij) =
1

2

{︂(︁
sjinm + sjimn

)︁
−
(︁
sjimm + sjinn

)︁
+

3∑︂
k=0

(−1)kW
ji

k

}︂
(4.3)

in which it is seen that the bias terms have been eliminated, leaving just the averages
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of the forward and backward true scores and the baseline ∆t = 0 scores for the

corresponding visits. Meanwhile the stochastic terms, being uncorrelated, should add

on an RMS basis such that the variance of presentation-averaged scores over �ngers

i, j adds as

var

(︄
1

2

3∑︂
k=0

(−1)kW
ji

k

)︄
= var

(︂
W

ji

k

)︂
(4.4)

leaving the signal-to-noise ratio of the measurement e�ectively unchanged1. The

various noise averaging steps may be summarized as:

W ji
k

over

presentations−−−−−−−−−−→ W
ji

k

over

forward-

backward

visits−−−−−−−−−−→ 1

2

3∑︂
k=0

(−1)kW
ji

k

4.2.3 Visit aggregation

A pervasive di�culty in the evaluation of biometric match performance is the inherent

class imbalance. That is, for a set ofK subject �nger presentations, we haveK(K−1)

imposter match scores but only K genuine match scores. This means that the genuine

match score distributions tend to be less well de�ned than those of the imposter

scores. In the context of the permanence measure Equation 4.1, this means that

while it is relatively straightforward to interpolate the threshold corresponding to a

chosen FMR, changes in the FNMR at that threshold may represent only a handful

of individual genuine matches.

One way to improve the imbalance would be to aggregate scores across multiple

devices in our study. Unfortunately however, while the API and biometric template

were standardized across device, vendors were free to chose their own scoring schemes

- which are hence largely incompatible. In order to improve the estimation, it was

1We have four i.i.d. random variables and we are subtracting two of them from the other two:
the means subtract (to zero) but the variances add because the variance of −W is the same as the
variance of W .
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therefore decided to aggregate groups of �short term� match scores into larger sample

sets according to the scheme shown in Figure 4.2. Although this procedure implies

some loss of temporal resolution, in practice the individual subject visits were typically

spread over two or three weeks, so that the distinction between �1 year� and �1 year

± 2 weeks� is not really meaningful anyway.

Figure 4.2: Matrix of visits for a single subject over the protocol. Each row and
column represents a visit (with enrol, Em and veri�cation, Vn records). In our testing
protocol, each round of testing has a pair of visits separated by two weeks. The
upper triangle represents match scores �forward in time� (Em vs. Vn, m < n), while
the lower represents the corresponding match scores �backward in time� (Em vs. Vn,
m > jn). Match scores on the diagonal are from the same visit (i.e. ∆t = 0).

©2017 IEEE

In Chapter 4 we discard this aggregation approach in favour of a more formal

bootstrap resampling procedure that allows estimation of con�dence intervals for the

permanence values.
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4.3 Simulation

We have de�ned biometric permanence, PB using, �rst, a model based on veri�cation

calculations alone (�reference methodology�, the value calculated this way is PB,R);

and next, a �matched delta methodology� (PB,M) in which visit variability is modelled

and removed by calculating the shift in the genuine distribution. Our expectations

are:

� In the absence of visit-to-visit variability, PB,M is an unbiased estimate of PB,R.

� PB,M is a lower variance estimator of PB,R (since a single parameter is estimated

from data before the DET calculation, which is known to be noisy).

� In the presence of visit-to-visit variability, PB,M will show more plausible results

than PB,R.

We take as our starting point a pair of canonical distributions for the underlying

false and genuine match scores, where scores range between 0 and 1. In this work

we have chosen to model the imposter scores via a simple Rayleigh distribution, and

the genuine scores via a ��ipped� Rayleigh distribution (Appendix D). In suitably

normalized form the probability densities become

pI(s) =
s

β2
I

e−s2/2β2
I ; s ≥ 0 (4.5a)

pG(s) =
1− s

β2
G

e−(1−s)2/2β2
G ; s ≤ 1 (4.5b)

where the scale parameters βI,G are related to the mean scores by µI = βI

√︁
π
2
and

µG = 1− βG

√︁
π
2
.

To model the sequence of enrolment-veri�cation visits, we then make two assump-

tions, namely

� The imposter distribution remains constant over time. Since the imposter dis-
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tribution represents non-matched samples, it will not be signi�cantly sensitive

to changes due to elapsed time. This is roughly equivalent to the assertion

that for any pair of non-identical �ngers whose match score is improved by

some mechanism, there is another pair whose match score is correspondingly

reduced.

� With each visit k we can associate a pair of systematic biases ak, bk (for enrol-

ment and veri�cation, respectively) that a�ect all presentations equally. We then

model the e�ect of a match score between a veri�cation presentation from visit

n against a template recorded in visit m as a shift in the genuine distribution

equal to (am + bn)

We then model the template ageing as a further, time-dependent, shift of the

genuine distribution. In this work we choose a simple time-symmetric assumption,

namely δ(∆t) = −α(1 − exp(−κ|∆t|)) i.e. a term that asymptotically approaches

δ = −α with time-constant 1/κ.

To each variate generated according to Eq. 4.5 we apply an additional zero-mean

Gaussian noise term W ji to represent the natural variation in match score over re-

peated presentations of the same �nger against the same template (e�ectively a kind

of `measurement noise').

4.3.1 Simulation of a single sequence of visits

To make a baseline qualitative evaluation of the e�cacy of our method in removing the

experimental biases, we constructed a single realization of a sequence of eight visits,

with bias values ak, bk taken from a Gaussian distribution with standard deviation

0.025. We then generated canonical sample distributions according to Eq. 4.5 for each

of two �ngers for a sample size of 17500 subjects

with µI = 0.2 and µG = 0.85 for each �nger. Next, for each of the 8 × 8 = 64
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enrol-verify visit combinations, we modify the �nger scores according to:

sj,in,m(∆t) = s0 + am + bn − α(1− exp(−κ|∆t|)) (4.6)

Finally, we synthesize six independent presentations of each �nger by adding a zero-

mean Gaussian noise term with variance σ2 = w2/6: this scaling is a convenience,

so that we can identify w2 with the sample variance of the presentation-averaged

experimental scores. We then processed the scores in two ways: (i) a simple direct

calculation according to Section 4.2.1; and (ii) our matched delta method as described

in Section 4.2.2.

We ran the simulation with three scenarios: �rst, with no visit biases (bn =

am = 0); second with bias in the creation of enrol templates only (bn = 0; am ̸= 0);

and third with bias in both enrol template creation and veri�cation presentation

(bn ̸= 0, am ̸= 0). Results of these simulations are illustrated in Figure 4.3: each sub-

�gure shows PB (vertical axis) versus elapsed time (horizontal axis) in weeks between

enrolment and veri�cation. The {ON,OFF} status of parameters a (enrolment) and b

(veri�cation) represents whether the corresponding biases are simulated or not. Thus

�a:ON b:ON� indicates simulation of both enrolment and veri�cation biases. w is the

standard deviation of simulated presentation noise. The value of the presentation-

averaged sample standard deviation w was varied in the range 0 to 0.075 units and

the ageing parameters were α = 0.1 unit and κ = 0.01 week−1. The reference FMR

for the permanence calculation was 0.001 (0.1%).

Taken together, the visit bias terms and ageing correspond to a modi�cation

(1 − s) → (1 − am − bn − δ(t) − s) in the genuine score distribution of Eq. 4.5.

The densities then become convolved with the Gaussian density � one can show

(Appendix D) that the resulting tail integrals for the FMR and FNMR at some
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threshold score θ become:

FMR(θ) =
βI

β′
I

e−θ2/2β′2
I (4.7a)

FNMR(θ;m,n; t) =
βG

β′
G

e−(χ(t;m,n)−θ)2/2β′2
G (4.7b)

where β′2
I,G = β2

I,G + σ2
I,G (with σ2

I,G being the variances of the imposter and genuine

presentation noise terms respectively) and

χ(t;m,n) = 1− am − bn − δ(t) (4.8)

represents the mean degradation in genuine match score due to the per-visit biases

and template ageing. The solid black curves in Figure 4.3 correspond to Eq. 4.7 , 4.8

with am = bn = 0 i.e. they represent the `ideal' (unbiased) ageing behaviour that

would be observed due to presentation noise only: the deviation from this curve can

be interpreted as the residual e�ect of bias that is not removed by the technique.

4.3.2 Simulation of an ensemble of visit sequences

Over an ensemble of experiments (that is, sequences of enrol-verify visits) with exper-

imental biases taken independently from some zero-mean distribution(s), one would

like to show that the mean of the reference permanence measure (Eq. 4.1) does indeed

converge to the value obtained by our new technique. Accordingly we ran the same

procedure up to 180 times to simulate multiple independent realizations of our ex-

periment. At intervals of 5 simulated experiments we calculated the mean deviation

(across time di�erences ∆tnm) between the permanence calculated according to our

method (Section 4.2.2) and reference method (Section 4.2.1) (Figure 4.4).



4.3 Simulation 43

F
ig
u
re

4
.3
:
S
im
u
la
ti
on

of
th
e
e�
ec
t
of

v
is
it
b
ia
se
s.

T
op

ro
w
:
n
oi
se

on
ly
;
m
id
d
le
ro
w
:
n
oi
se

an
d
en
ro
l
v
is
it
b
ia
se
s;
bo
tt
om

ro
w
:

n
oi
se
,
en
ro
l
an
d
ve
ri
fy

b
ia
s.
T
h
e
ca
se

of
n
oi
se

p
lu
s
ve
ri
fy

b
ia
s
on
ly

is
om

it
te
d
fo
r
b
re
v
it
y.

R
ed

st
ar
s
ar
e
th
e
re
fe
re
n
ce

m
et
h
o
d
of

S
ec
ti
on

4.
2.
1
w
h
il
e
b
lu
e
ci
rc
le
s
ar
e
ou
r
m
at
ch
ed

d
el
ta

m
et
h
o
d
of

S
ec
ti
on

4.
2.
2.

T
h
e
b
la
ck

cu
rv
e
is
d
er
iv
ed

fr
om

th
e
an
al
y
ti
ca
l

ta
il
in
te
gr
al
s
of

E
q
.
4.
7.

©
20
17

IE
E
E



4.3 Simulation 44

Figure 4.4: Di�erence (±SD) between the reference measure Section 4.2.1 and the
matched delta method of Section 4.2.2 as the size of the experiment ensemble is
increased.

©2017 IEEE
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4.4 Discussion

We have developed and de�ned a measure of template ageing which we call biometric

permanence PB, based on the change in FNMR (at a given FMR) between the tem-

plate ageing interval under test, and a short-time test. While intuitive, this de�nition

of PB is practically di�cult to apply to estimate small changes in permanence in a

longitudinal study subject to experimental error and visit-to-visit systematic biases.

To address this issue, we have introduced the matched delta method. Comparisons

of these methods were performed using simulated data, and it was determined that

the new method showed dramatically reduced sensitivity to systematic biases. Sim-

ulations were designed to evaluate two aspects of the proposed robust calculation

method in comparison to the calculation of PB from Eq. 4.1. First, simulations test

the �rst and second order statistical properties (i.e. bias and variance); and, second,

the sensitivity of the methods to visit-to-visit biases.

Figure 4.3 compares the two methods to the analytical values (Eq. 4.7). For two

di�erent values of presentation noise (columns), the presence or absence of visit biases

is evaluated. A single sample of visit biases is evaluated in each case; multiple values

at a single time interval indicate di�erent ways in which the given time o�set can

be calculated. Without visit biases, the methods perform similarly, while their pres-

ence dramatically impacts the values calculated using Eq. 4.1. Meanwhile Figure 4.4

investigates the statistical properties of the methods. As sample number increases,

the variance decreases and bias between methods decreases towards zero, as expected

from our analytical model.



Chapter 5

Characterization of biometric

template ageing in a multi-year,

multi-vendor longitudinal �ngerprint

matching study

In Chapter 4 we outlined a method for evaluating the permanence of a set of bio-

metric templates, based on a simple phenomenological model for confounding factors

resulting from changes in physical environment and acclimation.

The goal of this chapter is to characterize template ageing in the �ngerprint modal-

ity, for a number of commercially-available �ngerprint sensor devices and technologies,

and to understand its impact on the deployment and operation of �ngerprint-based

IDMSs.

In Section 5.2, results are presented for each of the devices. Finally, in Section 5.3

we attempt to justify, through further data analysis, the key assumptions underlying

the methodology.

46
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5.1 Methodology

The methodology follows that of the previous chapter, with the following exception.

In Chapter 4, we noted that aside from the visit-to-visit confounding factors such

as variations in environmental conditions, operator training and subject acclimation,

the chief di�culty in estimating template permanence according to our de�nition of

Equation 4.1 is the relatively poor de�nition of the empirical genuine score distribu-

tions. This in turn results from the inherent class imbalance i.e. that whereas the

number of imposter matches increases quadratically with the number of individuals

in the study, that of the genuine scores only increases linearly. For the simulated

study of that chapter, we implemented a �visit aggregation� scheme to boost the sizes

of the genuine match score sets. Here we develop a more robust scheme based on

bootstrap resampling [56].

As in our earlier procedure, the averaged �matched deltas� ∆sjinm from Equation 4.3

are averaged again across a particular pair of enrolment and veri�cation visits m,n

to give mean genuine and imposter score o�sets ∆sGnm and ∆sInm for the chosen visit

pair n,m. We then aggregate the corresponding zero-time genuine and imposter

scores {siikk}, {s
j ̸=i
kk }; k ∈ 1 . . . N and use these aggregate distributions shifted by the

respective mean o�sets ∆sGnm, ∆sInm to evaluate PB according to Equation 4.1 at

time interval ∆tmn. In order to perform the bootstrap resampling, we arrange the

aggregate genuine and imposter scores into a vector
(︂
siikk, s

j ̸=i
kk

)︂
along with a vector

of class labels (1nG
,OnI

) where nG, nI are the genuine and imposter class sizes in

the sample. The bootstrap procedure was then developed in a number of stages, as

follows.

The initial implementation consisted of a simple N -fold resampling, with replace-

ment, of the entire labelled datasets i.e.

� select nTot = nG + nI scores, randomly with replacement
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� construct a DET curve for the sample

� interpolate the DET curve to �nd FNMR at the chosen reference FMR

� repeat N times to obtain a 95% con�dence interval (CI) for the FNMR
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Figure 5.1: Computation time of the bootstrap CI versus dataset size, nTot = nG+nI

for the original procedure

This procedure is, however, computationally very ine�cient, scaling poorly with

dataset size (Figure 5.1) � there really is no bene�t in resampling the imposter scores,

since their distribution is already su�ciently well de�ned.

A re�ned procedure was then implemented in which a single DET curve was

constructed using the full dataset, which was then interpolated to �nd a decision

threshold θRef corresponding to the chosen reference FMR. The imposter set was

then sub-sampled to the same class size as the genuine set, nI = nG, and N -fold

resampling implemented in the same manner as before in order to obtain a 95%CI

for the FNMR at θRef .
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Although more e�cient, a signi�cant �aw remains in that the construction leads

to a con�dence interval for the FNMR, rather than for the permanence measure, PB.

To address this, an improved bootstrap procedure was developed. First, Equation 4.1

was re-cast in terms of true match rate (TMR) as

PB(∆t,FMR) =
TMR∆t

TMR0

(5.1)

Next we noted that, since an o�set ∆S
I
to the imposter distribution is exactly

equivalent to a shift in the threshold θ → θ + ∆S
I
for the chosen FMR, while an

o�set to the genuine distribution is similarly equivalent to a shift θ → θ −∆S
G
, we

just need to evaluate 1 − FNMR (or, equivalently, the true match rate TMR) at a

set of thresholds θnm = θ̂0 +∆sInm −∆sGnm (Fig. 5.2). In fact, since we de�ned PB as

a ratio, it su�ces to work with the raw genuine score counts i.e. the permanence is

estimated for each bootstrap sample as

P̂B(∆tnm) =

⃓⃓⃓
{siikk : siikk > θ̂0 +∆sInm −∆sGnm}

⃓⃓⃓
⃓⃓⃓
{siikk : siikk > θ̂0}

⃓⃓⃓ (5.2)

evaluated for each enrolment-veri�cation visit pair n,m, where |C| denotes the car-

dinality of C.

The procedure was developed in MATLAB using the perfcurve function from the

Statistics and Machine Learning Toolbox, with the permanence measure of Equa-

tion 5.1 as a parametrized bootfun. The resampling was class-weighted in inverse

proportion to the original class sizes nG and nI in order to remove class imbalance.

The interested reader is referred to the MATLAB code in Appendix C for details

of the implementation.
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Figure 5.2: A shift in the mean imposter score results in a shift in the estimated
decision threshold θ̂0 for a speci�ed FMR (red area) � and a corresponding change in
the achievable TMR (blue area) for the shifted genuine scores.

©2018 IEEE

5.2 Results

Results of this procedure are shown graphically in Figs. 5.3 � 5.11, with comparison

to a �naïve� evaluation that does not attempt to account for visit bias.

The histograms are scaled to account for the large class imbalance between genuine

and imposter scores. DET curves are generated using the �matched delta� method-

ology described in the text. The permanence results demonstrate the reduction in

the confounding e�ect of visit biases due to our method; error bars correspond to the

95% bootstrap con�dence intervals described in the text with bootstrap resampling

factor N = 1000.

The solid lines in the permanence �gures represent simple best �ts to the data

and are intended only as an aid to visualization. In particular, they may appear to

suggest that PB does not achieve a value of 1 at ∆t = 0: in fact it does in all cases (as

it must, given the de�nition of Equation 4.1) and what we actually observe is a steep

drop in PB between ∆t = 0 and ∆t = ±2 weeks, followed by a much more gradual
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Table 5.1: Estimated 95% con�dence intervals for permanence, PB after 7 years, by
device.

©2018 IEEE

ID Permanence, PB (%) ID Permanence, PB (%)
A. 92.4± 0.33 G. 95.9± 0.38
B. 100 H. 99.5± 0.12
C. 98.3± 0.24 J. 100
D. 96.1± 0.27 K. 97.2± 0.19
F. 98.6± 0.08 L. 95.5± 0.23

decline in permanence over the remaining duration of the study.

In Figs. 5.10 and 5.11 we see the evolution of the typical observed ageing be-

haviour of the devices in our study. First, we note that the baseline (∆t = 0) score

distributions Fig. 5.10a, Fig. 5.11a are not separable; that is, there is no choice of bi-

nary threshold for which the probability of misclassi�cation may be made arbitrarily

small. Correspondingly, the decision error trade-o� (DET) curves Figs. 5.10b, 5.11b

are displaced from (0, 0) at ∆t = 0 (blue curve) and become further displaced as

the template ages (red curve), indicating an increased misclassi�cation probability.

Finally in Figs. 5.10c, 5.11c we see the permanence PB according to Equation 4.1

decrease monotonically away from template age ∆t = 0.

Two of the available devices (B and J) did not show this typical behaviour. In-

stead, they showed well-separated genuine and imposter score distributions at ∆t = 0

(Fig. 5.3a) which essentially remained separable over the whole duration of the study.

Hence we see both ∆t = 0 (blue) and ∆t = 7years (red) DET curves achieving

FNMR = 0 at FNMR = 0 (Fig. 5.3b) and correspondingly no discernable change in

permanence PB in Fig. 5.3c.

Results for all the available devices in our study are summarized in Table 5.1.
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(a) Genuine (blue) and Imposter (red) score counts at ∆t = 0
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(b) DET curve at ∆t = 0 (blue - hidden) and at ∆t = 373 weeks (red)

(c) Permanence vs. template age: naïve calculation (red); present method (blue)

Figure 5.3: Match score distributions, DET, and PB: DeviceB (optical)
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(a) Genuine (blue) and Imposter (red) score counts at ∆t = 0
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(b) DET curve at ∆t = 0 (blue) and at ∆t = 373 weeks (red)

(c) Permanence vs. template age: naïve calculation (red); present method (blue)

Figure 5.4: Match score distributions, DET, and PB: DeviceC (optical)
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(a) Genuine (blue) and Imposter (red) score counts at ∆t = 0
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(b) DET curve at ∆t = 0 (blue) and at ∆t = 373 weeks (red)

(c) Permanence vs. template age: naïve calculation (red); present method (blue)

Figure 5.5: Match score distributions, DET, and PB: DeviceD (optical)
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(a) Genuine (blue) and Imposter (red) score counts at ∆t = 0
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(b) DET curve at ∆t = 0 (blue) and at ∆t = 373 weeks (red)

(c) Permanence vs. template age: naïve calculation (red); present method (blue)

Figure 5.6: Match score distributions, DET, and PB: Device F (optical)
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(a) Genuine (blue) and Imposter (red) score counts at ∆t = 0
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(b) DET curve at ∆t = 0 (blue) and at ∆t = 373 weeks (red)

(c) Permanence vs. template age: naïve calculation (red); present method (blue)

Figure 5.7: Match score distributions, DET, and PB: DeviceG (optical)
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(a) Genuine (blue) and Imposter (red) score counts at ∆t = 0
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(b) DET curve at ∆t = 0 (blue) and at ∆t = 373 weeks (red)

(c) Permanence vs. template age: naïve calculation (red); present method (blue)

Figure 5.8: Match score distributions, DET, and PB: DeviceH (optical)
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(a) Genuine (blue) and Imposter (red) score counts at ∆t = 0
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(b) DET curve at ∆t = 0 (blue) and at ∆t = 373 weeks (red)

(c) Permanence vs. template age: naïve calculation (red); present method (blue)

Figure 5.9: Match score distributions, DET, and PB: Device J (optical)
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(c) Permanence vs. template age: naïve calculation (red); present method (blue)

Figure 5.10: Match score distributions, DET, and PB: DeviceK (optical)
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(b) DET curve at ∆t = 0 (blue) and at ∆t = 373 weeks (red)

(c) Permanence vs. template age: naïve calculation (red); present method (blue)

Figure 5.11: Match score distributions, DET, and PB: Device L (capacitive)
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5.3 Discussion

The values of PB derived using the preceding methodology show one of two dis-

tinct characteristics: either monotonically decreasing over the course of the study,

or constant, depending on the speci�c device under test. These characteristics seem

intuitively reasonable when we consider the baseline (relative template age ∆tmn = 0)

genuine and imposter score distributions: those that are essentially separable at

∆tmn = 0 remain so for the duration of the study, while those whose genuine and

imposter scores overlap at ∆tmn = 0. In no case did we observe an increasing trend

in PB over time: in this respect, we believe that our methodology exhibits convergent

validity with respect to the recorded template ages.

A question that arises in this respect is whether the permanence estimates in

Table 5.1 may be used to identify �good� versus �bad� devices. Since our de�nition of

PB uses the day zero FNMR as a normalizing factor, the answer is generally `no': a

bad device that simply does not get much worse over time may still display high PB.

For the two devices that showed no change in permanence, the analysis is likely

a�ected by the large class imbalance inherent in such biometric comparisons. That is,

for a dataset of K distinct �ngers, there are of order K2 imposter matches but only K

genuine matches, which causes the tails of the genuine match score distributions to be

much less well de�ned than those of the imposter distributions. This in turn makes it

hard to estimate with con�dence the threshold at which to evaluate the corresponding

FNMR for the permanence calculation. While the bootstrapping procedure described

in 5.2 attempts to ameliorate this e�ect, if the empirical distributions are separable,

then no amount of re-sampling can guarantee that there will be a non-zero FNMR

at the chosen FMR. In this regard, a larger study size would have increased the

probability of observing ageing behaviour where present.

Since the majority (8 out of 10) devices did show a measurable reduction in

permanence over the 7 years, we believe we have observed template ageing over this
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time span. A time span of 7 years is broadly in line with common renewal intervals

of documents such as biometrically enabled passports (typically either 5 or 10 years),

and therefore should be of practical interest to the end users of such technologies. It

would be particularly interesting to extend the duration of the study to see whether

they eventually showed a similar trend in discriminability.

In the following sections we discuss some other aspects of the data, and their

potential impact upon the interpretation of our results.

5.3.1 Time symmetry of the match scores

A key assumption that allows us to substantially remove the visit-to-visit bias factors

is that the underlying �true� match scores are time-symmetric: that is, in the absence

of these factors, comparisons between a biometric enrolment obtained at time t1 and

a set of veri�cation presentations at later time t2, and between a biometric enrolment

obtained at time t2 and a set of veri�cation presentations at earlier time t1, have the

same expected match score. (`Expected' because there will still be presentation-to-

presentation variability, denoted by the W ij terms in our formalism.) The extent

to which this is the case will depend on the algorithm and implementation of the

similarity measures used: we might imagine that a simple degree-of-overlap measure

to be time-symmetric, whereas a more heuristic matcher might not be. For example,

consider the case in which the number of extractable �ngerprint minutiae decreases

with time, perhaps due to occupational injury or environmental damage; when applied

in the reverse time direction, a heuristic might consider the apparent increase in

minutiae count to be implausible. Unfortunately such implementation details were

not available for the devices in our study.
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5.3.2 Constancy of the imposter distributions

Intuitively, we might expect the imposter score distribution to be relatively insensitive

to template age, since factors that decrease the similarity between any given pair of

subject-�ngers may increase the similarity between other such imposter pairs.1However

this does not allow for gross di�erences in biometric presentation quality between dif-

ferent pairs of visits. We attempted to quantify the relative contributions of mean

changes in imposter scores and those of the genuine match scores as follows.

It is important here to distinguish between statistically signi�cant changes, and

changes of signi�cant e�ect size: since the imposter sample sizes ( ∼ K2, for a sample

of K distinct subject-�ngers) are approximately two orders of magnitude larger than

those of the genuine matches (∼ K, for the same set of subject-�ngers), it is almost

always possible to reject the null hypothesis that the imposter samples at ∆tnm come

from the same distribution as those at ∆tmm. First we de�ne a discriminability

measureQnm for a pair of visits n,m as the ratio of the di�erence in sample mean score

u between genuine and imposter presentations to the sum of their sample standard

deviations s

Qnm =
uG
nm − uI

nm

sGnm + sInm
(5.3)

This measure is similar to the Mahalanobis distance familiar from linear discriminant

analysis (LDA); the form chosen here is widely used for characterizing the error

probability in a binary optical communication channel [23]. We then de�ne the visit-

averaged quantities

uG =
1

NM

N∑︂ M∑︂
uG
nm sG =

1

NM

N∑︂ M∑︂
sGnm (5.4)

uI =
1

NM

N∑︂ M∑︂
uI
nm sI =

1

NM

N∑︂ M∑︂
sInm (5.5)

1This in fact was an assumption made in the simulations of Chapter 4.
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allowing us to express the contributions of the genuine and imposter score variability

separately as

Q(G)
nm =

uG
nm − uI

sGnm + sI
Q(I)

nm =
uG − uI

nm

sG + sInm
(5.6)

i.e. Q
(G)
nm is the discriminability of the scores between visits nm when the imposter

mean and standard deviations are held constant at their visit-averaged values, and

Q
(I)
nm the corresponding discriminabilities this time with the genuine mean and stan-

dard deviations held constant. Finally, we evaluate the fractional contribution of the

imposter scores to the root mean-square variation in discriminability over the set of

visits as

∆Q(I)

∆Q
=

⌜⃓⃓⎷var
(︂
Q

(I)
nm

)︂
var (Qnm)

(5.7)

where var (x) is the variance of x. Values of ∆Q(I)/∆Q for each of the devices in our

study are summarized in Table 5.2.

In light of this observed variability in imposter scores, we chose to extend the

original method of Chapter 4 to include the imposter matched delta term ∆sInm in

the present work.

The discriminabilities of the devices with the lowest and one of the higher imposter

contributions from Table 5.2 were visually examined using box plots (Figs. 5.12a

and 5.12b). (The device with the very highest imposter contribution, Device H at

26.45%, was not chosen since its data were only available for six of the eight vis-

its, making direct comparison di�cult.) Although these plots con�rm clear trends

in discriminability, with particularly obvious peaks at each of the ∆tnm = 0 distri-

butions in the case of Device F (Fig. 5.13b), they also highlight a weakness in our

treatment: while the �matched delta� methodology seems physically reasonable for

the underlying biometric, it does not take into account any thresholding or similar
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Table 5.2: Relative e�ect of the imposter distributions to the RMS change in match
score discriminability, by device.

©2018 IEEE

ID ∆Q(I)/∆Q (%) ID ∆Q(I)/∆Q (%)
A. 0.40 G. 6.80
B. 12.46 H. 26.45
C. 7.40 J. 1.57
D. 21.12 K. 1.68
F. 0.07 L. 12.49

non-linear processing of the raw match scores. In particular, whereas the box plots

of Fig. 5.12a �t well to our assumption that the distributions change in their mean

value rather than their shape, those of Fig. 5.12b show distinct limiting behaviour in

the - processed - genuine distributions.
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(b) Raw genuine (blue) and imposter (red) match scores: Device F.

Figure 5.12: Box plots of the raw match scores between enrol visit Em and verify
visit Vn. The boxes are plotted from most negative to most positive template age i.e.
from `Enrol 8 � Verify 1' to `Enrol 1 � Verify 8'. Maximum discriminability occurs
around the center of the chart - corresponding to template ages close to zero.
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Figure 5.13: Binary discriminability Q as a function of template age in weeks. Total
discriminability is shown in black; the contributions QG (blue) and QI (red) are due
to changes in the genuine and imposter distributions respectively. Variation of the
imposter distribution contributes non-negligibly to the discriminability in Device L
but is negligible in the case of Device F.
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5.4 Conclusion

We have elaborated a method to isolate and measure changes in biometric system

performance over time, using a metric which we call biometric permanence. The

method was applied to a dataset spanning several years, and template ageing accord-

ing to this metric was observed in 8 out of 10 available devices. We have discussed

the limits of validity of the underlying assumptions of the methodology, highlighting

some device-dependent characteristics of the match score distributions. Because of

these factors, it seems appropriate to consider template ageing to be a property of

a given biometric system as a whole, rather than a speci�c physiological mechanism

or biometric modality. In order to maintain system performance over life, we recom-

mend that system integrators take such template ageing behaviour into account � for

example, by implementing an in-service template update procedure, or a requirement

for periodic re-enrolment.



Chapter 6

Biometric quality and classi�cation

performance

In this chapter, we compare the available measures of biometric quality on a device-

by-device basis, �rst from the point of view of their assessed quality scores, and

then as predictors of classi�cation performance. The goal of the chapter is to un-

derstand the relationship between NFIQ-1 and NFIQ-2 scores (and, where available,

vendor-speci�c quality scores obtained during template enrolment), and the relation-

ship between these scores and the measured biometric performance - both in terms

of raw match scores and overall classi�cation accuracy.

6.1 History and application of the NFIQ measures

6.1.1 NFIQ-1

The original NFIQ standard, published in 2005, utilizes a single arti�cial neural net-

work (ANN) classi�er that classi�es �ngerprint images into one of �ve quality �bins�,

from 1 (highest) to 5 (lowest). The classi�cation is based on an 11-component feature

vector whose values were derived from NIST's own `MINDTCT' minutia detection

69
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algorithm, and include both features related to the number and quality of the ex-

tracted minutiae, and ones derived from an overall image quality map that includes

factors such as ridge contrast, direction, �ow, and curvature [74].

Since similarity scores necessarily involve pairs of images, training of the ANN

was split into two rounds. In the �rst round, both images in a pair were assigned to

the same class; then, in the second round, the predicted classes from the �rst round

were used to adjust the input pattern weights to the classi�er.

6.1.2 NFIQ-2

A new NFIQ standard, NFIQ-2 was published in 2016 [73], with a more systematic

approach to both feature selection and classi�er choice. A large primary feature set

was ranked, with redundant features being eliminated based on correlation. Several

classi�er implementations were evaluated, including support vector machine (SVM),

K-nearest neighbour, and random forest, with random forest eventually being selected

based in part on its ability to output class probabilities. Similarity score algorithm

selection for the classi�er training was expanded from three to seven. Continuity

with NFIQ-1 was ensured in part by incorporating NFIQ-1 scores into the criteria

for labelling of the training data. While NFIQ-1 classi�es images into one of �ve

broad quality classes, NFIQ-2 outputs quality values in the range 1 (lowest) to 100

(highest).

6.1.3 Vendor quality metrics

In addition to the open NFIQ metrics, vendors of �ngerprint sensing devices may in-

corporate their own quality assessment algorithms into their devices' software. These

are typically used during the enrolment phase, for example by prompting for re-

presentation of the �nger until a suitably clear record can be obtained; or, if no such

record is obtained after a certain number of presentations, declaring a failure to enrol



6.2 Generation of the NFIQ scores 71

(FTE) event. The ISBIT BioAPI provides a single-byte �eld in the �ngerprint record

of each enrolled �nger, with a usable value from 0 to 100 (0 represents lowest quality,

100 represents highest quality) [38]. The �eld is not mandatory however, and it is up

to the vendor to decided if and how it is used.

6.2 Generation of the NFIQ scores

The NFIQ software is most easily built and installed on the Linux operating system.

Since the Norwood database is hosted on Windows using Microsoft SQL Server, the

procedure used for generating the NFIQ scores was as follows.

First, the the database was queried for a list of candidate image metadata for each

device. In the case of EnrolImage records, a candidate is selected if its FingerPosition

corresponds to either the FingerPrimary or FingerSecondary of a valid EnrolTemplate

record, thus excluding �ngers that failed to enrol.

In the case of VerifyImage records, all images are considered candidates. Each

list of candidates was then parsed in a Windows batch �le and used to construct

a sequence of bulk copy (�bcp�) instructions that extracted the binary large object

(BLOB) �elds from the image records and wrote each to a bitmap �le on the Windows

hard drive. The Windows drive was then CIFS-mounted to the Linux laptop in order

to run the NFIQ software, in bulk mode, on the extracted images.

When run in bulk mode, the NFIQ software outputs a plain text list of �le names

and quality scores (with, optionally, constituent feature scores in the case of NFIQ-2).

Since metadata (such as Subject, Visit, and Algorithm primary keys) was included in

the candidate �le names, it is then possible to create new database tables and import

the quality scores back into the database in a way that allows further structured

queries.

The same procedure was used for both the original NFIQ-1 and the later NFIQ-2
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scores.

6.3 Extraction of vendor quality scores

The original ISBIT protocol provides for vendor-supplied quality metrics to be recorded

in the �ngerprint template. In fact, since it is a two-�nger protocol, there are quality

values for both the enrolled images and the template as a whole. In this work, we are

only interested in the image quality assessment, where available, since that is what is

most directly comparable with the NIST NFIQ measures.

The procedure for extracting vendor-assessed image qualities mirrors that for the

NFIQ enrol image scores, with the candidate lists being used this time to identify En-

rolTemplate records from which a binary Biometric Information Record (BIR) BLOB

is extracted. A small Python program was then written to unpack the binary BIR

and extract the quality scores from the individual primary and secondary �ngerprint

records (Appendix B).

No attempt was made to extract vendor quality scores associated with veri�cation

presentations.

6.4 Comparisons of NFIQ1, NFIQ2, and vendor quality

Histograms of the quality scores, by device, are shown in Figure 6.1. For ease of com-

parison, the NFIQ-1 scores are reversed so as to go from 5 (worst) to 1 (best). Scores

for enrolment images are shown in light blue, and for veri�cation images (plotted

second) in light brown, becoming dark brown where the colours overlap. Hence blue

regions extending above dark brown indicate an excess of enrolment images in the

score category, while light brown extending above dark brown indicates an excess of

veri�cation images. NFIQ-2 scores for Devices A and E were unavailable at the time

of writing.
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The vendor quality scores from Devices F and H provide no useful information,

being constant over the entire data set. Likely the vendors of these devices simply

chose not to evaluate image quality, or not to expose the values via the API.

Device H is interesting for a number of other reasons. Initially, the NFIQ-1 soft-

ware would not process any of its captured images. Side by side examination of the

image metadata against that of successfully processed images suggested this was a

result of incorrect image metadata: speci�cally, that the images were (apparently in-

correctly) labelled as having 16-bit depth. Re-exporting the extracted �les explicitly

as 8-bit uncompressed images using the commercially available ImageMagick convert

program, viz.

convert BMP:"$f" -type palette -depth 8 -compress none BMP:"$f"

seemed to �x the issue, and allowed putative NFIQ-1 scores to be obtained for

the device. However, when the same ��x� was applied during generation of NFIQ-2

scores, the newer software again failed to recognize them as valid 8-bit (greyscale)

bitmaps. Further examination of metadata suggested this was a result of a change in

ImageMagick's default BMP save format (from BMP3 to BMP4) that could appar-

ently be remedied by making the save format even more explicit

convert BMP:"$f" -type palette -depth 8 -compress none BMP3:"$f"

allowing putative NFIQ-2 scores to be obtained for the device as well. However,

the scores so obtained are markedly di�erent from those from the other devices in

the study: in particular, NFIQ-1 scores show a large fraction of low quality (score 5)

images, whereas NFIQ-2 scores are rather tightly clustered around the high quality

quartile (scores 50-100).

Device H is the only multi-spectral capture device in the study, and it seems likely

that the processing of its images into a single greyscale bitmap makes it in some way
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unsuitable for the NFIQ algorithms. For this reason, results for this device should be

regarded as of questionable value.

Otherwise, there is a good deal of similarity between the NFIQ-1 and NFIQ-2 score

distributions. For example, Devices B,DG all all show similar low-quality tails. For

Devices F and J, NFIQ-2 appears to classify more images as low quality, producing

slightly bimodal distributions where the NFIQ-1 scores are unimodal. Perhaps the

closest correspondence is for Device L, where bimodal distributions are observed for

both NFIQ-1 and NFIQ-2 scores.
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Figure 6.1: Histograms of extracted quality scores, by device. Scores for enrolment
images are shown in light blue, and for veri�cation images (plotted second) in light
brown, becoming dark brown where the colours overlap. NFIQ-2 scores for Devices A
and E were unavailable at the time of writing.
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6.5 E�ect of biometric quality on match score

Training of both NFIQ-1 and NFIQ-2 classi�ers is based on match score. Having

generated NFIQ scores and imported them into the Norwood database as described

in the preceding section, it becomes possible to label biometric match scores with

the NFIQ-1, NFIQ-2, and (where available) vendor-assessed quality values of their

constituent enrolment and veri�cation images, and explore the relationship between

quality and match score for the Norwood dataset. Since the demographics and capture

protocol of the ISBIT/Norwood study are likely quite di�erent from those used to

obtain the majority of the NFIQ training data, this is expected to be a useful test of

the broader applicability of the NFIQ measures.

In the case of enrolment, the ISBIT/Norwood protocol involves three presentations

of each of two �ngers, and hence associates six �ngerprint image records with each

enrolment template. While match scores are provided separately for each enrolled

�nger, it is not possible to break these down to a single enrolment image: indeed, the

enrolment protocol does not specify how the three single-�nger presentations are to be

used, so that vendors may (for example) have chosen a single preferred presentation,

or have aggregated presentations at either the image level or at the feature level.

Both NFIQ-1 and NFIQ-2 scores are returned, and stored in the Norwood database,

as integers1 but are cast to �oats for the purpose of averaging. In the case of NFIQ-1,

for which the quality score is a coarse ordinal scale from 1 (highest) to 5 (lowest), the

averaging provides somewhat �ner granularity.

Best, average, and worst enrolment image qualities are compared for NFIQ-1 in

Figure 6.2 and for NFIQ-2 in Figure 6.3. NFIQ-2 results are presented as simple

scatter plots, while for the NFIQ-1 results, the coarse score classes, especially for the

non-averaged cases, favour the use of box plots.

Although the protocol for veri�cation also involves multiple presentations, each

1As tinyint in the case of NFIQ-1, and as smallint in the case of NFIQ-2
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results in a individual match score which we can identify uniquely with a single

veri�cation image. No averaging is employed in this case. Best, average, and worst

enrolment image qualities for NFIQ-1 and NFIQ-2 are compared in Figure 6.4.

Naïvely, one might expect (or at least hope) that genuine match score would be

simply correlated with the quality of either or both the enrolment and veri�cation

images. Perhaps unsurprisingly, the relationship is apparently not so straightforward.

Perhaps the most obvious way in which the NFIQ-1 box plots deviate from an

ideal quality-to-match score relationship is that they often display long tails of low

match score for the high quality classes. These tails are especially apparent in Devices

B, F, and J. Box plots for imposter match scores were omitted for clarity.

For NFIQ-2, the �gures (6.3 and 6.4) are in the form of scatter plots of match score

versus NFIQ-2 quality for both genuine and imposter scores. Genuine match scores

generally show a positive correlation with NFIQ-2 quality score, while (as might be

expected) imposter match scores are generally uncorrelated. However there is a rather

broad spread of match scores for the same assessed quality. In the case of Device F,

there is evidence of a subset whose NFIQ-2 quality score does not correlate at all

to match score. In devices K and L, we see some evidence of elevated (false) match

scores in the case of high quality imposters.

So far, results have been presented separately for enrolment quality and veri�ca-

tion quality. A natural question that arises is how the qualities combine in a single

match.

In order to probe this, genuine match scores were plotted against various composite

enrolment-veri�cation quality indices. Figure 6.5 shows two such indices: �rstly the

geometric mean of the (3-presentation average) enrolment and veri�cation NFIQ-2

scores; and secondly the reciprocal sum given by

2
1

NFIQ2enrol
+ 1

NFIQ2verif
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Figure 6.2: Comparison of genuine match score versus enrol NFIQ-1 for the three
presentations of each enrolment event; for ease of comparison with the later NFIQ-2
results, the NFIQ-1 scores are reversed so as to go from 5 (worst) to 1 (best).
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Figure 6.3: Comparison of genuine match score versus enrol NFIQ-2 for the three
presentations of each enrolment event.
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Figure 6.4: Comparison of veri�cation NFIQ1 and NFIQ2 scores for genuine
matches; for ease of comparison, the NFIQ-1 scores are reversed so as to go from
5 (worst) to 1 (best).
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Compared with the individual results (Figures 6.3 and 6.4) it appears that com-

bining the qualities of both (average) enrolment and veri�cation results in a stronger

correlation with match score - in particular, it reduces the number of low quality �

high match score outliers.

In all these results, the behaviour of Device H is clearly anomalous: this is the

multispectral device whose NFIQ processing was troublesome and, as noted in the

previous section, should be treated as unreliable.

In the following sections we look more directly at classi�cation performance, by

means of Decision Error Trade-o� (DET) curves.
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Figure 6.5: Genuine match scores versus composite Enrol-Verify NFIQ-2 score:
geometric mean and reciprocal sum.
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6.6 E�ect of biometric quality on classi�cation accuracy

The previous section examined the relationship between biometric quality and match

score for individual match pairs. Here, we consider its impact on overall classi�cation

accuracy of a biometric IDMS.

The classi�cation accuracy was explored using Decision Error Trade-o� (DET)

curves, broken down as before by device. The procedure for evaluating classi�cation

performance versus quality was based on selecting subsets of the available data based

on their quality indices, and constructing DET curves for each subset. Based on the

preceding results, the arithmetic mean of the three enrolment image qualities was

used in all cases.

In the quality screening application, the idea would be to reject some low quality

presentations: during enrolment (perhaps forcing enrolment of a di�erent - higher

quality - �nger) and/or during veri�cation (for example, declining to attempt a match

of a poorly presented or occluded �nger). In order not to diminish signi�cantly the

overall convenience of the system, it would be desirable to limit to a small fraction

the number of such rejected presentations. Thus we seek a quality threshold that

is e�ective at improving overall classi�cation accuracy, while limiting the increase in

failure to enrol (FTE).

When comparing quality metrics in this application, we should ideally do so at

the same fraction of rejected presentations i.e. compare the increase in classi�cation

performance for the same decrease in convenience. Since NFIQ-1 classi�es images

into one of �ve discrete quality classes, it provides little scope for precise control of

the rejected fraction: at best, we can really only reject all of the lowest quality class

- with the caveat that this may correspond to a quite widely varying fraction of cases

from device to device. For example, referring to the histograms of Figure 6.1, we see

that Devices C and J classify less than 1 % of images at the lowest NFIQ-1 quality

(Class 5) whereas Devices B and L have up to 6 % in this class. (Device H apparently
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Table 6.1: Excluded percentages x of the lowest quality NFIQ-1 class (Class 5) and
the corresponding thresholds (lower xth percentiles) for exclusion from NFIQ-2

Device ID
NFIQ-1 NFIQ-2

Enrol % Verify % Enrol Thresh. Verify Thresh.
B. 1.7 4.8 6.0 13.0
C. 0.2 0.3 2.0 2.0
D. 2.9 3.4 4.0 6.0
F. 1.5 1.9 1.3 2.0
G. 3.1 2.8 7.0 6.0
H. 51.0 69.1 67.3 72.0
J. 0.2 0.2 1.3 0.0
K. 1.4 1.7 1.7 1.0
L. 4.6 6.1 5.0 7.0

shows anomalously high (50-70 %) in NFIQ-1 Class 5, but we believe those results to

be erroneous, and due to the particular biometric capture technology of the device.)

In contrast, NFIQ-2 has a much more expressive quality scale, from 1-100, which

allows quite precise rejection below (or above) a given quality percentile.

In order to compare the e�cacy of NFIQ-2 versus NFIQ-1 for this application, we

therefore �rst evaluated the change in overall classi�cation performance obtained by

eliminating the lowest NFIQ-1 quality class (from both enrolment and veri�cation),

noting for each device the percentage of enrolments and veri�cations removed. Then

we repeated the evaluation, thresholding the NFIQ-2 scores at the same percentiles

(Figure 6.6). Table 6.1 summarizes the percentiles and thresholds.

Although of little practical value, it is also scienti�cally interesting to consider the

e�ect of excluding the highest quality matches. Table 6.2 shows the corresponding

percentages of NFIQ-1 Class 1 enrolments and veri�cations, and NFIQ-2 thresholds

by device for this case. Figure 6.7 presents results for each device side-by-side, with

the baseline DET curve in black, the results with lowest quality matches removed in

green, and those with highest quality scores removed in red.

Taken device by device, we see that there is very little to distinguish the perfor-

mance of NFIQ-2 versus NFIQ-1 at the same percentage of rejected presentations. If
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quality 

Remove 
highest 
quality 

Figure 6.6: Schematic representation of the conversion of NFIQ-1 class percentages
into NFIQ-2 thresholds. The correspondence is applied separately for enrolment and
veri�cation quality scores.
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Table 6.2: Included percentages x of the highest quality NFIQ-1 class (Class 1) and
the corresponding thresholds (upper xth percentiles) for inclusion from NFIQ-2

Device ID
NFIQ-1 NFIQ-2

Enrol % Verify % Enrol Thresh. Verify Thresh.
B. 93.2 83.4 71.3 68.0
C. 46.7 31.9 56.7 50.0
D. 75.8 58.2 73.3 65.0
F. 52.8 37.0 68.7 59.0
G. 50.7 36.8 60.0 54.0
H. 94.4 78.8 79.3 74.0
J. 51.9 36.2 52.3 47.0
K. 46.9 33.6 44.7 39.0
L. 92.6 83.0 63.3 57.0

a di�erence can be noted anywhere, it is for the operationally less interesting scenario

in which we have removed a fraction of the highest quality presentations (red curves):

for this case, the overall classi�cation performance appears to degrade slightly less

when the quality is thresholded using NFIQ-2 rather than NFIQ-1.

In an operational context, it would be preferable to use a �xed device-dependent

threshold that results in an acceptably low increase in FRR. From this point of

view, the NFIQ-2 measure is superior to NFIQ-1 since it provides the necessary

�ne-grained quality control. Figure 6.8 compares the available improvement in clas-

si�cation performance for NFIQ-1 (discarding the entire lowest quality class) versus

NFIQ-2 (discarding, respectively, the lowest �fth, tenth, �fteenth, and twentieth qual-

ity percentiles). Also shown, where available, are results using quality scores obtained

from the vendors' enrolment records - although these are not strictly comparable since

no attempt was made to threshold the corresponding veri�cation qualities.

Note that DET curves versus vendor quality are not available for Devices F and

H, since the vendor supplied qualities are not useful (see Figure 6.1). We also failed

to obtain useful NFIQ-2 scores from Devices A and E. Results for the full datasets

are shown in black, while those with the lower quality matches removed are shown

in green, and those with the higher quality matches removed are in red. Curves were
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Figure 6.7: Comparison of classi�cation performance by device versus quality for
the NFIQ measures. For NFIQ-1, the DET is evaluated for NFIQ with all results
(black), with lowest quality class removed (green) and with the highest quality class
removed (red), noting in each case the percentage of cases removed. Corresponding
NFIQ-2 results are obtained by thresholding the data at the same percentages as
those recorded for NFIQ-1.
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generated in MATLAB, using the perfcurve() function from the MATLAB Statistics

and Machine Learning toolbox. Plots are scaled on a per-device basis to re�ect the

di�ering baseline performance of the devices.

In almost all cases, we can see that each of the three quality indices (vendor

provided, NFIQ-1, and NFIQ-2) is e�ective to some extent at predicting classi�cation

accuracy. Vendor provided scores for devices B, E, and L appear to provide only

marginal discrimination, while that for Device K actually appears to provide weak

negative discrimination i.e. its overall classi�cation performance decreases slightly

when the reported lowest quality matches are removed, and increases upon removal

of the reported highest quality matches.

For Device C, NFIQ-1 appears to be e�ective at identifying the highest quality

images, since removing score 1 cases clearly decreases overall classi�cation accuracy.

However it does not seem to provide good identi�cation of (the more practically sig-

ni�cant) low quality images - the DET with lowest quality (score 5) matches removed

is indistinguishable from the baseline.

The device for which NFIQ-2 seems least e�ective is Device H, which is the mul-

tispectral device whose NFIQ-2 scores are probably unreliable, as discussed in the

preceding sections. Otherwise, NFIQ-2 appears to be very e�ective at predicting

match performance - most usefully, we observe decreasing returns after removal of

the �fth percentile, suggesting that substantial bene�t may be obtained by only light

�ltering of the IDMS cohort.
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Figure 6.8: Decision Error Trade-o� (DET) curves by device: results for the full
datasets are shown in black, while those with the lower quality matches removed are
shown in green, and those with the higher quality matches removed are in red. For
NFIQ-1, classes 5 and 1 respectively were removed; for NFIQ-2, successively larger
quality percentiles from 5% to 20% and from 80% to 95% were removed.
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6.7 Discussion

The goal of the chapter was to understand the relationship between NFIQ-1 and

NFIQ-1 scores (and, where available, vendor-speci�c quality scores obtained during

template enrolment), and the relationship between these scores and the measured

biometric performance - both in terms of raw match scores and overall classi�cation

accuracy.

We have seen that both NFIQ-1 and NFIQ-2 are e�ective predictive tools for

genuine match score, across a broad range of �ngerprint capture devices with di�erent

(vendor-dependent) image and match score processing.

We have shown how both may be used to validate or sanitize �ngerprint presen-

tations by rejecting a fraction of the lowest indicated quality, in order to improve the

overall classi�cation performance of a biometric IDMS with minimal degradation in

convenience (FTE). When compared at the same fraction of rejected presentations

(i.e. the same increase in FTE), NFIQ-1 and NFIQ-2 perform similarly in terms of

the potential decrease in FNMR at a given FMR. However, the more expressive 1-

100 quality scale of NFIQ-2 gives it the signi�cant advantage of allowing the system

integrator to choose a more precise quality threshold for exclusion.



Chapter 7

Identi�cation and demographics of a

biometric menagerie, and its e�ect on

classi�cation performance and

template ageing

In the previous chapter, it was shown that both NFIQ-1 and NFIQ-2 measures are

e�ective at identifying low quality �ngerprints, and how selective rejection of such

�ngerprints can improve the overall classi�cation performance of a �ngerprint-based

IDMS.

The goals of this chapter are twofold: �rst, to explore the demographics of �nger-

print quality, in particular to see if we can identify any common demographic traits

among the subjects whose �ngerprints are identi�ed by NFIQ as low quality. We

attempt to put these individuals in the context of Doddington's biometric �zoo� [17].

Secondly, we re-visit the topic of template ageing (Chapter 5), and examine whether a

relatively small cohort of low �ngerprint quality individuals disproportionately a�ects

template ageing behaviour.

101
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The demographics of NFIQ-1/NFIQ-2 quality for the ISBIT/Norwood data set as

a whole was reported recently by Rong (Roy) Yang in �E�ects of sensors, age, and

gender on �ngerprint image quality� [85], Chapter 5 �Results and Discussions� and

will not be revisited here. Brie�y, it was found that both NFIQ-1 and NFIQ-2 quality

scores were generally higher for males than for females, and for younger than for older

subjects � with the exception of the multi-spectral Device H for which the opposite

behaviour was observed.

7.1 Revisiting Doddington's zoo

7.1.1 Identi�cation of a common Goat subset

Doddington's original classi�cation of biometric �goats� was based on sorting in in-

creasing order of genuine match score, and taking the lowest 2.5th percentile of indi-

viduals [17]. In our scenario, we must deal with match scores from multiple devices,

whose vendor-speci�c scoring algorithms do not permit an overall ordering. Instead,

we developed the following classi�cation scheme.

First, choose a common target FNMR across all devices: preferably this should

be small enough to be operationally reasonable, yet large enough that it gives a

measurable count of false non-matches on every device1. More precisely, we would

like to have enough false non-matches to make a low-variance estimate of the FNMR.

Then, for each device, determine the decision threshold corresponding to the target

FNMR, and evaluate a confusion matrix at that threshold for each subject-�nger,

taken over all the available visit pairs. Note that there is some multiplicity here

since the protocol for a verify visit consists of two veri�cation attempts of three

presentations each: this helps to �ll out the confusion matrices in spite of the relatively

1The number of genuine matches per visit pair is relatively small due to the limited number of
subjects, and not all devices were present in every visit
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small number of visit pairs.

At this point, Device J was eliminated because it was not possible to determine

a suitable threshold for the target 5 % FNMR, and Device A because, although a

putative threshold was determined, the actual FNMR at that threshold di�ered sig-

ni�cantly from the target FNMR, for reasons as yet undetermined.

The true match (TM), false non-match (FNM), false match (FM) and true non-

match (TNM) counts for the remaining devices were then aggregated, and the subject-

�ngers sorted in order by number of false non-matches (FNM), from highest to lowest.

We then de�ned as the �goat set� the set of subject �ngers that together accounted

for 50 % of the total false non-matches. Note that although FNMR values in excess

of 55 % are observed for individual subject-�ngers, the overall FNMR for each device,

as well as for the aggregate subject-�nger set as a whole, is constrained to the target

5 % (aggregate TM = 722895, FNM = 38081).

The choice of 50 % is somewhat arbitrary, however it results in a conveniently-

sized subset of 29 out of the 879 available unique subject-�ngers (Table 7.1). For a

key to the numerical �nger position identi�ers used, see Table 7.2.

A question that arises naturally is whether the �Goat set� established by this

procedure re�ects an aggregation of substantially disjoint sets of high FNMR matches

from each separate device, or whether it indicates a set of subject-�ngers that is

intrinsically susceptible to false non-matches regardless of device, and whose members

in some sense therefore provide less information about the identity of the subject.

To explore this question, the confusion matrices of the individual devices were

ordered by FNM in the same manner as for the aggregate set, and their own goat

sets constructed as the subject-�ngers that accounted for 50 % of the total false non-

matches of the device. A search was then made for each of the aggregate Goat

subject-�ngers in each of the individual devices' Goat sets.

Figure 7.1 shows the counts of how many devices each Goat appears in, clearly
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Table 7.2: Finger positional identi�cation (�FingerPosition�) numbers

Right hand Left hand
Thumb 1 6
Index 2 7
Middle 3 8
Ring 4 9
Pinky 5 10

showing that the sets are far from disjoint. For example Subject 159 Finger 7 (left

index), which was responsible for more false matches than any other �nger in the

aggregate set, is also in the Goat set of 9 out of 10 of the individual devices. Only

one of the aggregate Goats (Subject 36 Finger 7) is not visible in the goat set of more

than a single device.

7.1.2 Demographics of the Goat subset

Having identi�ed a subset of subject-�ngers that contribute disproportionately to

the FNMR, it becomes natural to ask whether there is anything demographically

interesting about this subset.

The ISBIT/Norwood database provides a limited amount of self-reported demo-

graphic information: birth year at �rst enrolment (an obvious proxy for subject age),

sex2, self-reported ethnic origin, and a single �eld indicating whether, at �rst en-

rolment, the individual considered their �ngers to have been subject to �manual or

chemical exposure�. While recruitment criteria ensured a good sex balance between

subjects (M = 180, F = 178), it proved harder to ensure population-representative

subject ages: in practice, the distribution is somewhat bimodal, with an older cohort

carried over from the original ISBIT study and a younger cohort recruited in the

later phases largely from the Carleton student population. No attempt was made to

balance the manual or chemical exposure classes.

2Nominally �gender�, however no choice beyond `M' or `F' was provided
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When comparing the demographics of the Goat subset to those of the subject

set as a whole, a subtlety of the data collection protocol must be addressed: that of

the preferred �ngers for enrolment (Chapter 3). In order to provide as many valid

matches as possible, it was desirable to enrol, if possible, the same �ngers across all

devices and all visits: the right and left index �ngers (�nger positions 2 and 7) were

selected by default. However if a preferred �nger was unavailable (because of injury

for example), or failed to enrol on a particular device, enrolment of other �ngers

was attempted in a pre-de�ned order. Because the study spanned multiple devices

and multiple visits over which the successfully enrolled �ngers might change, the

number of distinct enrolled subject-�ngers is not simply equal to twice the size of the

subject set. In fact, over the 358 subjects we enrolled 879 distinct subject-�ngers;

approximately 75 % of subjects enrolled only two �ngers each, with approximately

a further 14 % enrolling a third �nger at some point, and two particularly egregious

subjects enrolling, respectively, seven and eight �ngers (Figure 7.2).

In the present context, what is more signi�cant than the number of enrolled sub-

ject �ngers is their demographic distribution. For example, while there is almost per-

fect sex-balance among subjects, females are apparently over-represented (M = 410,

F = 469) in the set of enrolled subject-�ngers (Figure 7.3) � and hence also over-

represented in the set of available biometric matches. If we compare the demograph-

ics of the Goats against that of the subjects, we risk confounding the e�ect of the

demographic variable with that of multiplicity of enrolment; on the other hand, when

multiplicity of enrolment results from FTE events, it would not be surprising to �nd

some of those �ngers among the Goat set � since �ngers that are hard to enrol might

be expected to be hard to match. FTEs are believed to contribute the majority of the

multiple enrolments in the ISBIT/Norwood data: only three of the subjects whose

�ngers appear in the Goat set were recorded as having had unavailable �ngers for one

or more visits of the study.
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Figure 7.2: Distribution of numbers of enrolled �ngers per subject. Most subjects
(approximately 75 %) enrolled just two �ngers over the course of the study, however
a few subjects enrolled additional �ngers as a result of unavailability of a previously-
enrolled �nger, or failure to enrol a preferred �nger on a given device.

In the remainder of this section we use the demographics of the 879-member

enrolled subject-�nger set as the baseline for the comparisons.

Figures 7.4 � 7.7 show the empirical distributions of these demographics for the

aggregate Goat subset identi�ed in the preceding section, compared with the subject-

�nger cohort as a whole. We see compelling evidence that the Goats come predom-

inantly from the older individuals (birth years before 1970 - so aged at least 35-45

during the phases of the study) and predominantly from female subjects.

We may implement Fisher's exact test for signi�cance on the sex-imbalance of

the Goats as follows [35]. Suppose we are given a population of size N comprising

K females and N −K males. Under the null hypothesis H0, we pool the males and

females together and then select, randomly and without replacement, a sample of size

n, �nding that we have k females and n− k males. The probability mass function of
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Figure 7.3: Distribution of subject sex for the set of enrolled subject-�ngers (light
blue) compared to the subject set as a whole (dark blue). The di�erence arises from
a larger number of multiple �nger enrolments among female subjects.
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Figure 7.4: Distribution of subject birth year for the Goat subset (red) compared
to the enrolled set as a whole (blue). Almost all of the goats appear to come from
the older population.
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Figure 7.5: Distribution of subject sex for the Goat subset (red) compared to the
enrolled set as a whole (blue), with raw counts shown at the top of the columns: while
the study is closely sex-balanced overall, the �ngers of female subjects dominate the
Goats.
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Figure 7.6: Distribution of subject ethnic origin for the Goat subset (red) compared
to the enrolled set as a whole (blue), with raw counts shown at the top of the columns.
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Figure 7.7: Distribution of subject manual or chemical exposure for the Goat subset
(red) compared to the enrolled set as a whole (blue), with raw counts shown at the top
of the columns: `Light' exposure appears to have more e�ect than `Heavy' exposure.

the number of females selected, k, is given by

pX(k) = Pr(X = k) =

(︁
K
k

)︁(︁
N−K
n−k

)︁(︁
N
n

)︁ (7.1)

and we may write the p-value as

p = 1−H(N,K, n, k) (7.2)

where H is the cumulative hyper-geometric distribution.

In the case of the sex ratio of the Goat subset, we have k = 23 female subject-

�ngers out of a total of n = 29 categorized Goats. The number of distinct subject-

�ngers in the ISBIT/Norwood data set is N = 879, of whom K = 469 belong to

females: the p-value is evaluated as p = 0.0008 (Table 7.3). We may therefore reject

the null hypothesis that the Goats come from the identical sex distribution as the

enrolled set as a whole.
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Table 7.3: Fisher exact test for the signi�cance of subject sex.

All Goats Expected under H0

Female 469 23 15.47
Male 410 6 13.53
Total 879 29 p-value: 0.0008

The other demographic variables each have more than two categories, making

exact tests of this form unfeasible, and we fall back to chi-squared tests of signi�cance.

That is, we calculate expected category counts for the Goat subset assuming the same

proportions as the enrolled set as a whole, and then evaluate the χ-squared probability

to determine whether the expected and observed counts di�er signi�cantly. The

results of these tests are summarized in Tables 7.4, 7.5, 7.6. Consistent with visual

examination of the histograms (Figures 7.4 - 7.7), there is strong evidence in favour

of the e�ect of subject birth year (p = 0.00024), and weak evidence in favour of the

e�ect of ethnic origin (p = 0.0619). The evidence for the e�ect of manual or chemical

exposure is a little harder to interpret: the χ-squared p = 0.00885 allows us to reject

the null at the Bonferroni-corrected signi�cance level α = 0.0125, however the exact

nature of the relationship is not clear, since `Light' exposure appears to have more

e�ect than `Heavy' exposure. This may be because the available exposure categories

were not su�ciently objective � or may re�ect the fact that the chi-squared test is

not really appropriate for ordinal (as opposed to strictly categorical) data.

An interesting open question is the extent to which demographic di�erences in

biometric match performance are intrinsic, and to what extent they re�ect training

bias in the development of the matching algorithms. For example, algorithms trained

predominantly on latent �ngerprint data from forensic databases might be expected

to be biased in favour of younger males. On the other hand, it is not unreasonable

to suppose that younger individuals in general might have better �ngerprints (as a

result of less opportunity for physical damage, and of physiological factors such as

skin elasticity) than older individuals.
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Table 7.4: χ-squared goodness-of-�t test for the signi�cance of subject birth year at
time of enrolment.

All Goats Expected under H0

1925 5 0 0.16
1930 10 0 0.33
1935 12 0 0.40
1940 15 1 0.49
1945 54 6 1.78
1950 72 5 2.38
1955 88 8 2.90
1960 98 1 3.23
1965 111 7 3.66
1970 59 0 1.95
1975 44 1 1.45
1980 62 0 2.05
1985 112 0 3.70
1990 111 0 3.66
1995 26 0 0.86
More 0 0 0.00
Total 879 29 p-value: 0.00024

Table 7.5: χ-squared goodness-of-�t test for the signi�cance of subject self-reported
ethnic origin.

All Goats Expected under H0

Africa 25 0 0.82
Asia 90 3 2.97
Europe 188 12 6.20
North America 546 12 18.01
Philippines 23 2 0.76
S./Central America 7 0 0.23
Total 879 29 p-value: 0.0619

Table 7.6: χ-squared goodness-of-�t test for the signi�cance of subject manual or
chemical exposure.

All Goats Expected under H0

Heavy 95 2 3.13
Light 233 15 7.69
None 551 12 18.18
Total 879 29 p-value: 0.0088
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In addition to algorithm training, bias might be introduced at the feature extrac-

tion phase, either physically (for example, sensor devices whose size and resolution

is better matched to a speci�c demographic) or via the choice of which features to

extract for template generation.

7.1.3 NFIQ quality of the Goat subset

In the preceding Chapter, we considered the relationship between NFIQ quality and

overall classi�cation performance, but did not attempt to investigate whether low

quality is a more signi�cant factor for false matches or for false non-matches. Having

now identi�ed a subset of �ngers that contribute disproportionately to the FNMR,

we can approach the relationship from the other side and examine the relationship

more speci�cally between false non-matches and quality.

Figures 7.8 and 7.9 compare the mean NFIQ-1 and NFIQ-2 scores for the Goat

subset versus all subject-�ngers at enrolment and veri�cation, broken down by the

available devices. With the exception of Device H (whose NFIQ results we believe

to be erroneous) we observe consistently worse quality (NFIQ-1 higher and NFIQ-2

lower) amongst the Goats.

Although the set of Goat �ngers is relatively small (29), the sets of images for

which we have NFIQ scores are quite large, even when broken down by device. For

enrolment, there would be in the ideal case three images of each �nger for each of eight

visits, giving a total of 29× 24 = 696 samples per �nger per device3. In cases where

devices were removed in later visits the sets are somewhat smaller with the minimum

sample size being 328 images, for Device J. Veri�cation image sets are a factor two

larger since the protocol demands two veri�cation attempts, of three presentations

each. The baseline (all enrolled �nger) sets are substantially larger again - typically

around 9000 images per device for enrolment and 18,000 per device for veri�cation.

3The largest we see in practice is 648, because not all of the goats were enrolled at every visit on
every device
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Hence the standard errors associated with the mean quality values are typically very

small, and the large numbers of degrees of freedom justify using z-tests in preference

to t-tests for the di�erence of mean quality scores, where the standard normal test

statistic z∗ is given by

z∗ =
MA −MG√︃
s2A
nA

+
s2G
nG

(7.3)

in which the subscripts G and A denote the Goat set and the set of all enrolled �ngers

respectively and M and s are sample means and standard deviations.

One-tailed tests for the di�erence of means were performed for all cases, equivalent

to the null hypothesis that Goat qualities are drawn from the same distribution as the

population as a whole versus alternate hypothesis that Goats have lower biometric

quality4. The p-values are summarized in Tables 7.7 and 7.8: taking a Bonferroni-

corrected signi�cance level α = 0.00125 (there are a total of 40 tests: 11 devices in the

NFIQ-1 tests and 9 in the NFIQ-2 tests, times 2 for enrolment and veri�cation5) we

may reject, at 5 % family-wise error rate (FWER), the null hypothesis in all cases

except for the NFIQ-2 scores on troublesome Device H (which appear to be better

for the Goats).

Although the focus of this section is NFIQ, it is interesting to compare the vendor-

reported quality metrics for Goats versus subject-�ngers as a whole, where available.

The vendor-supplied metric sets are somewhat smaller since they provide only a single

quality value over the three captured images, but sample sizes are at least 110 for

the Goat set and more than 2000 for the baseline. Figure 7.10 shows the mean

vendor-reported enrolment image quality by device, together with the mean number

of extracted minutiae. Aside from Devices F and H, whose vendor-reported quality

4For the case of NFIQ-1, whose scale is reversed, we modi�ed the numerator of the statistic to
MG −MA so that all tests were right-tailed

5This correction is likely over-conservative since we expect correlation between NFIQ-1 and NFIQ-
2 scores, and between enrolment and veri�cation scores of the same �nger.
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Table 7.7: One-tailed tests of signi�cance for the di�erence of mean NFIQ-1 between
Goats and subject-�ngers as a whole.

Device
Enrolment Veri�cation

MG −MA SE p-value MG −MA SE p-value
A 1.260 0.050 < 10−15 1.120 0.038 < 10−15

B 0.930 0.051 < 10−15 1.120 0.037 < 10−15

C 1.130 0.055 < 10−15 0.940 0.039 < 10−15

D 1.380 0.049 < 10−15 1.240 0.034 < 10−15

E 1.020 0.057 < 10−15 0.920 0.039 < 10−15

F 1.520 0.049 < 10−15 1.470 0.035 < 10−15

G 1.660 0.060 < 10−15 1.530 0.043 < 10−15

H 0.550 0.058 < 10−15 0.610 0.041 < 10−15

J 1.120 0.063 < 10−15 0.960 0.043 < 10−15

K 1.510 0.049 < 10−15 1.400 0.037 < 10−15

L 1.330 0.046 < 10−15 1.250 0.033 < 10−15

values are invariant, we again see evidence of lower quality amongst the Goats by

these metrics. Table 7.9 summarizes results of one-tailed tests by device: we accept

the hypothesis that Goats have lower vendor quality in all but 2 of the 9 applicable

cases, but only �nd evidence for lower minutia count in Devices A, B and E.
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Figure 7.8: Comparison of mean NFIQ1 score (lower = better quality) by device
for the Goat subset (red) versus the enrolled set as a whole (blue). Error bars at ±1
standard deviation for each device.
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Figure 7.9: Comparison of mean NFIQ2 score (higher = better quality) by device
for the Goat subset (red) versus the enrolled set as a whole (blue). Error bars at ±1
standard deviation for each device.
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Figure 7.10: Comparison of mean vendor-reported enrolment score (higher = better
quality) and mean extracted minutia count by device for the Goat subset (red) versus
the enrolled set as a whole (blue). Error bars at ±1 standard deviation for each device.
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Table 7.8: One-tailed tests of signi�cance for the di�erence of mean NFIQ-2 between
Goats and subject-�ngers as a whole.

Device
Enrolment Veri�cation

MA −MG SE p-value MA −MG SE p-value
A 0 N/A N/A 0 N/A N/A
B 21 0.888 < 10−15 22 0.631 < 10−15

C 22 1.542 < 10−15 22 0.811 < 10−15

D 32 0.809 < 10−15 31 0.586 < 10−15

E 0 N/A N/A 0 N/A N/A
F 36 1.106 < 10−15 36 0.717 < 10−15

G 30 1.046 < 10−15 30 0.687 < 10−15

H -5 0.369 1.000 -5 0.254 1.000
J 23 1.757 < 10−15 24 0.796 < 10−15

K 28 0.642 < 10−15 28 0.477 < 10−15

L 23 0.593 < 10−15 22 0.428 < 10−15

Table 7.9: One-tailed tests of signi�cance for the di�erence of mean vendor-reported
enrolment image quality and minutia count between Goats and subject-�ngers as a
whole.

Device
Vendor quality Minutia count

MG −MA SE p-value MG −MA SE p-value
A 17 1.518 < 10−15 5 0.737 5.74× 10−12

B 5 0.711 1.05× 10−12 2 0.669 0.001
C 21 1.348 < 10−15 0 0.712 0.500
D 24 1.232 < 10−15 1 0.750 0.091
E 12 1.083 < 10−15 2 0.678 0.002
F 0 0.000 N/A -1 0.508 0.975
G 29 1.687 < 10−15 0 0.859 0.500
H 0 0.000 N/A 0 0.493 0.500
J 14 1.182 < 10−15 1 0.993 0.157
K -2 0.920 0.985 -4 0.556 1.000
L 0 0.261 0.5 -3 0.530 1.000
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7.2 Wolves, Lambs and Sheep

The enumeration of a Goat subset is relatively straightforward, since both enrolment

and veri�cation images come from the same individual. Doddington also attempted

to classify those matches that contribute disproportionately to the false match rate

(FMR), each in this case involving a pair of distinct individuals whom he labelled the

`Lamb' and the `Wolf' - the former being the preyed upon (impersonated) and the

latter the predator (impersonator). Implicit in this classi�cation is that the match

process be asymmetric [75].

We attempted to identify an aggregate Lamb-Wolf subset in the same way as

we did for the Goats: that is, with the same consideration as before of �nding a

reasonable operating point across all the available devices, choose a target FMR (in

our case, we chose 0.05 %), interpolate a set of decision thresholds for that FMR

across the various devices, and then �nd all the imposter match pairs whose scores

exceed those thresholds. Then aggregate the results across all devices by subject-

�nger, order them from largest to smallest number of false matches, and select the

subset accounting for 50 % of the total.

For the ISBIT-Norwood dataset, this results in a Lamb-Wolf subset of 2512 enrol-

verify subject-�nger pairs out of a total of 260719 imposter matches. Note that the

match software never attempts a �wrong �nger� match so, with a high probability,

these are all di�erent subject - same �nger matches6. The �rst thirty such match

pairs (ordered from highest to lowest aggregate number of false matches) are shown

in Table 7.10. Interestingly, the �rst two entries show exact symmetry i.e. they corre-

spond to false matches in which the same subject-�ngers, subject 291 and subject 167

�nger position 7 (left index), play the roles of Wolf and Lamb interchangeably.

Nevertheless, we may partition the Lamb-Wolf set according to which role each

6Although �ngers would, as a result of subject and/or operator inattention, infrequently be
mislabelled during enrolment or veri�cation, manual scrubbing of each day's data acquisition by an
experienced supervisor is believed to have substantially removed these mislabellings
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Figure 7.11: Venn diagram illustrating the overlap between the identi�ed Goats,
Lambs, and Wolves. By elimination, 302 of the 879 subject-�ngers are not within the
union of the sets and may thus be identi�ed as Sheep.

subject-�nger plays in the match, reducing the 2512 Lamb-Wolf match pairs to sets of

480 distinct Lamb subject-�ngers and 513 distinct Wolf subject-�ngers respectively.

The overlap between Goats, Lambs, and Wolves is represented graphically in Fig-

ure 7.11. By elimination, 302 of the 879 subject-�ngers are not within the union of

the sets and may thus be identi�ed in Doddington's classi�cation as Sheep.

7.2.1 Demographics of the Lamb and Wolf subsets

Since the Lamb and Wolf subsets identi�ed in the preceding section substantially

sample the entire set of enrolled subject �ngers (representing respectively 480 and

513 of the 879 distinct subject-�ngers), we would not expect demographic di�erences

to so pronounced as for the much smaller Goat subset. However we include the

demographic analysis here for completeness (Figures 7.12 - 7.15). A Fisher exact test

was performed as before for the sex distributions - while the Lambs show essentially

no evidence of an e�ect (p = 0.47) there is a small amount of evidence that males

are over-represented among the Wolves - that is, with a post-hoc assignment of males
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Table 7.11: Fisher exact test for the signi�cance of subject sex.

All Lambs Expected under H0 Wolves Expected under H0

Female 469 256 256.11 266 273.72
Male 410 224 223.89 247 239.28
Total 879 480 p-value: 0.47 513 p-value: 0.13

Table 7.12: χ-squared goodness-of-�t test for the signi�cance of subject birth year
at time of enrolment.

All Lambs Expected under H0 Wolves Expected under H0

1925 5 0 2.73 0 2.92
1930 10 1 5.46 0 5.84
1935 12 0 6.55 0 7.00
1940 15 2 8.19 3 8.75
1945 54 13 29.49 17 31.52
1950 72 23 39.32 26 42.02
1955 88 40 48.05 46 51.36
1960 98 54 53.52 61 57.19
1965 111 52 60.61 68 64.78
1970 59 41 32.22 36 34.43
1975 44 34 24.03 33 25.68
1980 62 42 33.86 40 36.18
1985 112 82 61.16 85 65.37
1990 111 76 60.61 77 64.78
1995 26 20 14.20 21 15.17
More 0 0 0 0 0
Total 879 480 p-value: 2.58× 10−7 513 p-value: 2.50× 10−5

as the �success� category, Fisher's test gives p = 0.13, consistent with Figure 7.13

in which the proportion of females appears to go down and that of males to go up

relative to the baseline of all enrolled �ngers (Table 7.11).

As for the Goats, chi-squared goodness-of-�t tests were conducted for birth year

(a subject age proxy), ethnic origin, and manual or chemical exposure (Tables 7.12,

7.13, 7.14). Of these, only birth year shows a signi�cant e�ect, with both Lambs

(p = 2.58 × 10−7) and Wolves (p = 2.50 × 10−5) being skewed towards younger

individuals. There is weak evidence (p = 0.11) for some dependence of Lambs on

ethnic origin - probably re�ecting an unexpectedly low number of Lambs of Philippino

origin.
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Figure 7.12: Distribution of subject birth year for the Lamb and Wolf subsets (red)
compared to the enrolled set as a whole (blue). There is evidence for a bias towards
younger individuals in both cases.
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Figure 7.13: Distribution of subject sex for the Lamb and Wolf subsets (red) com-
pared to the enrolled set as a whole (blue). There is weak evidence for an over-
representation of males among the Wolves.
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Figure 7.14: Distribution of subject ethnic origin for the Lamb and Wolf subsets
(red) compared to the enrolled set as a whole (blue). There is little evidence of an
e�ect.
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Figure 7.15: Distribution of subject manual or chemical exposure for the Lamb and
Wolf subsets (red) compared to the enrolled set as a whole (blue). There is little
evidence of an e�ect.
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Table 7.13: χ-squared goodness-of-�t test for the signi�cance of subject self-reported
ethnic origin.

All Lambs Expected under H0 Wolves Expected under H0

Africa 25 15 13.65 16 14.59
Asia 90 54 49.15 58 52.53
Europe 188 93 102.66 103 109.72
North America 546 308 298.16 322 318.66
Philippines 23 4 12.56 8 13.42
S./Central America 7 6 3.82 6 4.09
Total 879 480 p-value: 0.11 513 p-value: 0.52

Table 7.14: χ-squared goodness-of-�t test for the signi�cance of subject manual or
chemical exposure.

All Lambs Expected under H0 Wolves Expected under H0

Heavy 95 52 51.88 59 55.44
Light 233 133 127.24 136 135.98
None 551 295 300.89 318 321.57
Total 879 480 p-value: 0.83 513 p-value: 0.87

7.2.2 NFIQ quality of the Lamb and Wolf subsets

Figures 7.16 and 7.17 compare the mean NFIQ-1 and NFIQ-2 scores for the Lamb

(enrol-side) and Wolf (verify-side) subsets versus all subject-�ngers broken down by

the available devices. The di�erences in mean biometric quality are smaller than those

observed in the Goats, as one might expect given the much greater overlap between

the Lamb/Wolf subsets and the set of all enrolled �ngers. More signi�cantly, there

appears to be evidence that both Lambs and Wolves have higher biometric quality

on average than the set of all enrolled �ngers.
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Table 7.15: One-tailed tests of signi�cance for the di�erence of mean NFIQ-1 be-
tween Lambs/Wolves and subject-�ngers as a whole.

Device
Lambs Wolves

MA −ML SE p-value MA −MW SE p-value
A 0.09 0.015 6.33× 10−10 0.08 0.009 < 10−15

B 0.12 0.015 < 10−15 0.15 0.010 < 10−15

C 0.13 0.015 < 10−15 0.07 0.009 3.75× 10−14

D 0.12 0.017 3.34× 10−12 0.15 0.011 < 10−15

E 0.1 0.015 3.79× 10−12 0.09 0.009 < 10−15

F 0.14 0.016 < 10−15 0.12 0.011 < 10−15

G 0.11 0.021 4.89× 10−8 0.09 0.013 2.23× 10−12

H 0.05 0.030 0.050 0.06 0.022 0.003
J 0.09 0.017 2.97× 10−8 0.06 0.010 2.06× 10−9

K 0.13 0.016 < 10−15 0.12 0.010 < 10−15

L 0.1 0.015 1.93× 10−11 0.09 0.010 < 10−15

Table 7.16: One-tailed tests of signi�cance for the di�erence of mean NFIQ-2 be-
tween Lambs/Wolves and subject-�ngers as a whole.

Device
Lambs Wolves

ML −MA SE p-value MW −MA SE p-value
A 0 N/A N/A 0 N/A N/A
B 2 0.27 4.66× 10−14 3 0.19 < 10−15

C 2 0.36 1.96× 10−08 1 0.22 1.94× 10−06

D 2 0.37 3.52× 10−08 2 0.24 < 10−15

E 0 N/A N/A 0 N/A N/A
F 3 0.39 1.15× 10−14 3 0.27 < 10−15

G 2 0.42 9.50× 10−07 1 0.26 4.76× 10−05

H 0 0.15 0.500 0 0.10 0.500
J 1 0.41 0.007 1 0.24 2.08× 10−05

K 2 0.31 7.21× 10−11 1 0.21 9.15× 10−07

L 2 0.28 9.14× 10−13 1 0.19 9.23× 10−08
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Figure 7.16: Comparison of mean NFIQ1 score (lower = better quality) by device
for the Lamb and Wolf subsets (red) versus the enrolled set as a whole (blue). Error
bars at ±1 standard deviation for each device.
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Figure 7.17: Comparison of mean NFIQ2 score (higher = better quality) by device
for the Lamb and Wolf subsets (red) versus the enrolled set as a whole (blue). Error
bars at ±1 standard deviation for each device.
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7.3 E�ect of Goats on biometric permanence

Having demonstrated the existence of a set of Goats (common subject-�ngers whose

low genuine match scores disproportionately a�ect the overall FNMR, regardless of

device) it is natural to ask what e�ect they have on the overall classi�cation per-

formance of the IDMS. This is a subtly di�erent question from that addressed in

Chapter 6, where a given fraction of the lowest quality �ngerprints was removed from

the data sets of each device individually, regardless of which subject �ngers they

belonged to.

In particular, we would like to revisit the question of biometric template ageing

(Chapters 4 and 5), and explore the impact of the Goat set on biometric permanence,

PB, which we de�ned in terms of the change of FNMR over time at a speci�ed FMR.

Once could imagine a number of distinct modes of behaviour:

1. The classi�cation performance at both time t = 0 and t = ∆t is dominated

by the Goats. Removing the Goats improves classi�cation performance at all

times but makes the system more sensitive to changes, over time, in the discrim-

inability of the remaining subject �ngers: as a result, although the classi�cation

performance increases, the biometric permanence PB decreases

2. The classi�cation performance at both time t = 0 and t = ∆t is dominated by

the Goats, but changes over time more or less uniformly for all �ngers; removal

of Goats improves the performance but the permanence remains the same.

3. The Goats are subject-�ngers whose genuine match scores at t = 0 dominate the

region of the probability distribution just above the threshold for the reference

FMR, and are most likely to slip below the threshold as the template ages. The

remaining �ngers start further above the threshold and take longer to fall below

it, so that the biometric permanence increases.
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(b) Excluding Goats

In order to investigate this, datasets were prepared with labelled genuine and

imposter match scores, with the Goat subject �ngers that were identi�ed in the

preceding section removed. Per-device DET curves were then evaluated in the same

manner as in Chapter 5 for the �ltered and un�ltered subject-�nger sets, both for

t = 0 and ∆t = 373 weeks. We observe that, in all cases where the classi�cation

errors are not too few to resolve, both the t = 0 and ∆t = 373 weeks performance is

improved by the exclusion of Goats (Figure 7.18).

Finally, we re-applied the methodology described in Chapter 4 to evaluate bootstrap-

resampled con�dence 95 % intervals for the permanence measure, PB for the IS-
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Figure 7.18: DET curves by device at ∆t = 0 (blue) and at ∆t = 373 weeks (red)
for the complete subject-�nger set, and for the set with Goats removed.
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Table 7.17: Estimated 95% con�dence intervals for permanence, PB after 7 years, by
device, with and without the Goat subset. Ns is the count of distinct subject-�ngers
in the sets, and is intended to give an indication of the fraction of �ngers that would
be excluded.

Device
With Goats Without Goats

Ns 95 % CI for PB Ns 95 % CI for PB

A N/A N/A
B 355 1.000000, 1.000000 355 1.000000, 1.000000
C 504 0.980619, 0.985318 490 0.989762, 0.993654
D 288 0.958358, 0.963932 268 0.978285, 0.981307
E N/A N/A
F 216 0.985664, 0.987388 201 0.996197, 0.997152
G 216 0.954134, 0.962193 201 0.972423, 0.976295
H 288 0.993765, 0.996223 272 0.994554, 0.996988
J 576 1.000000, 1.000000 552 1.000000, 1.000000
K 216 0.970424, 0.974079 201 0.992524, 0.994692
L 216 0.952864, 0.957523 201 0.971115, 0.975103

BIT/Norwood dataset with and without the Goat subject-�ngers (Figure 7.19). The

results are represented graphically in Figure 7.20 and enumerated in Table 7.17. For

all cases in which measurable template ageing is observed (i.e. where the permanence

PB < 1), removal of the Goats increases the mean estimated biometric permanence:

only in the case of the multi-spectral Device H do the con�dence intervals overlap.

No attempt was made to repeat the analysis with either Lambs or Wolves removed,

since these sets are much larger and excluding them would unreasonably diminish the

set of available matches.



7.3 E�ect of Goats on biometric permanence 138

D
ev
ic
e
B

D
ev
ic
e
C

D
ev
ic
e
D

(a) All �ngers (b) Excluding Goats



7.3 E�ect of Goats on biometric permanence 139

D
ev
ic
e
F

D
ev
ic
e
G

D
ev
ic
e
H

(a) All �ngers (b) Excluding Goats



7.3 E�ect of Goats on biometric permanence 140

D
ev
ic
e
J

D
ev
ic
e
K

D
ev
ic
e
L

(a) All �ngers (b) Excluding Goats

Figure 7.19: Biometric permanence PB curves by device at ∆t = 0 (blue) and at
∆t = 373 weeks (red) for the complete subject-�nger set, and for the set with Goats
removed.
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Figure 7.20: Graphical representation of the estimated 95% con�dence intervals for
permanence, PB after 7 years, by device with and without the Goat subset.
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7.4 Discussion

In this chapter, we applied a Doddington-like classi�cation scheme to the subject-

�ngers of the ISBIT/Norwood �ngerprint database, and were able to identify sets of

Goats, Lambs, and Wolves. We observed that these sets are substantially common

across the available �ngerprint capture devices so that, suggesting that they re�ect

intrinsic properties of the underlying biometric rather than extrinsic capabilities of the

devices themselves. We examined the available demographics of these sets, and found

strong evidence that older individuals and females are over-represented in the Goat set

(the subject-�ngers that contribute disproportionately to the FNMR), while younger

individuals are over-represented in both the Lamb and Wolf sets (the subject-�ngers

whose cross-matches contribute disproportionately to the FMR). Weak evidence was

found for males being more common amongst Wolves.

We then applied the NIST NFIQ metrics to the sets, and found that while Goats

are, on average, identi�ed as having lower biometric quality than the cohort of subject-

�ngers as a whole, both Lambs and Wolves are identi�ed as having higher quality.

This may hint at a fundamental di�culty in assessing biometric quality in a one-

to-many context � that is, to be truly informative about an individual's identity, a

biometric should in some sense maximize the distance between individuals' biometric

records.

Finally we revisited the concept of biometric permanence and showed that as well

as having a disproportionate e�ect on the classi�cation performance in general, Goats

are a signi�cant factor in limiting biometric permanence. This last observation may

have implications for the management of long-term IDMSs such as biometric pass-

ports, for example suggesting increasingly frequent re-enrolments of older individuals

in order to maintain overall IDMS performance.



Chapter 8

Discussion

8.1 Estimation of biometric permanence

In this work we have con�rmed the existence of biometric template ageing in a multi-

year, multi-vendor �ngerprint dataset obtained under perhaps more controlled condi-

tions (as detailed in Chapter 3) than those used in previous studies. The methodology,

outlined in Chapter 4, provides �rst-order elimination of systematic confounding fac-

tors in the study, at the expense of imposing an assumption about the time-symmetry

of the ageing e�ect. The amount of ageing observed was somewhat vendor-dependent,

and consistent with the baseline performance of the devices, i.e. those with better

than average classi�cation performance at time t = 0 display a slower decrease in

permanence (Chapter 5).

8.1.1 Motivation for the biometric permanence metric

Previous studies of biometric template ageing have reported their results in terms of

change in genuine match score [13] and/or the change in a single measure of classi-

�cation accuracy such as true match rate (TMR) [86]. From an operational point of

view however, it is important to consider both security (via FMR or TNMR) and con-

143
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venience (via FNMR or TMR). Uludag et al. for example used changes in the equal

error rate (EER) [77]: this measure e�ectively gives equal weight to both factors. In

contrast, our proposed de�nition of biometric permanence, PB (Equation 4.1) empha-

sizes operational security by considering the change in FNMR (convenience) at �xed

FMR (security). Furthermore, by normalizing the metric to the time-zero FNMR, we

obtain a metric that permits comparisons across biometric systems of varying baseline

performance. Some other desirable properties are outlined in Section 4.2.1.

8.1.2 Assumptions and limitations

Although the results we obtained in Chapter 5 seem intuitively reasonable, we were

not able to provide an independent evaluation of biometric permanence by way of

comparison with our results.

As already noted, a key assumption of the forward-backward �matched delta�

methodology is that the change in match score is time-symmetric. The validity of

this assumption will depend on how the match scores are evaluated: in Section 5.3.1

we posited a case in which it might be violated. The method also assumes that

the confounding e�ect of gross visit-to-visit variability can be expressed (at least to

leading order) in the form of additive bias terms.

We can imagine a �thought experiment� to explore the validity of these assump-

tions (and that of the underlying model, Equation 4.3). In such an experiment one

would perform an ensemble of many studies, taking a ��x � block � randomize� ap-

proach to the ensemble design. For example:

� always employ the same test administrator(s) [FIX]

� conduct the data collections under the same environmental conditions (time of

year, location, humidity) [FIX] or conduct multiple collections and subdivide

the analyses by condition [BLOCK]
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� conduct many studies over a variety of ambient conditions and test personnel

and aggregate them in a meta-analysis [RANDOMIZE]

If the assumptions of the matched-delta model are valid, then the results naïve ap-

plication of Equation 4.1 across the ensemble should converge to those of the matched

delta method. In 4.3.2 we in fact simulated such an ensemble, randomizing the visit

biases am, bn. In principle, one could do the same with real data however the scale of

such an experiment is beyond the scope of the present study.

In the simulated results of Chapter 4, it was also assumed that the imposter

distributions were constant over time. Subsequent analysis of the experimental data

cast doubt on this assumption, at least in the case of some devices in the study, and

in Chapter 5 we removed this restriction (Section 5.3.2).

8.1.3 Illustrative application of the metric

To illustrate the potential application of the biometric permanence methodology and

results, consider a biometric system based on our Device K. From Table 5.1, we

estimated its permanence after 7 years as PB = 97.2 ± 0.19. Suppose the system

is designed to operate at a FMR of 1 % and that the corresponding FNMR upon

commissioning the system is found to be 1.5 %: then, using Equation 4.1, we can

estimate the attainable FNMR after 7 years if the FMR is to be maintained as

FNMR∆t = 1− PB (1− FNMR0) = 1− (0.972)(0.985) = 0.043

i.e. the FNMR can be expected to degrade from 1.5 % to approximately 4 % over this

time period.

Even taking into account the ±0.19 uncertainty, this value is somewhat larger

than that which might be inferred from the DET curve of Figure 5.10b - suggesting

that the simple extrapolation overestimates the slope of PB.
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8.2 Validation of NFIQ quality metrics

Next, we applied the NIST NFIQ quality metrics on our labelled data, con�rming

the predictive capability of these metrics with respect to �ngerprint classi�cation

accuracy � e�ectively using our study as an independent validation dataset for NFIQ.

We observed essentially equivalent error-rate versus reject ratio from the two available

implementations, NFIQ-1 and NFIQ-2, noting that NFIQ-2 is nevertheless preferred

from an operational point of view because of its �ner-grained scale (Chapter 6).

Results for NFIQ were compared with those for vendor-provided quality values, where

available.

The novelty of these results really comes from the data rather than from any

methodological considerations. Data used in the training and validation of the NFIQ

classi�ers is dominated by US Government datasets (in the case of NFIQ-1, these were

DOS-C, DHS2-C, DHS10, TXDPS, and BEN for training alone, with the addition of

VISIT_POE and VISIT_POE_BVA for validation [74]), which might be assumed to

share certain common characteristics of acquisition and processing. In contrast, the

speci�cations and data acquisition protocols for our study were developed on behalf

of the ILO, with an initial focus on vendor interoperability: it is interesting to explore

how well the NFIQ measures perform on an independent dataset such as this.

8.3 Presence of a biometric menagerie

Subject-dependence of the classi�cation performance was also explored, based on a

modi�ed version of the criteria originally proposed by Doddington. A relatively small

subset of `Goat'-like subject-�ngers was identi�ed, and con�rmed to be substantially

vendor-independent, suggesting that such �ngers (which match poorly against them-

selves, and hence dominate the FNMR) are intrinsic, rather than a result of speci�c

image capture technologies or feature extraction algorithms. Dependencies on the
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available demographic factors were evaluated, with signi�cant e�ects being found for

subject sex and for chronological age at time of enrolment (or Birth Year). `Lamb'

and `Wolf' subsets (which match too well against one another, together contributing

disproportionately to the FMR) were also identi�ed and examined: although repre-

senting a small fraction of the available imposter matches, these subsets substantially

cover the set of subject-�ngers as a whole, and their demographics are, unsurprisingly,

not signi�cantly di�erent from it in most cases. The one exception was Birth Year,

with both Lambs and Wolves appearing to favour younger individuals. It might be

instructive to repeat this analysis with a more exclusive de�nition of the `Lamb' and

`Wolf' subsets: they are large because of the choice of target FMR, which in turn was

driven by a desire to operate each of the devices somewhere in the �knee� region of

its DET curve.

Finally we examined the e�ect of subject-dependence on template ageing be-

haviour, and demonstrated (by removing them from the dataset) the importance

of Goats in the magnitude of the observed ageing.

In the following sections, we consider the information-theoretic interpretation of

template ageing, and its relation to biometric quality.

8.4 Biometrics as a communication channel

An information-theoretic model of a communications channel may be constructed as

follows (see for example Cover and Thomas §7.5 [8]).

A messageW is drawn from an index set {1, 2 . . .M}. We transmit a signalXn(W )

which is a sequence of n symbols from the alphabet of some random variable X. A

receiver receives signal Y n related to transmitted signal Xn by a channel transition

matrix p(yn|xn). The task of the receiver is to infer W from Y n using some decision

rule Ŵ = g(Y n).
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We can imagine a similar formalism for a biometric system. That is, an individual

W is drawn from an an index set {1, 2 . . .M} of enrolled subjects. Associated with

W is a biometric record Xn(W ) which is a collection (or vector) of features, such

as a list of �ngerprint minutiae. A veri�er observes a biometric Y n related to the

record Xn by a biometric transition matrix p(yn|xn), and the task of the veri�er

is to infer the identity W from the observed biometric Y n using some decision rule

Ŵ = g(Y n) - or, in the case of a biometric veri�cation system, to estimate the

probability P (W = w|Y n) for some claimed identity w.

8.4.1 Biometric rate and capacity

In this formalism, we see that a biometric modality becomes a channel for the trans-

mission of information about an individual's identity. We may then ask about the

characteristics of this channel. For example, we might model the disappearance or

obfuscation of individual �ngerprint minutiae, perhaps as the result of occupational

damage, as erasures in an erasure channel; or the uncertainties in minutia location as

positional noise in a manner similar to that in an AWGN channel1. We might also

be able to talk about the rate of a biometric system in terms of the cardinality of the

subject set and the size of the biometric record:

R =
log2M

n
(8.1)

Given this de�nition of biometric rate, it might then be possible to de�ne a bio-

metric capacity C for a modality as the supremum of all achievable rates for the

channel: in principle, this would allow us to compare the fundamental e�ciency of

di�erent modalities, and to compare implementations within a modality based on

how closely their rate approaches C.

1For a discussion of these and other standard channel models, see for example Cover and Thomas
(op. cit.) §7.1.
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Probably the biometric modality whose information-theoretic foundation has been

developed most explicitly is that of Daugman's IrisCodes [14], whose templates take

the form of binary sequences whose match scores are evaluated in terms of Ham-

ming distance [15]. In particular, by developing a hidden Markov model (HMM) for

IrisCode generation and tuning its parameters to obtain a best match to the observed

FMR of real irises, Daugman et al. were able to obtain an estimate for the capacity

of the IrisCode channel as 0.469 bits/bit [16]. A white noise analysis of the encoding

procedure estimated a theoretical maximum capacity of 0.566 bits/bit: the di�erence

being attributed to correlation between regions of the real iris.

8.4.2 Biometric �good codes�

Of course, much e�ort is directed in the �eld of communications towards the design of

good (high rate) channel codes: that is, sets of codewords Xn for which R approaches

C. In the case of linear block codes for example, one may imagine an (n, k) code as

mapping a k-bit message space into a n-bit codeword space; good codes essentially

maximize the minimum distance between codewords, making it easier to place a set

of decision boundaries between them at the receiver. In the biometric analogue,

codewords are biometric templates and clearly we do not have the same freedom to

choose them: we do however have at least some ability to include more informative

(and exclude less informative) features. Conceptually, this is similar to how the NFIQ

quality metrics attempt to identify high quality �ngerprints.

8.5 Information-theoretic interpretation of template age-

ing

When applied to the problem of biometric template ageing, the information-theoretic

approach implies that what we are observing is a decrease in mutual information, over
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time, between an individual's identity (as represented by their previously-enrolled

biometric template) and their current biometric.

At t = 0, we can imagine that a biometric presentation Y is able to provide enough

mutual information I(X|Y ) to almost completely resolve the uncertainty about the

identity X of the individual (Figure 8.1(a)). We can imagine two scenarios by which

biometric mutual information might decrease over a time. In the �rst, (a)�(b), the

amount of information in the biometric remains essentially the same, but it becomes

less informative about the identity of the individual, leaving a larger unresolved un-

certainty H(X|Y ) after an interval ∆t. In the �ngerprint modality, this might occur

for example if the number and type of the extracted minutiae remains the same, but

their spatial relationship changes over time, perhaps due to morphological changes

(stretching, shrinking, distorting) of the �ngertip. In the second scenario, (a)�(c),

the amount of information H(Y ) in the biometric is actually decreasing over time,

i.e. H(Y ; ∆t) < H(Y ; 0). For �ngerprints, that might correspond to a decrease in the

number of extractable features (minutiae being obscured or erased by occupational

damage or disease), or might represent a more noise-like process in which the mean

spatial relationships of minutiae are preserved, but localizing them within a speci�c

presentation becomes more di�cult.

In practice, it is likely that template ageing results from some admixture of the

two e�ects, which one may think of as ageing via �di�erent information� versus �less

information�.

We would expect image- or feature-based biometric quality metrics like NFIQ to

be insensitive to changes of the �rst type. On the other hand, changes of the �rst

type should be amenable to the kinds of template update procedures proposed by

[77, 60].
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(a) 

(b) (c) Figure 8.1: Conceptual scenarios for a decrease in biometric mutual information over
time. At time zero (a), almost all of the uncertainty H(X) about the individual's
identity X is resolved by knowing the biometric Y . In (b), the amount of information
H(Y ; ∆t) provided by the biometric after time interval ∆t is the same, but less of it
is helpful in determining the individual's identity. In (c), the biometric after interval
∆t is intrinsically less informative, H(Y ; ∆t) < H(Y ; 0).
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8.6 Suggestions for future work

We have deduced that, at least conceptually, there are two mechanisms for the changes

in biometric match score over time. �Ageing via less information� would be asymmet-

ric, and represents (or at least, will be indistinguishable from) chronological ageing

of the individual. �Ageing via di�erent information� on the other hand is symmetric.

In the case of genuine matches, it is easy to see how both e�ects might con-

tribute to decreased match scores over time (i.e. to increased FNMR). The behaviour

with respect to imposter matches is less obvious, and may depend on how exactly

the particular scoring algorithm evaluates biometric similarity. For example, do two

presentations that have low information content (few extractable minutiae), but are

nevertheless similar, score higher or lower than two others that have many extractable

minutiae but di�er with respect to a few of them? Indeed, we saw evidence in Chap-

ter 5 that changes in imposter score distributions for many devices were negligible -

but not for all.

The measure of template ageing, PB (biometric permanence) used in the present

work was de�ned in terms of reduction in FNMR at �xed FMR, and re�ects changes in

both genuine and imposter match scores - the latter implicitly, by allowing the binary

decision threshold to vary in order to maintain the chosen FMR. In future work,

it might be instructive to maintain a constant threshold, and attempt to evaluate

changes in FNMR and FMR separately. Alternatively, one might consider using

variation of the decision threshold for constant FMR to be a proxy for changes in the

imposter distributions.

The biometric menagerie classi�cations of Chapter 7 turned out to have a richer

demographic structure than anticipated, and it would be worthwhile to revisit a num-

ber of aspects. In particular, the canonical categories of Sheep, Goats, Lambs and

Wolves are rather broad, being based either on FNMR or FMR: a more re�ned cate-

gorization such as the one proposed by Yager & Dunstone [84] may yield additional
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insight into the interplay of genuine and imposter match scores. At least, the demo-

graphic analysis of Lambs and Wolves might be enhanced by tightening the thresholds

for inclusion into those subsets, reducing their size and so potentially making them

more distinct from the cohort as a whole.

Finally, although the proposed permanence measure PB and the methodology de-

veloped for evaluating it have shown promising results when applied to our moderately

large �ngerprint dataset, it will be important to evaluate them much more widely -

preferably with even larger datasets and over additional biometric modalities.



Appendix A

Sample MSSQL database queries

Listing A.1: Simple query, for the author's own demographic and visit information
1 USE Norwood

2

3 SELECT * FROM Subject WHERE Id = 256

4

5 SELECT AlgorithmOrderEnrol , AlgorithmOrderVerify , EnrolBeganOn , VerifyEndedOn

6 FROM dbo.Subject_Visit_Map

7 WHERE SubjectId = 256

Listing A.2: A complicated query, for biometric qualities of match transactions with
genuine/imposter class labelling

1 USE Norwood

2

3 SELECT eo.AlgorithmId , eo.VisitId , eo.SubjectId , nfiqA.FingerPosition , nfiqA.

IsSecondary ,

4 CASE WHEN nfiqA.FingerPosition = evq.FingerSecondary THEN evq.SecondaryQuality ELSE

evq.PrimaryQuality END AS [VendorQ],

5 (SELECT MIN(v) FROM (VALUES (nfiqA.Score), (nfiqB.Score), (nfiqC.Score)) AS value(v))

AS [NFIQ(min)],

6 (SELECT AVG(v) FROM (VALUES (nfiqA.Score), (nfiqB.Score), (nfiqC.Score)) AS value(v))

AS [NFIQ(avg)],

7 (SELECT MAX(v) FROM (VALUES (nfiqA.Score), (nfiqB.Score), (nfiqC.Score)) AS value(v))

AS [NFIQ(max)],

8 (SELECT MIN(v) FROM (VALUES (nfiq2A.Score), (nfiq2B.Score), (nfiq2C.Score)) AS value(

v)) AS [NFIQ2(min)],

9 (SELECT AVG(v) FROM (VALUES (nfiq2A.Score), (nfiq2B.Score), (nfiq2C.Score)) AS value(

v)) AS [NFIQ2(avg)],

10 (SELECT MAX(v) FROM (VALUES (nfiq2A.Score), (nfiq2B.Score), (nfiq2C.Score)) AS value(

v)) AS [NFIQ2(max)],

11 -- see https :// stackoverflow.com/a/6871572/4440445 "SQL MAX of multiple columns ?"

12 vo.SubjectId , vo.FingerPosition , vo.Attempt , vi.Presentation , mp.Score ,

13 CASE WHEN vo.SubjectId = eo.SubjectId AND vo.FingerPosition IN (et.FingerPrimary , et.

FingerSecondary) THEN 1 ELSE 0 END AS [GEN]

14 FROM

15 dbo.EnrolTemplate et INNER JOIN dbo.EnrolOnline eo ON eo.Id = et.EnrolOnlineId

16 INNER JOIN dbo.EnrolVendorQuality evq ON evq.EnrolOnlineId = eo.Id

17 INNER JOIN dbo.EnrolNFIQ nfiqA ON nfiqA.EnrolOnlineId = eo.Id

18 INNER JOIN dbo.EnrolNFIQ nfiqB ON nfiqB.EnrolOnlineId = eo.Id AND nfiqB.

FingerPosition = nfiqA.FingerPosition

19 INNER JOIN dbo.EnrolNFIQ nfiqC ON nfiqC.EnrolOnlineId = eo.Id AND nfiqC.

FingerPosition = nfiqA.FingerPosition

20 INNER JOIN dbo.EnrolNFIQ2 nfiq2A ON nfiq2A.EnrolOnlineId = eo.Id AND nfiq2A.

FingerPosition = nfiqA.FingerPosition

21 INNER JOIN dbo.EnrolNFIQ2 nfiq2B ON nfiq2B.EnrolOnlineId = eo.Id AND nfiq2B.

FingerPosition = nfiq2A.FingerPosition
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22 INNER JOIN dbo.EnrolNFIQ2 nfiq2C ON nfiq2C.EnrolOnlineId = eo.Id AND nfiq2C.

FingerPosition = nfiq2A.FingerPosition

23

24 INNER JOIN dbo.MatchPresentation mp ON mp.EnrolOnlineId = eo.Id

25 INNER JOIN dbo.VerifyImage vi on vi.Id = mp.VerifyImageId

26 INNER JOIN dbo.VerifyOnline vo ON vo.Id = vi.VerifyOnlineId AND vo.FingerPosition =

nfiqA.FingerPosition

27 WHERE

28 nfiqA.Presentation = 1 AND nfiqB.Presentation = 2 AND nfiqC.Presentation = 3

29 AND

30 nfiq2A.Presentation = 1 AND nfiq2B.Presentation = 2 AND nfiq2C.Presentation = 3

31 AND

32 eo.AlgorithmId = 2

33 -- for testing; should be 12 gen and 12 imp:

34 -- AND eo.SubjectId = 256 AND eo.VisitId = 6 AND vo.SubjectId IN (256 ,1) AND vo.

VisitId = 6

35 -- ORDER BY vo.FingerPosition , vo.Attempt , vi.Presentation



Appendix B

Unpacking the BioAPI Biometric
Information Record

Listing B.1: Python library function to unpack ILO BIR
1 from struct import unpack

2

3

4 def read_minutiae(f,mcount):

5 minutiae = [];

6 minutia = {}

7 #print mcount

8 for m in range(mcount):

9 #print m

10 # 2 bits type + 14 bits xpos

11 bb, = unpack('>h', f.read (2))

12 minutia['type'] = (bb & 49152) >> 14

13 minutia['xpos'] = bb & 16383

14 # 2 bits reserved + 14 bits ypos

15 bb, = unpack('>h', f.read (2))

16 minutia['reserved '] = (bb & 49152) >> 14

17 minutia['ypos'] = bb & 16383

18 # 1 byte angle

19 minutia['angle'], = unpack('B', f.read (1))

20

21 # append to minutiae list

22 minutiae.append (( minutia['xpos'], minutia['ypos'], minutia['angle '], minutia['

type']))

23

24 return minutiae

25

26 def unpack_BIR(f):

27 # read and unpack the ``Opaque biometric data `` header

28 BIR = {}

29 BIR['format '], = unpack('4s', f.read (4))

30 BIR['version '], = unpack('4s', f.read (4))

31 BIR['length '], = unpack('>h', f.read (2))

32

33 BIR['reserved '], = unpack('>h', f.read (2))

34

35 BIR['hsize'], = unpack('>h', f.read (2))

36 BIR['vsize'], = unpack('>h', f.read (2))

37

38 BIR['hres'], = unpack('>h', f.read (2))

39 BIR['vres'], = unpack('>h', f.read (2))

40

41 BIR['fingers '], = unpack('B', f.read (1))

42 BIR['views'], = unpack('B', f.read (1))
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43 # print BIR

44

45 return BIR

46

47 def unpack_finger_records(f):

48

49 fingerPri = {}

50 # read and unpack the primary fingerprint record

51 fingerPri['finger '], = unpack('B', f.read (1))

52 fingerPri['view_imp '], = unpack('B', f.read (1))

53 fingerPri['quality '], = unpack('B', f.read (1))

54 fingerPri['mcount '], = unpack('B', f.read (1))

55 # read (and discard) primary minutiae

56 # print fingerPri

57 #read_minutiae(f, fingerPri['mcount '])

58 for i in range(0, fingerPri['mcount ']):

59 minutia = unpack('5B', f.read (5))

60 # print i, minutia

61

62 fingerSec = {}

63 # read and unpack the secondary fingerprint record

64 fingerSec['finger '], = unpack('B', f.read (1))

65 fingerSec['view_imp '], = unpack('B', f.read (1))

66 fingerSec['quality '], = unpack('B', f.read (1))

67 fingerSec['mcount '], = unpack('B', f.read (1))

68 # print fingerSec

69 # read (and discard) primary minutiae

70 #read_minutiae(f, fingerSec['mcount '])

71 for i in range(0, fingerSec['mcount ']):

72 minutia = unpack('5B', f.read (5))

73 # print i, minutia

74

75 return fingerPri , fingerSec

76

77 def unpack_BIR_HEADER(f):

78 # read and discard 8 byte length added by bcp bulk copy

79 bcp = f.read (8)

80

81 # read and unpack ILO 16 byte BioAPI BIR header

82 BIR_HEADER = {}

83 BIR_HEADER['length '], = unpack('<i', f.read (4))

84 BIR_HEADER['version '], = unpack('B', f.read (1))

85 BIR_HEADER['type'], = unpack('B', f.read (1))

86 BIR_HEADER['format '], = unpack('4s', f.read (4))

87 BIR_HEADER['quality '], = unpack('B', f.read (1))

88 BIR_HEADER['purpose '], = unpack('B', f.read (1))

89 BIR_HEADER['factors '], = unpack('<i', f.read (4))

90 # print BIR_HEADER

91

92 return BIR_HEADER

Listing B.2: Python program to extract minutia counts and vendor-assessed bio-
metric quality

1 import sys

2 import os

3 import bioapi

4 import csv

5

6

7

8 datadir = sys.argv [1]

9

10 for filename in os.listdir(datadir):

11

12 if not filename.endswith(".dat"):

13 continue
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14

15 enrolOnlineId ,algorithmId ,fingerPrimary ,fingerSecondary ,remainder = filename.split(

"_")

16

17 # read and unpack the ILO SID template blob extracted by bcp from MS SQL Server

18 with open(os.path.join(datadir , filename)) as f:

19 try:

20 hdr = bioapi.unpack_BIR_HEADER(f)

21 except:

22 print "Error reading BIR_HEADER"

23 pass

24 try:

25 bir = bioapi.unpack_BIR(f)

26 f1,f2 = bioapi.unpack_finger_records(f)

27 with open('vendor_mcount_quality.csv', 'ab') as csvfile:

28 writer = csv.writer(csvfile , delimiter=',',quotechar='"', quoting=csv.

QUOTE_MINIMAL)

29 writer.writerow ([ enrolOnlineId ,algorithmId ,hdr['quality '],f1['finger '],f1['

mcount '],f1['quality '],f2['finger '],f2['mcount '],f2['quality ']])

30 except:

31 print "Unexpected error:", sys.exc_info ()[0]

32 pass



Appendix C

Bootstrap resampled con�dence
interval (CI) for PB

Listing C.1: Bootstrap resampled con�dence interval (CI) for the permanence
1

2 function [pNaive , pMatched , age] = ...

3 matchedDelta3(genNxN , impNxN , ageNxN , fmrRef)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 %

6 % PURPOSE: re-implementation of John Campbell 's 'matched delta ' method

7 % for estimating biometric permanence from a set of match

8 % scores

9 %

10 % AUTHOR: John Harvey

11 % Carleton University Dept. of Systems and Computer Engineering

12 %

13 % DATE: June 2017

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 global bootopts;

17 bootopts = statset('UseParallel ',true);

18

19 nboot = 1000; % bootstrap samples

20 nbootg = nboot; % bootstrap samples for deltaGen

21 nbooti = 30; % bootstrap samples for deltaImp

22

23 nE = size(ageNxN ,1); % number of enrol visits

24 nV = size(ageNxN ,2); % number of verify visits

25

26 % average the subject -finger scores over presentations

27 genPresMean = squeeze(nanmean(genNxN ,4));

28 %genPresStd = squeeze(nanstd(genNxN ,0,4));

29 impPresMean = squeeze(nanmean(impNxN ,4));

30 %impPresStd = squeeze(nanstd(impNxN ,0,4));

31

32 nGen = size(genPresMean ,3); % actual number of gen samples

33 nImp = size(impPresMean ,3); % actual number of imposter samples

34

35 % initialize arrays for the matched delta reference distributions and

36 % forward -backward scores

37 gen0 = zeros(nE * nGen , 1);

38 imp0 = zeros(nE * nImp , 1);

39 deltaGen = zeros(nE ,nV);

40 deltaImp = zeros(nE ,nV);

41

42

43 % evaluate the "naive" permanence and form the baseline (age = 0)
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44 % aggregate distributions and matched deltas

45 pNaive = ones(nE, nV);

46 for i = 1:nE

47

48 tmr0 = tmrAtfmr(squeeze(genPresMean(i,i,:)), squeeze(impPresMean(i,i,:)), fmrRef ,

nboot);

49

50 % aggregate the baseline "zero time" distributions

51 gen0((i-1)*nGen +1:i*nGen) = genPresMean(i,i,:);

52 imp0((i-1)*nImp +1:i*nImp) = impPresMean(i,i,:);

53

54 for j = 1:nV

55 if (j ~= i)

56 tmr = tmrAtfmr(squeeze(genPresMean(i,j,:)), squeeze(impPresMean(i,j,:)),

fmrRef , nboot);

57 pNaive(i,j,:) = tmr/tmr0;

58 end

59

60 if (j > i) % (skip lower triangle because of symmetry)

61 % form the forward -backward matched deltas

62 deltaGen(i,j) = delta( genPresMean(i,j,:), genPresMean(j,i,:),

genPresMean(i,i,:), genPresMean(j,j,:), nbootg);

63 deltaImp(i,j) = delta( impPresMean(i,j,:), impPresMean(j,i,:),

impPresMean(i,i,:), impPresMean(j,j,:), nbooti);

64 end

65 end

66 end

67

68 % evaluate the matched deltas - note that we can use the symmetry to

69 % reduce the number of evaluations

70 inds = triu(ageNxN) ~= 0.;

71 PbCI = permMatchedDelta(gen0 , imp0 , deltaGen(inds)', deltaImp(inds)', fmrRef , nboot);

72 % short -circuit the acual evaluation (for quick testing of loops):

73 %PbCI = [ones(size(inds(inds))) ones(size(inds(inds))) ones(size(inds(inds)))]';

74

75 % flip and stitch to get a plottable permanence versus age

76 tmp = sortrows ([ ageNxN(inds)' ; PbCI]') ';

77 age = [-fliplr(tmp(1,:)) 0. tmp(1,:)];

78 pMatched = [fliplr(tmp (2:end ,:)) [1.;1.;1.] tmp (2:end ,:)];

79

80 end

81

82

83 function d = delta(sij , sji , sii , sjj , nboot)

84

85 % global bootopts;

86 %

87 % X = squeeze(sij) + squeeze(sji) - squeeze(sii) - squeeze(sjj);

88 %

89 % bootstat = bootstrp(nboot ,@nanmean ,X,'Options ',bootopts);

90 %

91 % d = 0.5 * mean(bootstat);

92

93 % JH 13-Jul -17: it doesn 't make sense to bootstrap the mean , since we know

94 % that the sample mean is a _sufficient statistic_ for the population mean

95 d = 0.5 * nanmean(sij + sji - sii - sjj);

96

97 end

98

99

100 function tmr = tmrAtfmr(gen , imp , fmrRef , nboot)

101

102 global bootopts;

103

104 nGen = size(gen ,1);

105 nImp = size(imp ,1);

106

107 % construct a single score vector and class labels
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108 scores = [imp ; gen];

109 labels = [false(nImp ,1) ; true(nGen ,1)];

110

111 % construct a vector of observation weights - we can use this to remove the

112 % inherent class imbalance i.e. sample the genuines much more often than

113 % the imposters

114 weights = [0.5/ nImp * ones(nImp ,1) ; 0.5/ nGen * ones(nGen ,1)];

115

116 bootfun = @(X,L)(truematch(X, L,fmrRef));

117 bootstat = bootstrp(nboot ,bootfun ,scores ,labels ,'Weights ', weights , 'Options ',

bootopts);

118

119 % Estimate the TMR at the estimated threshold

120 tmr = mean(bootstat);

121

122 end

123

124

125

126 function PbCI = permMatchedDelta(gen , imp , deltaGen , deltaImp , fmrRef , nboot)

127

128 global bootopts;

129

130 nGen = size(gen ,1);

131 nImp = size(imp ,1);

132

133 % construct a single score vector and class labels

134 scores = [imp ; gen];

135 labels = [false(nImp ,1) ; true(nGen ,1)];

136

137 % construct a vector of observation weights - we can use this to remove the

138 % inherent class imbalance i.e. sample the genuines much more often than

139 % the imposters

140 weights = [0.5/ nImp * ones(nImp ,1) ; 0.5/ nGen * ones(nGen ,1)];

141

142 bootfun = @(X,L)(permbio(X, L, deltaImp - deltaGen , fmrRef));

143 [ci , bootsam] = bootci(nboot ,{bootfun ,scores ,labels},'Weights ',weights ,'Options ',

bootopts);

144

145 PbCI = [mean(bootsam) ; ci];

146

147

148 %% plot the before -and -after DET curves

149 figure ()

150

151 nboot = 0;

152

153 [X0 ,Y0 ,~] = perfcurve(labels , scores , 1, 'XCrit', 'fpr', 'YCrit', 'fnr', ...

154 'TVals', 'all', 'Weights ', weights , 'NBoot', nboot , 'Options ', bootopts);

155 if nboot > 0

156 errorbar(X0(:,1),Y0(:,1),Y0(:,1)-Y0(:,2),Y0(:,3)-Y0(:,1), 'b');

157 else

158 plot(X0,Y0,'b');

159 end

160

161 hold 'on'; grid 'on';

162

163 scores = [imp + deltaImp(end) ; gen + deltaGen(end)];

164 [XN ,YN ,~] = perfcurve(labels , scores , 1, 'XCrit', 'fpr', 'YCrit', 'fnr', ...

165 'TVals', 'all', 'Weights ', weights , 'NBoot', nboot , 'Options ', bootopts);

166 if nboot > 0

167 errorbar(XN(:,1),YN(:,1),YN(:,1)-YN(:,2),YN(:,3)-YN(:,1), 'r');

168 else

169 plot(XN,YN,'r');

170 end

171

172 xlabel('FMR'); ylabel('FNMR');

173 axis([-1e-5 .1 0 .1]);
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174

175 end

176

177

178

179 function r = truematch(X, L, fmrRef)

180

181 % paramaterized bootfun for permNaive , implementing the TMR at reference

182 % FMR

183

184 %% find the sample threshold for the reference FMR

185 t0 = prctile(X(L==0), 100 .* (1. - fmrRef));

186

187 r = sum(X(L==1) > t0) / sum(L==1);

188

189 end

190

191

192

193 function Pb = permbio(X, L, delta , fmrRef)

194

195 % paramaterized bootfun for permMatchedDelta , implementing the Pb biometric

196 % permanence metric

197

198 %% find the sample threshold for the reference FMR

199 t0 = prctile(X(L==0), 100 .* (1. - fmrRef));

200

201 %% find the sample permanence at each delta

202 c0 = sum(X(L==1) > t0);

203 Pb = sum(X(L==1) > t0+delta)/c0;

204

205 % note that since 1-FNMR = TMR = fraction of genuine scores > threshold ,

206 % Pb reduces to the ratio of the above -threshold count at threshold 't'

207 % to that at threshold 't0 ', where 't' and 't0' are thresholds

208 % corresponding to the chosen reference FMR at some age and at 'age0 '

209

210 end



Appendix D

A note on the Rayleigh synthetic

match score distributions

In Chapter 4, the choice was made to use Rayleigh distributions for the synthetic

genuine and imposter match scores. The initial justi�cation for this choice was sim-

ply that they �look about right�: for the imposter scores, we sought a well-known

distribution that had a hard cut-o� at a score of zero, with positive skew to represent

a long tail of high-scoring imposters (potential false matches). For the genuine scores,

a ��ipped� Rayleigh shape similarly provided a hard cut-o� maximum score � nor-

malized to one in our simulations � with a long tail of low-scoring genuines (potential

false non-matches).

No attempt was made to match the synthetic distributions to the actual score

distributions of the devices in our study. In fact, the actual distributions vary sig-

ni�cantly, re�ecting di�erences in the scoring algorithms between them (Figure 5.3 �

5.11).

One nice consequence of the choice of Rayleigh distributions is that the tail in-

tegrals (for the FMR and FNMR) in our classi�cation model remain obtainable in

closed form after the addition of noise, as will be shown in the following section. This
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provides some additional � albeit post-hoc � justi�cation for their choice.

D.1 Tail integral for the FMR

In the model of Section 4.2.2, a true biometric match score s is drawn from a genuine

(G) or imposter (I) score distribution, to which is added zero-mean Gaussian noise

W . The probability density function (pdf) of the sum of these random variables is

the convolution pW ∗ pI,G of their pdfs where

f ∗ g :=

∫︂ ∞

−∞
f(x′)g(x− x′)dx′ (D.1)

For the pdf of the imposter scores, we have from Equation 4.5

pI(s) =
s

β2
I

e−s2/2β2
I ; s ≥ 0 (D.2)

while the pdf of the noise may be written as

pW (s) =
1√
2πσ

e−s2/2σ2

(D.3)

so that the pdf of the sum becomes

pI+W (s) =
1√
2πσ

∫︂ ∞

0

s′

β2
I

e−s′2/2β2
I e−(s−s′)2/2σ2

ds′ (D.4)

The �trick� at this point is to realize that it is not necessary to evaluate this

convolution in closed form, in order to evaluate the tail integral. In particular, we

may write the resulting FMR as

PrI+W {s > θ} = PrW+I {s > θ} =

∫︂ ∞

θ

∫︂ ∞

−∞
pW (s′)pI(s− s′)ds′ds (D.5)
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which, changing the order of integration, becomes

PrI+W {s > θ} =

∫︂ ∞

−∞
pW (s′)

∫︂ ∞

θ

pI(s− s′)dsds′ (D.6)

in which the inner integral (with a further change of variables s− s′ → s) is now just

∫︂ ∞

θ

pI(s− s′)ds =

∫︂ ∞

θ−s′
pI(s).ds (D.7)

which is just the probability that the noise-free imposter score is greater than θ− s′.

For the chosen Rayleigh distribution, this is easy to evaluate since

d

ds
e−s2/2β2

I = − s

β2
I

e−s2/2β2
I (D.8)

so that ∫︂ ∞

θ

pI(s− s′)ds =
[︂
e−s2/2β2

I

]︂(θ−s′)

∞
= e−(θ−s′)2/2β2

I (D.9)

Plugging this back into D.6, we have

PrI+W {s > θ} =
1√
2πσ

∫︂ ∞

θ

e−s′2/2σ2

e−(θ−s′)2/2β2
Ids′ (D.10)

in which the integrand is just a product of two exponentials.1 From here on in, it is

just a matter of completing the square - that is,

s′2

2σ2
+

(θ − s′)2

2β2
I

=
β2
I s

′2 + σ2(θ − s′)2

2σ2β2
I

(D.11)

=
β2
I + σ2

2σ2β2
I

[︃
s′2 − 2σ2θ

β2
I + σ2

s′ +
σ2θ2

β2
I + σ2

]︃
(D.12)

=
β2
I + σ2

2σ2β2
I

[︄(︃
s′ − σ2θ

β2
I + σ2

)︃2

+
σ2θ2

β2
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− σ4θ2

β2
I + σ2

]︄
(D.13)

1If we had preserved the original order, taking the inner integral over the noise distribution, the
integrand would have been the product of the Rayleigh distribution with an error function
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giving

PrI+W {s > θ} =
1√
2πσ

e
− θ2

2β2
I

(︃
1− σ2

β2
I
+σ2

)︃ ∫︂ ∞

−∞
e
−β2I+σ2

2σ2β2
I

(︃
s′− σ2θ

β2
I
+σ2

)︃2

ds′ (D.14)

in which the standard de�nite integral may be evaluated from tables, yielding

PrI+W {s > θ} =

√︄
β2
I

β2
I + σ2

e−θ2/2(β2
I+σ2) (D.15)

By inspection, (D.15) implies that the noisy score remains Rayleigh distributed,

with parameter β2
I → β2

I + σ2, i.e.

pI+W (s) =
s

β2
I + σ2

e−s2/2(β2
I+σ2); s ≥ 0 (D.16)

D.2 Tail integral for the FNMR

Evaluation of the FNMR from the tail of the genuine distribution proceeds using all
the same steps as the previous section, but backwards and in heels.
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