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Abstract. The objective of this paper is to compare D-bar difference reconstruction with
regularized linear reconstruction in electrical impedance tomography. We chose a standard
regularized linear approach using a Laplacian penalty and the GREIT method for compari-
son. Simulated data was generated using a circular phantom with small objects, as well as a
‘Pac-Man’ shaped conductivity target. An L-curve method was used for parameter selection
in both D-bar and the regularized methods. We find that the D-bar method has a more
position independent point spread function, is less sensitive to errors in electrode position
and behaves differently with respect to additive noise than the regularized methods. The
results allow a novel pathway between traditional and D-bar algorithm comparison.

1. Introduction

Electrical impedance tomography (EIT) images the conductivity distribution within a
body using body-surface measurements. Because electrical current propagates in a diffuse
way, EIT is much less sensitive at depth than close to the electrodes. Reconstruction of EIT
images is thus a challenging non-linear problem. Over the years, many EIT reconstruction
methods have been proposed for 2D and 3D geometries, as well as difference, absolute, and
frequency difference reconstructions. Two approaches to difference EIT reconstruction algo-
rithms have been widely used in experimental studies in biomedical application [Adler et al.
(2012)]. One that gained wide popularity in the 1990s, Sheffield backprojection [Barber et al.
(1992)], was implemented in the Sheffield and Goettingen EIT devices and reported in most
of the early EIT experimental studies. Subsequently, reconstruction methods based on reg-
ularization techniques have become most widely used, and are distributed with EIT devices
from Dräger, SenTec and Timpal. While in biomedical EIT difference imaging has been
widely used mainly due to the difficulty in modeling body shape and electrode position, in
geophysical applications of EIT difference data was typically not available and consequently
absolute EIT reconstruction is common [Adler et al. (2015)]. In this case, an accurate for-
ward model is used and the absolute conductivity iteratively fitted to the data. Absolute
EIT reconstruction was reported for the human chest [Newell et al. (1992)] but is still not
widely used in vivo.

One relatively novel approach to 2D EIT image reconstruction is D-bar, a non-iterative
absolute imaging approach [Nachman (1996), Isaacson et al. (2004), Knudsen et al. (2009)].
The literature on D-bar image reconstruction describes several potential advantages to other
techniques, such as a robustness to errors in electrode positions and the body shape. The
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D-bar literature is rich, but there is little direct comparison of its performance to that of
traditional (regularized) approaches.

The goal of our paper is thus to directly compare D-bar to other widely used EIT recon-
struction algorithms. Since a general comparison is a vast problem, we have decided to limit
this paper to consideration of the linearized difference EIT problem.

Comparison of algorithms is challenging, as there are multiple comparison criteria: res-
olution, position error, reconstruction shape accuracy, ability to suppress noise, ability to
maintain sharp edges, resistance to electrode movement and other artefacts. In the following
sections, we review the methods considered (Sec. 2), discuss the comparison framework and
criteria (Sec. 3), present results (Sec. 4), and analyze and discuss those results while drawing
conclusions and suggesting further work in Sec. 5.

2. Methods: Reconstruction

We compare the results of three separate reconstruction methods: 1) The D-bar difference
method, 2) Generalized Tikhonov regularized linear difference imaging with a Laplacian
penalty: or RL for Regularized Linear method, and 3) the GREIT method. Each method
is briefly explained in this section. For notation, a difference EIT reconstruction calculates
a vector of image elements, x, from a vector of difference EIT measurements, y = vσ−vref ,
between two frames of voltage measurements, vσ and vref .

2.1. The D-bar Method for Difference Imaging. D-bar methods for EIT use nonlinear
Fourier transforms specific to the EIT problem. The most common D-bar method [Nach-
man (1996), Isaacson et al. (2004), Knudsen et al. (2009)] comes from transforming the
conductivity equation

(1) ∇ · σ∇u = 0,

to a Schrödinger equation

(2)
(
−∇2 + q(z)

)
ũ(z) = 0,

via the change of variables ũ(z) = σ1/2(z)u(z) where q(z) = ∇2
√
σ(z)/

√
σ(z) for z ∈ Ω ⊂

R2, and ∇2 denotes the Laplacian operator. This Schrödinger equation (2) can be solved
using a D-bar method [Beals and Coifman (1985)] which introduces an auxiliary parameter
k ∈ C and uses special solutions ψ(z, k) to

(3)
(
−∇2 + q(z)

)
ψ(z, k) = 0,

asymptotic to eikz for large |k| or |z|. We associate R2 with C via z = (z1, z2) 7→ z1 + iz2

here so kz is the complex product. The solution process involves using a special transform,
which can be thought of as a nonlinear Fourier transform, specific to this problem (3). The
breakthrough for EIT is that this special nonlinear Fourier data (called Scattering data),
can be computed from current and voltage measurement data. Then, the conductivity can
be recovered using the inverse transform.

Difference imaging with the D-bar method uses a modified scattering transform, called
the differencing scattering transform [Isaacson et al. (2006)]. The process is

Current/Voltage Data(
Λσ,Λσref

) 1−→ Scattering Data
tdiff
R (k)

2−→ Conductivity
σdiff(z)
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Step 1: Compute the Low-pass Differencing Scattering Data tdiff
R (k). For each k ∈ C \{0},

evaluate the approximate scattering data

(4) tdiff
R (k) =

{
1
σb

∫
∂Ω
eik̄z̄ (Λσ − Λref) e

ikzdS(z), 0 < |k| ≤ R

0 |k| > R.

where σb denotes the best constant conductivity approximation to the conductivity near the
boundary, Λσ and Λref are the Dirichlet-to-Neumann (DN) maps corresponding to the two
frames of voltage measurements vσ and vref, respectively, for the chosen applied current pat-
terns. Matrix approximations to the DN maps can be formed using discrete inner products
(see [Isaacson et al. (2004)]).

Step 2: Recover the low-pass conductivity σdiff(z). For each z ∈ Ω, solve the D-bar equation
via the integral equation

(5) µdiff
R (z, k) = 1 +

1

4π2

∫
C

tdiff
R (k′)e−i(k

′z+k̄′z̄)

(k − k′)k̄′
µdiff
R (z, k′) dk

′

1dk
′

2,

and recover the low-pass D-bar difference conductivity

(6) σdiff (z) = σb
[
µdiff
R (z, 0)

]2 − σb.
which corresponds to the reconstructed image, x, in other methods.

The parameter R is considered the regularization parameter in the D-bar method as it
controls the radius of the low-pass filter in the nonlinear Fourier domain. For additional
stability, a thresholding is also commonly used by setting tdiff

R (k) = 0 if either
∣∣Re

{
tdiff
R (k)

}∣∣
or
∣∣Im{tdiff

R (k)
}∣∣ is greater than a chosen threshold. The thresholding helps to control

blowup in the scattering domain where neighboring pixels can differ by a factor of 10, 100,
etc. Note that Step 2 is the inverse transform step, whereas in Step 1 we bypass the full
plane R2 formulation of the forward transform by instead computing the scattering data
from a boundary integral equivalent through integration by parts.

2.1.1. Computational Notes: In practice, equations (4) and (5) are discretized and computed
with matrices. Note that the integral equation in (5) can be written using convolutions

(7) µdiff
R (z, k) = 1 +

1

πk
∗

(
tdiff
R (k)e−i(kz+k̄z̄)µdiff

R (z, k)

4πk̄

)
,

where ∗ denotes convolution over k ∈ C. Therefore, we can solve the integral equation (5)
using Fast Fourier Transforms (FFTs) as in [Vainikko (2000), Knudsen et al. (2004), Mueller
and Siltanen (2012)]. We use a uniformly spaced k-grid on a square [−Dk, Dk)

2, where Dk ≥
R, of size M ×M , where M is a power of 2, and the grid-size is hk = 2Dk/(M − 1). This k-
grid defines the points where we compute the scattering data tdiff

R (k). For the reconstructed
image σdiff (z), the computational z-grid is very flexible since the solution to the D-bar
equation is computed point-wise. One can use whatever type of grid is most appropriate for
the task: uniformly spaced, non-uniformly spaced, FEM mesh, etc.

The evaluation of the scattering transform tdiff
R (k) in Step 1 requires knowledge of how the

DN maps Λσ and Λref act on the exponential function eikz for z ∈ ∂Ω. We approximate this
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by using the discrete matrix approximations Lσ = (Rσ)−1 and Lref = (Rref)
−1, where, e.g.,

(8) Rσ(m,n) :=
L∑
`=1

φm` v
n
`

|e`|
, 1 ≤ m,n,≤ numLI , 1 ≤ ` ≤ L,

where {φm} and {vn} are the normalized current, and voltage, patterns respectively, numLI
denotes the number of linearly independent current patterns applied, L the number of elec-
trodes used, and |e`| denotes the area of the `-th electrode. We then expand the asymptotic
behavior eikz, at the centers of the electrodes z`, in the orthonormal basis of normalized
current patterns {φm} as

(9) eikz` ≈
numLI∑
m=1

am(k)φm` .

Discretizing (4) using a simple Simpson’s type rule gives

(10) tdiff
R (k) ≈

{
1
σb

P
L
eik̄z̄ Φ (Lσ − Lref) a(k), 0 < |k| ≤ R

0 |k| > R,

where P is the perimeter of the domain Ω, z ∈ C1×L is the row vector of positions of the
centers of the electrodes, Φ the orthonormal matrix of normalized current patterns φm, and
a(k) the vector of coefficients in the expansion (9).

To solve the D-bar equation, and recover the D-bar conductivity σdiff , the integral equation
must be solved for each z point in your chosen mesh. Using convolution, (5) can be written
as (7), and thus can be written as a linear system

(11) [I −AT (·)]µdiff = 1,

for each value of z, where A and T are defined by their actions via

Ag(k) =
1

πk
∗ g(k), and T f(k) =

tdiff
R (k)e−i(kz+k̄z̄)

4πk̄
f(k).

The convolutions can be computed using 2D Fast Fourier Transforms as

1

πk
∗ g(k) = h2

k IFFT2

[
FFT2

(
1

πk

)
FFT2(f(k))

]
,

and thus the linear system (11) solved using a matrix-free solver such as GMRES, separating
the real and imaginary parts. For further details of the numerical implementation of the D-
bar method the interested reader is referred to [Mueller and Siltanen (2012), Hamilton et al.
(2018)].

2.2. RL. Tikhonov regularization-based approaches to EIT were developed in the 1980s,
e.g. [Yorkey (1986)]. The key idea is to separate the reconstruction into a “forward” and an
“inverse” problem. First, the body region is discretized into elements that map to a finite
element grid, and represented as a vector, σ.

Linear difference EIT uses as data a change, ∆σ = σ − σref, between a time of interest,
σ, and a reference instant σref, which we model as homogeneous.

A frame of voltage measurement data, v, is acquired through a set of drive and measure-
ment patterns. Measurement data are simulated using a forward problem, F (·), typically
using a FEM: vσ = F (σ) and vref = F (σref), from which the measurement change vector,
y = vσ − vref is calculated.
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Differences from the reference value of the discrete conductivity in the forward model σ
are parametrized by a coarse-to-fine map, ∆σ = Mx, where x is the vector of image voxel
values. Here, each element, Mij, represents the volume fraction of forward model element i
contained within the image element j. Since the forward model requires a high density of
mesh parameterization in areas near the electrodes [Grychtol and Adler (2013)]. Using the
map M, we parameterize the body onto the reconstruction mesh.

The sensitivity of measurement i to changes in voxel element j, is then given by the matrix,
Jij = ∂yi/∂xj evaluated at σref.

As J is a severely ill conditioned matrix [Breckon and Pidcock (1988)], rather than simply
solving for x, reconstruction methods seek an x to minimize

(12) ||Jx− y||2 + λΨ2(x).

Where Ψ is a regularizing penalty term, and the regularization hyperparameter λ > 0 controls
the trade-off between fitting the data of the linearized problem and satisfying the a priori
assumption that Ψ(x) is small. To enforce a smoothing assumption on the images we choose
Ψ(x) = ||Lx||2 where Lx is an approximation to the Laplacian of the conductivity. This
corresponds also in the Bayesian formulation to the MAP estimate when the errors in the data
are assumed to be Gaussian and uncorrelated with equal variance, and the prior distribution
is a generalized multivariate Gaussian with inverse covariance matrix proportional to LTL.
The generalized Tikhonov regularized solution to the Regularized Linear(RL) problem is
given by

(13) xLR =
(
JTJ + λLTL

)−1
JTy.

Other common choices for regularization penalty terms in EIT include Truncated Singular
value Decomposition, and Total Variation. For further details see [Adler et al. (2015)], and
the references therein, as well as other chapters in the same work.

2.2.1. GREIT. The GREIT algorithm [Adler et al. (2009)] is a type of regularized image
reconstruction in which the values of the reconstruction parameters are set in a systematic
way, from a set of desired characteristics defined by the authors.

We use the formulation of GREIT developed by [Grychtol et al. (2016)], which we briefly
review to illustrate the relevant choices. Linear algorithms for difference EIT represent image
reconstruction by a reconstruction matrix, R, which calculates a reconstructed image x =
Ry, from difference data, y. The GREIT reconstruction matrix minimizes an error ε2(R) =
E [‖x−Ry‖2]. The expectation, E[·] is over a distribution of “training” targets, t(i), for
which the corresponding data, y(i), and a “desired” image, x(i) = Dt(i), are calculated, where
D is the “desired image” matrix, which maps each training sample location onto a larger

image region. The reconstruction matrix which minimizes ε is R = E
[
xyT

] (
E
[
yyT

])−1
.

Given a distribution t ∼ N (0,Σt) of training targets and noise n ∼ N (0,Σn),

(14) R = DΣ−1
t JT

(
JΣ−1

t JT + λΣn

)−1
.

The parameter λ is selected so that noise performance of the reconstruction matrix matches
a selected “noise figure” (NF) value.

3. Methods: Evaluation

Here we present the simulated phantoms used for the experiments, as well as figures of
merit that will be used to evaluate and compare the various reconstruction methods. Since
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we plan to compare D-bar to linear difference reconstructions, we choose phantoms with very
small contrasts (∆σ/σ ≤ 0.1) for which the linearized problem is a good approximation.

3.1. Simulation models. We examined the behavior of the algorithms on three different
phantoms: ‘Pac-Man’, a small single point target, and two point targets (see Figure 1).
These three targets have quite different characteristics; ‘Pac-Man’ has sharp edges and a
hole, the single point target example studies a point target moving from the center of the
domain to the outside, and the two point targets start close to each other in the center of the
domain and move away from each other towards the boundary. Small contrasts were used in
this study, 0.1× the background value. ‘Skip-4’ stimulation was simulated, using 32 equally
spaced electrodes of width 0.05m, with monopolar voltage measurements on all electrodes
(including the driven electrodes). All algorithms computed difference image reconstructions
on the FEM reconstruction grid shown in Figure 1 (right).

In order to reduce the possibility of an “inverse crime” simulation and reconstruction
models were intentionally different. Simulation models were three dimensional, based on a
complete electrode model, and used finite element models based on 9,800 (‘Pac-Man’) and
94,400 (“moving targets”) vertices. All 3D models were circular with a radius of 1 m and a
height of 0.2 m, and with a background conductivity of 1.0 S/m. The ‘Pac-Man’ region had
a radius of 0.75 with a 90o ‘mouth’ and an ‘eye’ of radius 0.2m, centered half-way (0.375)
between the center and the region edge. The point targets were cylinders of radius 0.01m a
height 0.2m spaced by 1

21
of the region radius on each side of the center. The reconstruction

mesh was a regular 2D mesh with 1,024 elements and 545 vertices and used point electrodes.

‘Pac-Man’ Point Targets Reconstruction Grid

Figure 1. Phantoms: ‘Pac-Man’ shape (left), point targets (middle), and re-
construction grid. Two scenarios are considered for the point targets phantom.
The first tracks the response of each reconstruction method to a single point
target as it moves across the domain. The second explores the algorithms’
responses two two point targets located close together vs. further away.

3.2. Figures of Merit. Most EIT reconstruction methods allow control of the trade-off
between resolution and noise performance. We use the term “hyperparameter” for the pa-
rameter which controls this behavior. For, D-bar, the parameter is the radius R of the
admissible scattering data in (4). Regularized techniques use a hyperparameter to control
the weighting of the regularizing penalty function. In RL, this hyperparameter is λ, while
for GREIT this hyperparameters is typically converted into a noise figure (NF) value.
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Since each method has an independent parameter space, a “fair” method to select compa-
rable values was needed. We chose a method based on the “L curve” [Hansen and O’Leary
(1993)]. We use the notation that a reconstruction method at hyperparameter value λ cal-
culates an image xλ from difference EIT data y. We then find the best fitting multiplicative
factor fλ which minimizes the norm

(15) Dλ(x) = ‖F (σref + fλxλ)− F (σref)− y‖2.

For each reconstructed image we calculated two norms, an image norm Ψλ = ‖Lx‖2

(equal to the regularization penalty function), and a data misfit Dλ. We chose L as a matrix
formulation of the discrete Laplacian on the reconstruction FEM and the ‖ · ‖2 norm. We
note that these norms are the ones used in the RL algorithm, which thus had an “advantage”
in the sense that it was formulated to minimize the norms against which it is subsequently
evaluated.

Next, we plotted Ψλ against Dλ and selected λm as the hyperparameter value at the L-
curve corner. Since in EIT the L-curve minimum is typically over-regularized with respect
to a visual selection, we also chose values, λ2m, λ3m, and λ4m, where λKm was chosen so that
the image norm ΨλKm

= KΨλm was a multiple of the L-curve minimum. Using the zero
noise ‘Pac-Man’ data, the parameter values λm, λ2m, λ3m, and λ4m were chosen and then
held fixed across all other experiments. The parameters were thus fixed at λ = 46.4× 10−3,
λ = 5.41 × 10−3, λ = 0.903 × 10−3, and λ = 0.215 × 10−3 for the RL method, NF=0.921,
NF=3.43, NF=9.19, and NF=36.4 for GREIT, and R = 4.0, R = 5.6, R = 6.6, and R = 7.6
for the D-bar method.

Target
rqrt

A B Ar ∝ Σixi

Pe = rt − rq

Res =
√
Aq/A0

Figure 2. Illustration of figures of merit used. A: Reconstructed image with
position of the simulated target, rt. B: Thresholded reconstructed image, with
center of gravity, rq.

In order to evaluate reconstruction algorithm performance, various figures of merit (FoM)
have been proposed over the years. We chose FoM which were proposed in [Adler et al.
(2009)] and have subsequently seen fairly wide application (Figure 2). For this calculation,
small targets were simulated at known radial positions, rt in a cylindrical medium. From
each reconstructed image, A, a threshold was chosen at 1

4
of the maximum difference, and a

thresholded-image, B calculated. The center of gravity of B is rq and its area Aq. We used
parameters: Ar (amplitude response) equal to the sum of all image elements (scaled so the
center target is 1), Pe (position error) the difference in original to reconstructed position,
and Res (resolution) the square root of the resolution ratio compared to the medium (π).
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4. Results

The first step was an analysis of reconstructions parameter values using the L-curve ap-
proach, as shown in Fig. 3. For each reconstruction method (and two variants of the D-bar
method) images were calculated across a large range of hyperparameter values. Data were
simulated using the ‘Pac-Man’ model (1) with no-noise (N0) and two levels of added noise
(N1, N2). To ensure comparability, the same noise values were used for all images. For each
reconstruction method, ten representative hyperparameter values were chosen corresponding
to the L-curve minimum, m, and its multiples, as well as examples of extremely smooth (left
images) and noisy (right images).

We note that the L-curve shape displays a “folded” pattern in which the noisiest images
have an increased data fit in comparison to the L-curve minimum. This effect is explained by
the mismatch between the forward and reconstruction models, and is most severe for D-bar,
which does not perform an explicit fitting of a forward model.

The visual patterns are reflective of the details of each method. For N0, the pattern of noise
at the right reflects the effect of model mismatch. This effect is seen as a boundary artefact
for RL and as a more interior noise in GREIT. The pattern of noise is also central, and has
a lower spatial frequency in D-bar, and this depends on the threshold chosen. Thresholds
of 2.5 and 5.0 were used. The accuracy with which the methods were able to reconstruct
features of the target varies across algorithms. For example, the edges of the ‘Pac-Man’
“mouth” were best reconstructed by RL, and this effect was likely due to the closeness of
match of the RL forward and inverse models. For the noisy images, N1 and N2, the visual
effect became more severe for as the hyperparameter increased from m up to 4m. Again the
visual pattern of the projected noise had a different behavior in D-bar vs. the regularized
algorithms.

To explore the spatial variation in image reconstruction performance, Figure 4 shows the
images reconstructed for small targets moving from the center to the edge of the domain.
For all methods, as expected, the resolution is relatively low at m, but improves as the image
norm is allowed to increase 2m . . . 4m. We note that D-bar shows a very spatially uniform
reconstruction: both the resolution and the “ringing” region around it is extremely uniform
with position. The RL method shows a characteristic improvement in resolution toward
the boundary, and also displays a changing spatial pattern with a increase in the level of
ringing with a smaller reconstructed target near the boundary. The GREIT algorithm shows
somewhat more uniform spatial resolution than RL, but less so than D-bar. It also shows
much lower levels of ringing, as is expected since this was a key design requirement for the
algorithm.

To quantify the image reconstruction characteristics of Figure 4, we calculated figures of
merit for the amplitude (Ar), position error (Pe) and resolution (Res) (Figure 5). Ar
is roughly uniform for regularized algorithms, but is less uniform at the hyperparameters
corresponding to 4m than m. Here D-bar has an oscillating Ar behavior with a spatial
frequency that increased with image resolution. This spatially-varying behavior appears to
be due to the ringing in the D-bar images; as a part of the otherwise spatially-uniform image
response is “cut” outside the domain, the Ar varies with the amplitude of the ringing.

Pe was fairly low for all methods and increased toward the medium boundary. Pe was
lower for GREIT than RL, again because this is a design requirement for the method. For
both regularized methods, Pe was higher for hyperparameters corresponding to m than 4m,
largely due to the increased Res. On the other hand, D-bar showed a very uniform Pe with
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Figure 3. Left: Reconstructed difference images displayed for varying hy-
perparameters from smoothest reconstruction to least smoothed for the RL,
GREIT, and D-bar methods. D-bar reconstructions are shown for a fixed
threshold of 2.5 as well as 5.0. Each row in the respective subfigures corre-
sponds to a different data noise level. The boxed images (m) correspond to the
L-curve minimum selected from the corresponding L-curve shown on the right.
Images 2m, 3m, and 4m correspond to reconstructions whose image norms are
2, 3, and 4 times the L-curve minimum. Right: The “L curve” of data-norm
(horizontal axis) vs. the image-norm (vertical axis) with each square marker
corresponding to a reconstruction on the left for the noise levels: N0 : No noise
(yellow), N1 : SNR=105 (blue), and N2 : SNR=104 (red).
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Figure 4. Images as a function of position using the single moving target
phantom in Figure 1. Simulated target positions are shown above (Sim). Re-
constructions are compared for RL (first), GREIT (second), and D-bar with
a threshold of 5.0 (third). Fixed parameter values of λ, NF, and R were used
for the algorithms.
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both radial position and with hyperparameter level, except for right next to the boundary
for some hyperparameter values. Using a calibration factor (i.e. spatially scaling the image
by about 5%), it would be possible to create D-bar images with very low Pe. The Res for
the regularized methods was large in the center but decreased (improved resolution) toward
the boundary. This effect was less visible in GREIT than RL, because GREIT explicitly
seeks to achieve uniform, rather than small, Res. This spatially-varying behavior was not
seen in D-bar, which had extremely uniform resolution at all radial positions.
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Figure 5. Figures of merit for the reconstructions of the single point-targets
shown in Figure 4, computed as a function of radial position (horizontal axis
with center 0 and boundary 1).

The ability of EIT to resolve separate objects was determined by the resolution and also
influenced by image reconstruction features such as ringing. Figure 6 shows the images as
a function of target separation. Using the point target phantom, Figure 1, targets were
simulated at opposite radial positions, moving away from each other. The resulting images
show the resolving ability of each algorithm as a function of hyperparameter. There is a
clear influence of both the point resolution and the ringing in each case.

Lastly, we explored the ability to reconstruct difference images where electrodes move
between measurements, as shown in Figure 7. These figures reconstructed data from the
‘Pac-Man’ phantom, in which the electrode in the center of the “mouth” was moved between
the Vσ and Vref measurements. These reconstructions evaluated the ability of the algorithms
to manage data with uncertainty in the electrode positions for four fixed regularization
parameters. For all methods, with the hyperparameter corresponding to m, very little effect
of electrode movement was seen, but the effect increased and was visible for all methods at
4m. Overall, the influence on the reconstructed image is greatest for the RL algorithm and
least for D-bar when looking at the response of the algorithms to only electrode displacement.
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Figure 6. Comparison of reconstructions with a two moving targets for RL
(first), GREIT (second), and D-bar with a threshold of 5.0 (third) with fixed
parameter (λ, NF, R) values corresponding. Simulated target positions are
shown above (Sim).

For the regularized approaches, the electrode movement effect was seen largely at the medium
boundary, while for D-bar there effect appeared to move inside the domain as well (only for
4m).
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Figure 7. Reconstructions of an electrode position error for the ‘Pac-Man’
phantom. The electrode at the “mouth” was moved between voltage measure-
ments by the indicated amount (degrees). Fixed values of the regularization
parameters (λ, NF, R) were used.

5. Discussion and Conclusions

In this paper we compared three reconstruction methods for 2D difference EIT that are
linear once regularization parameters are chosen. While GREIT and RL explicitly trade off
data fit of the linearized problem against a penalty on the image term, D-bar uses an explicit
theoretically-devised approximate inverse where regularization is applied at an intermediate
step.

Our analysis in this paper was limited to the region where linear difference EIT reconstruc-
tion is valid. All simulated contrasts were constrained to be small to ensure this validity.
This means that this paper does not explore the very interesting comparison of D-bar and
iterative regularized methods in cases where the non-linearities are important. The small
level of contrasts also explains why very small levels of noise (SNR=105) have a perceptible
influence on the reconstructed images.

Numerous differences were seen between the reconstruction behavior of D-bar and that
of regularized algorithms. To our knowledge, we are the first to observe these effects and
thus cannot validate them against other reports. In many cases, the behavior is consistent
with our understanding of the mathematics of the methods; however, in some cases these
differences are less well understood and would merit further study, see end of this section.

The GREIT and RL methods have a position dependent resolution operator. Since the
sensitivity of boundary measurements to a conductivity change decreases with distance from
the driven and measurement electrodes, these methods compensate for the lack of information
in the measurements by applying the a priori information included in the regularization
term which results in broader point spread function. The effect of noise in the data on the
reconstructed images is very different in the case of D-bar and regularized approaches. RL
(and to a lesser extent) GREIT “project” noise to the image boundary, while the noise in
the D-bar images is roughly uniformly distributed. In regularized algorithms, this boundary
effect can be explained by the increased sensitivity of EIT near the electrodes; if a method
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wants to “explain” measurement noise, it can do it most economically using contrasts at the
boundary.

Measurements near the boundary are inevitably much more sensitive to changes in elec-
trode position and changes in the boundary shape than they are to conductivity changes
deep in the body. In [Lionheart (1999)] the case is made that the dimension has the biggest
effect and 2D data will generally not fit a 2D model. It is also claimed that one needs to
get the shape and electrode positions correct before one can expect to use the measurements
to fit the conductivity. However that is not the whole story as the boundary voltage data,
in the linear approximation, contains some components that are related only to conductiv-
ity changes and not confounded by shape and electrode position error [Boyle et al. (2012);
Lionheart (1999)]. We observed that D-bar appears to be much less sensitive to electrode
position errors than regularized reconstructions, holding the regularization parameter fixed.
Future work will explore and quantify the effect of boundary shape errors across methods,
in particular for the D-bar method.

In this work, we present numerical evidence for these properties of D-bar, but we hope
that a greater theoretical understanding will follow in the future. If we can understand
theoretically the approximate position invariant point spread function and the robustness to
electrode position error in D-bar difference imaging, then there is a hope that it will spur
the development of 3D EIT reconstruction methods with the same qualities.

D-bar methods use a complete set of voltage data from the system of electrodes, and
approximate the continuum Dirichlet-to-Neumann map from those measurements. In this
paper, we used this complete data set for all methods, whereas several biomedical EIT
systems discard the voltages on driven electrodes. Future research will include studying the
effect of interpolating this missing data using a priori assumptions about the conductivity
near the boundary.

Regularized Linear difference methods, as well as the regularized non-linear fitting meth-
ods, are derived from systematic assumptions about the noise distribution in the data and
a priori assumptions about the image. By contrast D-bar methods use an explicit recon-
struction method that is exact for noise free continuum data. This situation is similar to
exact methods for CT reconstruction, such as filtered back projection in 2D and Katsevich’s
method in 3D, in that regularization is applied at an intermediate step. These methods also
do not include an explicit forward problem so that the misfit to the data is not calculated
and the effect of inconsistent data unpredictable. In EIT, we do not have a complete charac-
terization of the range in 3D, so in contrast to CT it is harder to detect inconsistent data. In
EIT and CT, data fitting methods give a reasonable idea of inconsistent data as the residual
difference between fitted forward model and measured data will be large. An interesting area
for future exploration is the combination of explicit inversion methods such as D-bar with a
forward model test consistency, a work we began in this work with the L-curve plots.
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