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Characterization of biometric template aging in a
multi-year, multi-vendor longitudinal fingerprint

matching study
John Harvey, Student Member, IEEE, John Campbell, and Andy Adler, Senior Member, IEEE

Abstract—Biometric features are known to change over time,
presenting a challenge for their use in identity management sys-
tems. Viewed as an instrumentation and measurement problem,
these changes represent a potential source of measurement or
calibration error that need to be addressed at the system level in
order to guarantee performance over the lifetime of the system.
In this paper we develop a novel metric, which we call biometric
permanence, to characterize the stability of biometric features.
First, we define permanence in terms of the change in false non-
match ratio (FNMR) over a repeated sequence of enrolment
and verification events for a given population. However, since
changes in FNMR are expected to be small, any variability in
the biometric capture over time will camouflage the changes of
interest. To address this issue, a robust methodology is proposed
that can isolate the visit-to-visit variability, and substantially
improve the estimation. We develop and characterize a heuristic
statistical model for a biometric capture system, and apply it to
a large dataset of fingerprint biometrics collected over a period
of seven years on a variety of commercially-available capture
devices. We discuss how this methodology can be used to isolate
the effect of biometric template aging and to develop system-level
strategies for dealing with it.

I. INTRODUCTION

ABIOMETRIC identity management system (IDMS) pro-
vides the ability to identify, or to verify the claimed

identity of, an individual based on a comparison between a
presentation of some biometric trait such as a fingerprint [1],
an iris image [2], a pattern of blood vessels [3], or an analysis
of gait [4] and a stored record of the same trait commonly
known as a biometric template.

An assumption underlying the deployment of such systems
is the stability of the chosen biometric features – that is, that
the biometric trait will remain, over the expected lifetime
of the credential, sufficiently similar to that of the template
to enable a positive comparison. In applications such as
biometrically-enabled passports, stability over a period of five
or ten years is desirable in order to align with current renewal
policies for such credentials [5]. From a physiological point
of view however, it is natural to expect some change in traits
over time. For example, a subject’s loss or gain in weight
may affect measurements of hand geometry [6], while the
onset of degenerative disease, injury, or occupational damage
may affect fingerprints [7], [8]. As an instrumentation and
measurement problem, biometric capture has in this respect
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something in common with many clinical monitoring and med-
ical imaging systems: that is, the systems should be sensitive
to clinically significant changes (in the case of biometrics, a
change of identity) while remaining relatively insensitive to
benign morphological changes arising from simple aging or
weight gain for example.

The age progression of biometric traits has perhaps re-
ceived most attention within the facial recognition modality.
Lanitis & Tsapatsoulis [9] proposed a measure of biometric
aging that they called “Aging Impact” (AI), derived from
the homogeneity and dispersion of a collection of templates.
Although the primary focus of their work concerned facial
images, finger- and palm-print images were also considered;
however they applied their method to individuals within
different age classes, rather than to repeated measures of
the same individuals over time as in the present work. The
focus of much subsequent work has been the development
and evaluation of artificial age progression algorithms for
forensic applications [10], [11], rather than for biometric
IDMSs. Meanwhile Manjani et al. [12] detected aging in 2D
and 3D facial biometrics, by comparing genuine acceptance
rate (GAR) at 0.1% false acceptance rate (FAR) for short-
term intervals (less than three months between enrolment and
verification) versus long-term intervals (more than five years
between enrolment and verification). Fingerprint aging might
be expected to share some of the same physiological factors
as face aging – in particular, skin textural changes and loss of
tissue elasticity – and has been reported by Uludag et al. [13],
who proposed to address its system-level implications via a
template update scheme using prototypical templates based
on either clustering or on mean feature distance. Aging has
also been observed in iris templates [14], where it has been
at least partially attributed to age-related changes in pupillary
diameter [15]. The influence of biometric sample quality on
template aging was highlighted by Ryu et al. [16], who found
that lower sample quality (evaluated using the NIST NFIQ
measure [17]) was associated with an increased number of
matching errors.

In common with many other instrumentation and measure-
ment systems, biometric systems are subject to numerous
sources of error. In order to develop strategies to ameliorate
such errors, it is useful to separate and characterize them indi-
vidually [18]. For example, random errors might be addressed
by increasing the signal-to-noise ratio (SNR) margin, whereas
systematic drifts may require development of re-calibration
strategies: in the case of a biometric IDMS, that might take
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the form of a periodic re-enrolment requirement. The chief
difficulty in evaluating biometric template aging lies in the
small effect size and confounding factors including physical
environment (particularly temperature and humidity [19]),
operator and/or subject acclimation [20], and degradation of
the particular biometric capture hardware – in the case of the
fingerprint modality, this might include scratching or marring
of sensor platens for example. In the context of a longitudinal
study, these sources of error are essentially systematic in
the sense that they affect all biometric presentations under a
particular set of test conditions: since biometric comparisons
necessarily involve both a current presentation and a gallery of
previously enrolled templates, each comparison is affected by
two such systematic terms, which we refer to as visit biases.

The goal of this work is to characterize template ageing
in the fingerprint modality, for a number of commercially-
available fingerprint sensor devices and technologies, and to
understand its impact on the deployment and operation of
fingerprint-based IDMSs. First, in Section II we outline the
definition and properties of our metric, Biometric Permanence,
PB ; next in Section III we describe the design of our study,
including subject demographics and data colletction protocols.
Section IV proposes a heuristic model for the study data
and describes, with select results, the methodology used to
estimate PB . Finally, in Section V we attempt to justify,
through further data analysis, the key assumptions underlying
the methodology.

II. BIOMETRIC PERMANANCE

Here we expand on [21], in which we proposed a measure
called biometric permanence, PB(∆t), at a given elapsed time
∆t, as follows

PB(∆t,FMR) =
1− FNMR∆t

1− FNMR0
(1)

based on the change in false non-match rate (FNMR) at a given
false match rate (FMR) [22]. The definition was motivated
by operational considerations i.e. that template ageing will
manifest itself as a decrease in the security and/or convenience
provided by the biometric system at a given operating point.
Since it is usually operational security that is of primary
concern, it is natural to fix FMR and consider the change
in FNMR. A schematic overview of the development, starting
from the empirical match scores, is shown in Fig. 1. At time
zero, we enrol subjects into a biometric IDMS, generating
a set of biometric templates. At the same time, we capture
an (independent) set of baseline verification images. These
images are compared against the templates to give a collection
of labelled (i.e. genuine or imposter) biometric match scores,
whose distributions may or may not be completely separable
at some decision threshold θ. Some time later, new verification
images are obtained, and the corresponding genuine and
imposter match scores are evaluated again. Changes in the
match score distributions will be manifested in a shift of the
decision error tradeoff (DET) curve i.e. a change in the FNMR
at a given FMR. This change in FNMR is expressed as a
permanence value for the enrolment-verification time interval.
As well as reflecting the underlying performance degradation
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Fig. 1: Overview of the method: (a) empirical match score
distributions immediately after enrolment (top), and after some
time interval (bottom); (b) change in classification accuracy
represented on a decision error tradeoff (DET) curve: arrows
indicate the directions of increasing security and convenience;
(c) permanence PB derived from the change in FNMR at fixed
FMR according to Eq. 1
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mechanism, other desirable features of this formulation are:
• permanence PB increases towards unity as FMNR∆t

tends towards FMNR0; this case would correspond to
a perfectly permanent template

• permanence PB decreases towards zero as the FMNR∆t

increases towards unity; a biometric template might be
said to be completely impermanent at this point

In the pathological case where FNMR∆t < FNMR0 , PB

would be greater than 1.
In [21], we assumed that the performance degradation

would be dominated by changes in the genuine match score
distribution, implying that, for a fixed decision threshold,
the FMR would remain constant while the FNMR degraded:
this is generally the most desirable degradation mode for a
biometric system since it would result in no loss in security.
In the present work, we remove that restriction and allow
for variation in both the genuine and imposter scores. In an
operational setting, the formulation of PB according to Eq. 1
then implies adjustment of the decision boundary in order to
maintain the desired FMR. We discuss the relative magnitudes
of the imposter and genuine distribution variabilities for the
devices in our study in Section V.

III. STUDY PROTOCOL AND DEMOGRAPHICS

In order to detect biometric template aging, and to evaluate
our methodology, we need a dataset of similarity scores eval-
uated for the same subjects at different enrolment-verification
time intervals. Ideally the biometric collection should take
place under well-controlled conditions with a consistent pro-
tocol, in order to control (so far as possible) for confounding
environmental factors.

In our study, data were collected in four phases, each con-
sisting of a pair of subject visits separated by approximately
two weeks in each of the years 2006, 2008, 2012 and 2013.
Approximately 200 participants were recorded in each phase,
with more than 100 taking part in at least two phases and over
70 being present in all four (Figure 2). The protocol for each
subject visit consisted of a sequence of two-finger enrolments,
followed by a sequence of single-finger verification presenta-
tions [23], [24]. Preferred fingers for enrolment were right and
left index in the first instance; however if either of these was
unavailable (or failed to enrol) alternate fingers were offered
in the order right thumb, left thumb; right middle, left middle;
right ring, left ring; and finally right and left “pinky” fingers.
In subsequent enrolments, previously enrolled fingers were
preferred in order to maximize the number of potential genuine
matches. Three bitmapped images of each candidate finger
were captured during each enrolment, and a further six images
(in two distinct three-presentation verification attempts) per
enrolled finger during each verification, such that a typical
visit resulted in eighteen single-finger images per subject per
device. In each subject visit, the order in which devices were
presented for both enrolment and verification was randomized
under software control in order to counterbalance for subject
and operator acclimation.

The study was approved by the Carleton University Re-
search Ethics Board, subject to restrictions on the storage and
sharing of personally identifiable information.

Fig. 2: Overlap of participants between data collection phases
(the 2013 collection is omitted for clarity; it overlaps almost
completely with 2012).

TABLE I: Available devices and sensor technologies

ID Sensor technology Image dimensions (pixels)
A. Optical 420x480
B. Optical 456x480
C. Optical 524x524
D. Optical 640x480
E. Optical 416x416
F. Optical 512x512
G. Optical 524x524
H. Multispectral optical 352x524
J. Optical 524x524

K. Optical 620x620
L. Capacitive semiconductor 256x360

Twelve different commercially-available fingerprint sensor
devices were obtained, representing multiple vendors and
technologies: single-spectral optical, multi-spectral optical and
capacitive (Table I). Unfortunately, the contractual terms under
which the fingerprint device vendors provided acquisition
devices and software to the study do not permit more detailed
attribution. To our knowledge, all of the optical sensors
are based on frustrated total internal reflection. Ages of the
participants at the time of the most recent collection ranged
from 15 years to 70 years. In excess of 15,000 ISO/IEC
standards-compliant two-finger biometric enrolment templates
were generated, and nearly 200,000 bitmapped single-finger
verification images were collected: together, these allowed us
to synthesize nearly 250 million single-finger match trans-
actions, with approximately 900,000 genuine (same subject,
same finger) matches (Table II).

TABLE II: Numbers of genuine and imposter scores

ID Genuine Imposter ID Genuine Imposter
A 92243 24418495 G 62476 15301808
B 93630 25282974 H 61698 14901522
C 91326 24352257 J 57803 13646908
D 98725 27124531 K 98872 27125117
E 56047 14296890 L 99328 27350928
F 98874 27215472 Tot. 911022 241016902
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IV. ANALYSIS

A. Methodology

As in [21], we seek to evaluate biometric permanence,
PB(∆t) according to Eq. 1, where FMR and FNMR are
the false match and false non-match rates obtained by binary
classification of a set of labeled match scores, each score
corresponding to a (generally, vendor-dependent) measure of
similarity between a presentation of a subject’s biometric at
occasion n (“verification”), and a biometric template from a
gallery of such templates recorded on occasion m (“enrol-
ment”), with ∆tn,m being the time interval between enrolment
and verification, or template age.

Our methodology is motivated by a simple additive model
for the measurement errors in the similarity scores. In the
following section, a biometric presentation refers to a single,
fixed resolution, uncompressed bitmapped image of a finger-
print, while a template refers to a record of fingerprint minutiae
types and locations extracted during subject enrolment, as
described in [23], [24]. We assume there is some true score
sjinm between biometric presentation j in the nth verification
visit, and a template i from the mth enrolment visit. In the
context of fingerprints, i and j index a specific finger of
a specific subject; j = i therefore correspond to genuine
matches, and j 6= i to imposter matches. Then we postulate
the following error terms:
• a pair of visit biases am, bn representing systematic

differences in the conditions of the data collections such
as operator training, subject acclimation, humidity and
so on for (respectively), the enrolment visit m and the
verification visit n;

• a stochastic term W ji representing the natural variability
between repeated presentations of the same biometric.

Without loss of generality we can choose the W ji to
be zero-mean. In our protocol, we collect six images (in
two contiguous verification attempts, each consisting of three
presentations) and their averaged scores may then be modeled
as

sjinm = sjinm + am + bn +W
ji

(2)

This presentation averaging step is not essential to the
methodology that follows; however it is expected to reduce
the variance of the stochastic error term. We then observe that,
in our experimental protocol, both enrolment templates and
verification images are obtained from the same subject cohort
at each visit. This allows us to evaluate the average difference,
forward and backward in time, between the match score of
biometric presentation j against template i with template age
|∆tnm|, relative to the average score at ∆tnn = ∆tmm = 0,
as

∆sjinm (am, bn,Wij ; ∆tij) =
1

2

(
sjinm + sjimn − sjimm − sjinn

)
=

1

2

(
sjimn + am + bn +W

ji

0

+sjinm + an + bm +W
ji

1

−sjimm − am − bm −W
ji

2

−sjinn − an − bn −W
ji

3

)

where the W
ji

k are assumed i.i.d. with the distribution of W
ji

,
i.e.

∆sjinm (Wij ; ∆tij) =
1

2

{(
sjinm + sjimn

)
−
(
sjimm + sjinn

)
+

3∑
k=0

(−1)kW
ji

k

}
(3)

in which it is seen that the bias terms have been eliminated,
leaving just the averages of the forward and backward true
scores and the baseline ∆t = 0 scores for the corresponding
visits. Meanwhile the stochastic terms, being uncorrelated,
should add on an RMS basis such that

var

(
1

2

3∑
k=0

(−1)kW
(k)

ji

)
= var

(
W

(k)

ji

)
(4)

leaving the signal-to-noise ratio of the measurement effectively
unchanged.

Phenomenologically, am (defined as a positive constant)
would represent an amount by which all enrolments in visit
m read “better than” their true value, with bn being the
corresponding amount for verification visit n. This is really
the simplest model we can envisage, in which the confounding
factors of enrolment and verification are considered to be
independent – the extent to which this model is reflected in
the real data will determine the success of the method, which
we investigate below.

B. Data analysis

In our procedure, the averaged “matched deltas” ∆sjinm from
Eq. 3 are averaged again across a particular pair of enrolment
and verification visits m,n to give mean genuine and imposter
score offsets ∆sGnm and ∆sInm for the visit pair. We then
aggregate the corresponding zero-time genuine and imposter
scores {siikk}, {s

j 6=i
kk }; k ∈ 1 . . . N and use these aggregate

distributions shifted by the respective mean offsets ∆sGnm,
∆sInm to evaluate PB according to Eq. 1 at time interval
∆tmn. We use bootstrap resampling [25] of the aggregate
distributions in order to estimate 95% confidence intervals for
PB , as follows. First we arrange the aggregate genuine and
imposter scores into a vector

(
siikk, s

j 6=i
kk

)
along with a vector

of class labels (1nG
,OnI

) where nG, nI are the genuine and
imposter class sizes in the sample. The aggregate vector is then
resampled, with replacement, nB = 1000 times with sampling
weights inversely proportional to class size in order to remove
class imbalance.

Since an offset ∆S
I

to the imposter distribution is exactly
equivalent to a shift in the threshold θ → θ + ∆S

I
for

the chosen FMR, we just need to evaluate 1 − FNMR (or,
equivalently, the true match rate TMR) at a set of thresholds
θnm = θ̂0 + ∆sInm −∆sGnm. In fact, since we defined PB as
a ratio, it suffices to work with the raw genuine score counts
i.e. the permanence is estimated for each bootstrap sample as

P̂B =

∣∣∣{siikk : siikk > θ̂0 + ∆sInm −∆sGnm}
∣∣∣∣∣∣{siikk : siikk > θ̂0}

∣∣∣ (5)
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TABLE III: Estimated 95% confidence intervals for perma-
nence, PB after 7 years, by device

ID Permanence, PB (%) ID Permanence, PB (%)
A. 92.4 ± 0.33 G. 95.9 ± 0.38
B. 100 H. 99.5 ± 0.12
C. 98.3 ± 0.24 J. 100
D. 96.1 ± 0.27 K. 97.2 ± 0.19
F. 98.6 ± 0.08 L. 95.5 ± 0.23

evaluated for each enrolment-verification visit pair n,m
(Fig. 3).

∆S
I

∆S
G

θ̂0

Match score

C
ou

nt

Fig. 3: A shift in the mean imposter score results in a shift in
the estimated decision threshold θ̂0 for a specified FMR (red
area) – and a corresponding change in the achievable TMR
(blue area) for the shifted genuine scores.

C. Results
Representative results of this procedure are shown graphi-

cally in Fig. 4, with comparison to a “naive” evaluation that
does not attempt to account for visit bias.

In the top and middle rows of Fig. 4 we see the evolution of
the typical observed aging behavior of the devices in our study.
First, we note that the baseline (∆t = 0) score distributions
Fig. 4a, Fig. 4d are not separable; that is, there is no choice of
binary threshold for which the probability of misclassification
may be made arbitrarily small. Correspondingly, the decision
error tradeoff (DET) curves Figs. 4b, 4e are displaced from
(0, 0) at ∆t = 0 (blue curve) and become further displaced
as the template ages (red curve), indicating an increased
misclassification probability. Finally in Figs. 4c,4f we see the
permanence PB according to Eq.1 decrease monotonically
away from template age ∆t = 0.

Two of the available devices (B and J) did not show this typ-
ical behavior. Instead, they showed well-separated genuine and
imposter score distributions at ∆t = 0 (Fig. 4g) which essen-
tially remained separable over the whole duration of the study.
Hence we see both ∆t = 0 (blue) and ∆t = 7years (red)
DET curves achieving FNMR = 0 at FNMR = 0 (Fig. 4h)
and correspondingly no discernable change in permanence PB

in Fig. 4i.
Results for all the available devices in our study are sum-

marized in Table III.

V. DISCUSSION

The values of PB derived using the preceding methodology
show one of two distinct characteristics: either monotonically

decreasing over the course of the study, or constant, depending
on the specific device under test. These characteristics seem
intuitively reasonable when we consider the baseline (relative
template age ∆tmn = 0) genuine and imposter score distribu-
tions: those that are essentially separable at ∆tmn = 0 remain
so for the duration of the study, while those whose genuine
and imposter scores overlap at ∆tmn = 0. In no case did we
observe an increasing trend in PB over time: in this respect,
we believe that our methodology exhibits convergent validity
with respect to the recorded template ages.

For the two devices that showed no change in permanence,
the analysis is likely affected by the large class imbalance
inherent in such biometric comparisons. That is, for a dataset
of K distinct fingers, there are of order K2 imposter matches
but only K genuine matches, which causes the tails of the
genuine match score distributions to be much less well defined
than those of the imposter distributions. This in turn makes it
hard to estimate with confidence the threshold at which to
evaluate the corresponding FNMR for the permanence calcu-
lation. While the bootstrapping procedure described in IV-C
attempts to ameliorate this effect, if the empirical distributions
are seperable, then no amount of re-sampling can guarantee
that there will be a non-zero FNMR at the chosen FMR. In this
regard, a larger study size would have increased the probability
of observing aging behavior where present.

Since the majority (8 out of 10) devices did show a
measurable reduction in permanence over the 7 years, we
believe we have observed template aging over this time span.
A time span of 7 years is broadly in line with common renewal
intervals of documents such as biometrically enabled passports
(typically either 5 or 10 years), and therefore should be of
practical interest to the end users of such technologies. It
would be particularly interesting to extend the duration of the
study to see whether they eventually showed a similar trend
in discriminability.

In the following sections we discuss some other aspects of
the data, and their potential impact upon the interpretation of
our results.

A. Time symmetry of the match scores

A key assumption that allows us to substantially remove the
visit-to-visit bias factors is that the underlying “true” match
scores are time-symmetric: that is, in the absence of these
factors, comparisons between a biometric enrolment obtained
at time t1 and a set of verification presentations at later time
t2, and between a biometric enrolment obtained at time t2
and a set of verification presentations at earlier time t1, have
the same expected match score. (‘Expected’ because there will
still be presentation-to-presentation variability, denoted by the
W ij terms in our formalism.) The extent to which this is
the case will depend on the algorithm and implementation of
the similarity measures used: we might imagine that a simple
degree-of-overlap measure to be time-symmetric, whereas a
more heuristic matcher might not be. For example, consider
the case in which the number of extractable fingerprint minu-
tiae decreases with time, perhaps due to occupational injury
or environmental damage; when applied in the reverse time



6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

2

4

6

8

10

12
x 10

4
Im

po
st

er
 c

ou
nt

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

20

40

60

80

100

120

G
en

ui
ne

 c
ou

nt

(a) Genuine (blue) and Imposter (red) score
counts at ∆t = 0
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(b) Decision error tradeoff (DET) curve at
∆t = 0 (blue) and at ∆t = 373 weeks (red)

(c) Permanence versus template age: “naive”
calculation (red); present method (blue)
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(d) Genuine (blue) and Imposter (red) score
counts at ∆t = 0
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(e) Decision error tradeoff (DET) curve at
∆t = 0 (blue) and at ∆t = 373 weeks (red)

(f) Permanence versus template age: “naive”
calculation (red); present method (blue)
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(g) Genuine (blue) and Imposter (red) score
counts at ∆t = 0
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(h) Decision error tradeoff (DET) curve at
∆t = 0 (blue) and at ∆t = 373 weeks (red)

(i) Permanence versus template age: “naive”
calculation (red); present method (blue)

Fig. 4: (select results) (a)-(c): Device L (capacitive); (d)-(f): Device K (optical); (g)-(i) Device B (optical). The histograms
(column 1) are scaled to account for the large class imbalance between Genuine and Imposter. DET curves (column 2) are
generated using the “matched delta” methodology described in the text. The permanence results (column 3) demonstrate the
reduction in the confounding effect of visit biases due to our method; error bars correspond to the 95% bootstrap confidence
intervals described in the text; the solid lines represent simple best fits to the data and are intended only as an aid to visualization.

direction, a heuristic might consider the apparent increase in
minutiae count to be implausible. Unfortunately such imple-
mentation details were not available for the devices in our
study.

B. Constancy of the imposter distributions

Intuitively, we might expect the imposter score distribution
to be relatively insensitive to template age, since factors that
decrease the similarity between any given pair of subject-
fingers may increase the similarity between other such im-
poster pairs1. However this does not allow for gross differences

1This in fact was an assumption made in our previous work [21].

in biometric presentation quality between different pairs of
visits. We attempted to quantify the relative contributions of
mean changes in imposter scores and those of the genuine
match scores as follows.

It is important here to distinguish between statistically
significant changes, and changes of significant effect size:
since the imposter sample sizes ( ∼ K2, for a sample of
K distinct subject-fingers) are approximately two orders of
magnitude larger than those of the genuine matches (∼ K, for
the same set of subject-fingers), it is almost always possible to
reject the null hypothesis that the imposter samples at ∆tnm
come from the same distribution as those at ∆tmm. First we
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define a discriminability measure Qnm for a pair of visits n,m
as the ratio of the difference in sample mean score between
genuine and imposter presentations to the sum of their sample
standard deviations

Qnm =
mG

nm −mI
nm

sGnm + sInm
(6)

This measure is similar to the Mahalanobis distance familiar
from linear discriminant analysis (LDA); the form chosen here
is widely used for characterizing the error probability in a
binary optical communication channel [26]. We then define
the visit-averaged quantities

mG =
1

NM

N∑ M∑
mG

nm sG =
1

NM

N∑ M∑
sGnm (7)

mI =
1

NM

N∑ M∑
mI

nm sI =
1

NM

N∑ M∑
sInm (8)

allowing us to express the contributions of the genuine and
imposter score variability separately as

Q(G)
nm =

mG
nm −mI

sGnm + sI
Q(I)

nm =
mG −mI

nm

sG + sInm
(9)

i.e. Q(G)
nm is the discriminability of the scores between visits

nm when the imposter mean and standard deviations are held
constant at their visit-averaged values, and Q

(I)
nm the corre-

sponding discriminabilities this time with the genuine mean
and standard deviations held constant. Finally, we evaluate the
fractional contribution of the imposter scores to the root mean-
square variation in discriminability over the set of visits as

∆Q(I)

∆Q
=

√√√√var
(
Q

(I)
nm

)
var (Qnm)

(10)

where var (x) is the variance of x. Values of ∆Q(I)/∆Q for
each of the devices in our study are summarized in Table IV.

In light of this observed variability in imposter scores, we
chose to extend the original method of [21] to include the
imposter matched delta term ∆sInm in the present work.

The discriminabilities of the devices with the lowest and
one of the higher imposter contributions from Table IV were
visually examined using box plots (Figs. 5a and 5b). (The
device with the very highest imposter contribution, Device H
at 26.45%, was not chosen since its data were only available
for six of the eight visits, making direct comparison difficult.)
Although these plots confirm clear trends in discriminability,
with particularly obvious peaks at each of the ∆tnm = 0
distributions in the case of Device F (Fig. 6b), they also high-
light a weakness in our treatment: while the “matched delta”
methodology seems physically reasonable for the underlying
biometric, it does not take into account any thresholding or
similar non-linear processing of the raw match scores. In
particular, whereas the box plots of Fig. 5a fit well to our
assumption that the distributions change in their mean value
rather than their shape, those of Fig. 5b show distinct limiting
behaviour in the - processed - genuine distributions.

TABLE IV: Relative effect of the imposter distributions to the
RMS change in match score discriminability, by device

ID ∆Q(I)/∆Q (%) ID ∆Q(I)/∆Q (%)
A. 0.40 G. 6.80
B. 12.46 H. 26.45
C. 7.40 J. 1.57
D. 21.12 K. 1.68
F. 0.07 L. 12.49

VI. CONCLUSION

We have elaborated a method to isolate and measure
changes in biometric system performance over time, using
a metric which we call biometric permanence. The method
was applied to a dataset spanning several years, and template
aging according to this metric was observed in 8 out of 10
available devices. We have discussed the limits of validity of
the underlying assumptions of the methodology, highlighting
some device-dependent characteristics of the match score
distributions. Because of these factors, it seems appropriate
to consider template aging to be a property of a given bio-
metric system as a whole, rather than a specific physiological
mechanism or biometric modality. In order to maintain system
performance over life, we recommend that system integrators
take such template aging behavior into account – for example,
by implementing an in-service template update procedure, or
a requirement for periodic re-enrolment.
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to most positive template age i.e. from ‘Enrol 8 – Verify 1’ to ‘Enrol 1 – Verify 8’. Maximum discriminability occurs around
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Fig. 6: Binary discriminability Q as a function of template age in weeks. Total discriminability is shown in black; the
contributions QG (blue) and QI (red) are due to changes in the genuine and imposter distributions respectively. Variation
of the imposter distribution contributes non-negligibly to the discriminability in Device L but is negligible in the case of
Device F.
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