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Abstract—In this paper, we develop a novel metric, which we
call biometric permanence, to characterize the stability of biomet-
ric features. First, we define permanence in terms of the change
in false non-match ratio (FNMR) over a repeated sequence of
enrolment and verification events for a given population. We
consider how such a measure may be experimentally determined.
Since changes in FNMR, for most biometric modalities, are
small, any variability in the biometric capture over time will
camouflage the changes of interest. To address this issue, a
robust methodology is proposed which can isolate the visit-to-visit
variability, and substantially improve the estimation. We develop
a model for the visit biases, and provide extensive simulation
results supporting the efficacy of the improved method.

I. INTRODUCTION

Biometric systems allow identification of people based on
analysis of images of their biometric features [8]. When a
biometric is used for verification, a biometric sample image is
tested against a previously captured sample from the person to
be verified [9]. In verification, the performance of the system
is measured in terms of its Type-I and Type-II error rates. One
key criterion for a biometric modality is the stability of the
underlying features. For example, for fingerprint recognition,
the structure of the friction ridges is considered to be a unique
and stable characteristic of each individual [9].

However, it is widely known [4], [11], [16] that, for any
biometric modality, some degree of variation in the biometric
features occurs over time. An example is the damage that
can occur to fingerprints, which is more common in certain
population groups and occupations [2]. Variation in biometric
features over time, known as template aging, results in a
decrease in biometric recognition accuracy over time [7].
The importance of template aging varies across different
applications of biometrics. It is especially significant for many
government programs, such as border security, in which stored
templates are intended to be used for comparison over years or
decades. There have been several studies done in assessing or
describing the impact of template aging [12], [15]. However,
many of these studies have very small datasets (in terms of
sample sizes and time periods). Several challenges associated

with permanence were identified, including those associated
with specific occupations and other environmental factors
[3], [13]. Although biometric permanence has seen some
investigation, to our knowledge no statistical measures have
been defined to measure it or calculate it robustly. To address
this deficiency, we define a new term, biometric permanence,
PB , and develop methods to calculate it. PB has an inverse
significance to template aging: a biometric modality with high
PB shows little change over time.

We first propose a definition for biometric permanence, PB ,
and a reference method to calculate it based on a traditional
detection error trade-off (DET) analysis. Next, we consider
how to measure PB robustly for a given biometric modality.
A sample population is recruited and biometric measures are
performed at intervals over time (∆t), from which a complete
set of cross comparisons is calculated [6]. When calculating
PB , the major difficulty in analyzing these data arises in
separating the visit-dependent factors from the ∆t values,
which are of course implicitly dependent on the absolute times
of the visits. Since the effects of aging can be small, the
traditional method is highly sensitive to estimation variance.
To address this issue, we propose a strategy to improve the
measure, which we call the matched delta method.

II. METHODOLOGY

An overview of the matched delta method is presented in
Fig. 1. We base the test protocol on that of [6]: in this paper
however, we synthesize appropriate match scores as described
in Section III. No actual human subject data is involved.

To calculate PB under this protocol, data are required
from a test crew of subjects who are biometrically tested
over time at a series of visits. At each visit, i, enrolment
Ei and verification Vi biometric samples are acquired. When
biometric comparisons are made, match scores are calculated
and assigned to a bin corresponding to the time difference
(∆t) between visits. Thus, a comparison between Ei and Vj
would be in bin ∆tij . The highest match scores should be
those from the same visit – during which no changes due to



template aging occur. Thus, comparisons of Ei to Vi have
∆tii = 0. Given this set of biometric data, Fig. 1 shows how
DET curves from the match scores in each bin are calculated.
At a selected value of false match ratio (FMR), the false non-
match ratio (FNMR) is calculated for ∆t = 0 and compared
to that for a chosen value of ∆t, from which PB is calculated.
We do not impose criteria on the selection of FMR; however,
it should be chosen at some operationally meaningful level.

A. Definition

Given these data, we define biometric permanence, PB(∆t),
for a given elapsed time ∆t, as follows:

PB(∆t,FMR) =
1− FNMR∆t

1− FNMR0
(1)

where FNMR∆t is calculated from match scores in the ∆t
bin, and the “base” level, FNMR0 is calculated from scores
based on data captured during the same visit (i.e. ∆t = 0).
Some features of this formulation are:
• PB → 1 as FNMR∆t → FNMR0 i.e. if there is no

increase in FNMR over time, then the permanence is
high;

• PB decreases as FNMR∆t → 1 i.e. as FNMR increases
over time, permanence decreases.

In the pathological case where FNMR∆t < FNMR0, PB will
be greater than 1.

B. Robust calculation

Given the above definition, it would appear relatively
straightforward to calculate biometric permanence from a set
of repeated biometric captures. Unfortunately, robust calcu-
lation of PB is complicated. Primarily, the issue is that the
effects of interest (small changes in the biometric features)
occur in the context of many other changes which are difficult
to control experimentally.

For example, in a longitudinal study over several years, there
are changes in:
• weather: tests at different times of the year expose

subjects to – not yet well understood – physiological
changes which affect biometric performance (e.g. levels
of skin dryness) [14].

• test adminstrators: over a period of several years there
is inevitably some turn-over in test staff. Not all staff
are equally well trained. Some will be more attentive
in ensuring proper positioning and placement during
biometric tests than others [1].

• test adminstrator training: Even it it were possible to
eliminate turn-over of staff, the training level of test staff
will adapt over time as they become more familiar with
the procedure.

• aging of the biometric sensors: Biometric sensors are
typically built of consumer grade electronics and not
intended for many years of useful life. Degradation of
some components in the sensors (e.g. lighting) can occur.

We address these issues with the matched delta methodology
proposed in this section. In overview, match score data are

used to estimate the visit-specific factors (which incorporate
the variability above) and to separate them from the changes
in match scores caused by template aging effects. These visit-
specific factors may then be removed, leaving only the effect
of template aging.

Since we collect both enrolment templates and verification
images during each visit, we can match all of the enrolment
templates against all of the verification images and then
visualize the available single-finger match transactions as an
N ×N matrix (N the number of visits in the study) in which
the upper triangle elements are the ‘forward time’ matches
and the lower triangle are the ‘reverse time’ matches. Along
the diagonal are the baseline (∆t = 0) scores in which each
finger image is matched against a template taken only a few
minutes before, i.e. at ∆t = 0. The essence of our proposed
methodology is that we can substantially remove the per-visit
score biases by looking at the difference in scores between a
suitably chosen combination of visits and the corresponding
baseline visits, and applying these to a composite distribution
of the averaged baseline scores.

We use the terminology of “short-delay” to refer to visits
spaced less than a few weeks apart, and long-delay for visits
years apart. We proceed as follows:
• Calculate a visit pair match score, Gi,j,k, which repre-

sents the match score for biometric characteristic (i.e. in-
dividual fingerprint) k, between enrolment visit i and
verification visit j. If multiple biometric captures happen
at a single visit, average the match scores across all
combinations of enrolment templates from visit i and ver-
ification images from visit j for biometric characteristic
k.

• Identify visit time blocks that may be binned together
(see Fig. 2), for

– same visit subsets within a short-delay;
– between visit subsets within a short-delay: in our

case visits separated by only a few weeks are binned
together;

– short-delay visit subsets over a longer delay: in our
case the 2×2 visits separated by two weeks may be
binned together when compared to visits years apart.

• Average each subject-finger score over the elements of
each subset of visits binned together, to calculate Ḡĩ,j̃,k,
where ĩ and j̃ represent represent each visit when con-
sidering binning.

So, for example, given a sequence of four visits occurring
respectively between 2012-02-12 and 2012-03-03; between
2012-03-12 and 2012-03-31; between 2013-03-06 and 2013-
03-25; and between 2013-04-05 and 2013-04-27, the ‘Year1U’
(one year interval, upper triangle) would consist of all those
matches between enrolment templates obtained during the two
visits spanning 2012-02-12 to 2012-03-31, and verification
presentations obtained during the two visits spanning 2013-
03-06 to 2013-04-27; while the ‘Year1L’ (one year interval,
lower triangle) would consist of the corresponding ‘backward’
matches between verification presentations obtained in the



Fig. 1. Conceptual overview of our method. Left: Over time, a sequence of biometric capture events occur at which enrolment (E) and verification (V ) events
occur. The time between visits a and b is defined as ∆tab. Right: Using only biometric data for a given value ∆t, various DET curves can be calculated;
here curves for ∆t = ∆t13 and ∆t = 0 (i.e. from the same visit) are shown. Biometric Permanence at a given ∆t is then defined in terms of the change in
FNMR (at a chosen FMR) beween ∆t = 0 and the considered interval.

Fig. 2. Matrix of match scores for a single subject over the protocol. Each row
and column represents a visit (with enrol, Ei and verification, Vi records).
In our testing protocol, each round of testing has a pair of visits separated by
two weeks. The upper triangle represents match scores “forward in time” (Ei

vs. Vj , i < j), while the lower represents the corresponding match scores
“backward in time” (Ei vs. Vj , i > j). Match scores on the diagonal are
from the same visit (i.e. ∆t = 0).

earlier year, 2012-02-12 to 2013-03-31, against enrolment
templates obtained in the later year, 2013-03-06 to 2013-04-
27. The corresponding ‘2w’ (short-delay) matches would be
evaluated between enrolment templates obtained during 2012-
02-12 to 2012-03-03 and verification presentations obtained
during 2012-03-12 to 2012-03-31, and between enrolment
templates obtained during 2013-03-06 to 2013-03-25 and veri-
fication presentations obtained during 2013-04-05 to 2013-04-
27, along with their corresponding backward matches below
the diagonal.

At this point, each subject-finger score, Ḡĩ,j̃,k, is associated
with a time interval. We then identify the corresponding
averaged baseline scores Ḡĩ,̃i,k, and Ḡj̃,j̃,k corresponding to

the time interval ĩ, j̃. We then:

• Average the forward- and backward-time subject-finger
scores for each major interval, to calculate 1

2 (Ḡĩ,j̃,k +
Ḡj̃,̃i,k); for example, ‘Year1U’ and ‘Year1L’ for the ‘1-
year’ interval in our case (Fig. 2).

• Subtract the average of the two corresponding base mean
scores for each subject-finger, 1

2 (Ḡĩ,̃i,k + Ḡj̃,j̃,k).
• Finally, average over subject-fingers to get a mean

matched delta score.

Thus we calculate ∆Gĩ,j̃ = ∆Gj̃,̃i, where

∆Gĩ,j̃ =
1

2
E
k

[
Ḡĩ,j̃,k + Ḡj̃,̃i,k − Ḡĩ,̃i,k − Ḡj̃,j̃,k

]
(2)

where the expectation, E, is over all subject fingers, k. Since
expectation is linear, the exact order in which the various
averages are applied is largely a matter of computational
convenience.

The mean match deltas, ∆Gĩ,j̃ , are then used to shift a
single representative genuine distribution, constructed from the
subset of match scores along the diagonal (i.e. the distribution
of baseline scores) and PB is calculated from this shifted
composite distribution using the definition of Eq. 1 in the
normal way.

We make a practical assumption – justified in our case by
visual examination of the match score histograms – that the
imposter score distributions are not significantly affected by
aging, and hence only process the genuine match scores in the
above way. Note that we do not require individual imposter
matches to be unaffected; rather, we argue that the effect that
reduces the match score for a particular imposter is equally
likely to increase it for another. This assumption is merely a
computational convenience and the method we describe here
could be extended to the imposter scores if required – for
example, for a different biometric which did, in fact, show
aging in the imposter distributions.



III. SIMULATION

We have defined biometric permanence, PB using, first,
a model based on verification calculations alone (“reference
metholology”, the value calculated this way is PB,R); and
next, a “matched delta methodology” (PB,M ) in which visit
variability is modelled and removed by calculating the shift in
the genuine distribution. Our expectations are:
• In the absense of visit-to-visit variability, PB,M is an

unbiased estimate of PB,R.
• PB,M is a lower variance estimator of PB,R (since a

single parameter is estimated from data before the DET
calculation, which is known to be noisy).

• In the presence of visit-to-visit variability, PB,M will
show more plausible results than PB,R.

In this section, we develop a numerical model to evaluate these
expectations.

We assume that, for a particular product, there is an underly-
ing genuine match score for the Dth finger (D = 1, 2, . . . , 10)
that may be described by a function SD(∆t) where ∆t is the
time difference between the finger’s enrolment (E) and verifi-
cation (V ) visits. Here, SD is distributed over experimental
subjects, i.e. for each subject n there is a single function
sD(∆t), which will, in general, be subject to measurement
noise which we discuss below.

In the most general formulation, the measured scores have
some unknown functional dependence on the enrolment visit
Ei and verification visit Vj , i.e. we are only able to observe
S̃Dij = fij(S

D(∆t)). In order to proceed however, we need to
develop a tractable model of the visit dependence, which we
model as:

fij(S
D(∆t)) = SD(∆t) + ai + bj (3)

where ai and bj represent enrolment visit i and verification
visit j biases, respectively. A more complete model would
use biases ai + bj + cij representing both visit-specific and
inter-visit terms, but we do not consider it here.

In addition to the visit-dependent bias, we include in the
model a measurement noise term WD

n;i,j in the sense that
repeated presentations of the same subject-finger within the
same enrolment-verification visit pair will produce different
scores. We might expect this term to vary from finger to
finger, and to be anti-correlated to the mean score because
of the (sometimes strong) non-linearity of some vendors’
matching algorithms. In particular, once the quality of the
enrol- and verify-fingerprints exceeds a threshold, the match
scores for certain devices will saturate, such that the within-
finger variability tends to zero. Without loss of generality we
can choose W to be zero-mean i.e. 〈WD

n;i,j〉 = 0 where the
angled brackets denote averaging over presentations of the
same finger. In the case of our experiment, the averaging
is over six verification presentations, with each enrolment
consisting of three presentations. The latter are aggregated
into a single biometric information record (BIR) or template
in a vendor-dependent way, and are not available for explicit
averaging during generation of the match scores. We index

the within-finger variability as WD
n;i,j to remind ourselves that

it varies over enrolment-verification visit pairs i, j, although
likely only implicitly; that is, via the mean match score itself.

Hence we can write the observed score for the Dth finger
of subject n as

fij(S
D(∆t)) = SD(∆t) + ai + bj +WD

n;i,j (4)

We take as our starting point a pair of canonical distributions
for the underlying false and genuine match scores, where
scores range between 0 and 1. In this work we have chosen
to model the false scores as a simple Rayleigh distribution,
and the genuine scores as a “flipped” Rayleigh distribution. In
suitably normalized form the probability densities become

pI(s) =
s

β2
I

e−s
2/2β2

I ; s ≥ 0 (5a)

pG(s) =
1− s
β2
G

e−(1−s)2/2β2
G ; s ≤ 1 (5b)

where the scale parameters βI,G are related to the mean scores
by µI = βI

√
π
2 and µG = 1−βG

√
π
2 . To model the sequence

of visits, we then make two assumptions, namely

• The imposter distribution remains constant over time.
Since the imposter distribution represents non-matched
samples, it will not be significantly sensitive to changes
due to elapsed time. This is roughly equivalent to the
assertion that for any pair of non-identical fingers whose
match score is improved by some mechanism, there
is another pair whose match score is correspondingly
reduced.

• With each visit k we can associate a pair of systematic
biases ak, bk (for enrolment and verification, respectively)
that affect all presentations equally. We then model the
effect of a match score between a verification presentation
from visit j against a template recorded in visit i as a shift
in the genuine distribution equal to (ai + bj)

We then model the template aging as a further, time-dependent,
shift of the genuine distribution. In this work we choose a
simple time-symmetric assumption, namely δ(∆t) = −α(1−
exp(−κ|∆t|)) i.e. a term that asymptotically approaches δ =
−α with time-constant 1/κ.

To each variate generated according to Eq. 5 we apply an
additional zero-mean Gaussian noise term WI,G to represent
the natural variation in match score over repeated presentations
of the same finger against the same template (effectively a kind
of ‘measurement noise’).

A. Simulation of a single sequence of visits

To make a baseline qualitative evaluation of the efficacy
of our method in removing the experimental biases, we
constructed a single realization of a sequence of eight visits,
with bias values ak, bk taken from a Gaussian distribution with
standard deviation 0.025. We then generated canonical sample
distributions according to Eq. 5 for each of two fingers for a
sample size of 17500 subjects



Fig. 3. Exploration of the effect of visit biases. Each figure shows PB (vertical axis) vs. elapsed time (horizonal axis) in weeks between enrolment and
verification. The {ON,OFF} status of parameters a (enrolment) and b (verification) represents whether the corresponding biases are simulated or not. Thus
“a:ON b:ON” indicates simulation of both enrolment and verification biases. w is the standard deviation of simulated presentation noise. Top row: noise only;
middle row: noise and enrol visit biases; bottom row: noise, enrol and verify bias. The red stars are the reference method of Section II-A while the blue circles
are our matched delta method of Section II-B. The black curve is derived from the analytical tail integrals of Eq. 7.

with µI = 0.2 and µG = 0.85 for each finger. Next, for
each of the 8 × 8 = 64 enrol-verify visit combinations, we
modify the finger scores according to:

S1,2
i,j (∆t) = S0 + ai + bj − α(1− exp(−κ|∆t|)) (6)

Finally, we synthesize six independent presentations of each
finger by adding a zero-mean Gaussian noise term with
variance σ2 = w2/6: this scaling is a convenience, so that we
can identify w2 with the sample variance of the presentation-
averaged experimental scores. We then processed the scores
in two ways: (i) a simple direct calculation according to
Section II-A; and (ii) our matched delta method as described
in Section II-B.

We ran the simulation with three scenarios: first, with no
visit biases (bk = ak = 0); second with bias in the creation
of enrol templates only (bk = 0; ak 6= 0); and third with bias
in both enrol template creation and verification presentation
(bk 6= 0, ak 6= 0) (Fig. 3). The value of the presentation-
averaged sample standard deviation w was varied in the range
0 to 0.075 units and the aging parameters were α = 0.1 unit
and κ = 0.01 week−1. The reference FMR for the permanence
calculation was 0.001 (0.1%).

Taken together, the visit bias terms and aging correspond
to a modification (1 − s) → (1 − ai − bj − δ(t) − s) in the
genuine score distribution of Eq. 5. The densities then become
convolved with the Gaussian density — one can show that
the resulting tail integrals for the FMR and FNMR at some

threshold score θ become:

FMR(θ) =
βI
β′I
e−θ

2/2β′2
I (7a)

FNMR(θ; i, j; t) =
βG
β′G

e−(χ(t;i,j)−θ)2/2β′2
G (7b)

where β′2I,G = β2
I,G + σ2

I,G (with σ2
I,G being the variances

of the imposter and genuine presentation noise terms respec-
tively) and

χ(t; i, j) = 1− ai − bj − δ(t) (8)

represents the mean degradation in genuine match score due to
the per-visit biases and template aging. The solid black curves
in Fig. 3 correspond to Eq. 7 , 8 with ai = bj = 0 i.e. they
represent the ‘ideal’ (unbiased) aging behavior that would be
observed due to presentation noise only: the deviation from
this curve can be interpreted as the residual effect of bias that
is not removed by the technique.

B. Simulation of an ensemble of visit sequences

Over an ensemble of experiments (that is, sequences of
enrol-verify visits) with experimental biases taken indepen-
dently from some zero-mean distribution(s), one would like
to show that the mean of the reference permanence measure
(Eq. 1) does indeed converge to the value obtained by our
new technique. Accordingly we ran the same procedure up
to 180 times to simulate multiple independent realizations of
our experiment. At intervals of 5 simulated experiments we
calculated the mean deviation (across time differences ∆tm)



between the permanence calculated according to our method
(Section II-B) and reference method (Section II-A) (Fig. 4).

Fig. 4. Difference (±SD) between the reference measure Section II-A and the
matched delta method of Section II-B as the size of the experiment ensemble
is increased.

IV. DISCUSSION

Slow changes in biometric features over time are typically
referred to as “template aging”, and the performance of large-
scale systems can be influenced by this effect. Unfortunately
template aging is hard to measure, because it is very sensitive
to the visit-to-visit variability inherent in such a study (e.g. test
personnel, test equipment and weather).

In the case of fingerprints, Uludag et al. [15] addressed the
case of typicality an/or variability between presentations of
the same biometric using novel template selection algorithms,
based either on clustering or on mean distance. They then
used this template selection to evaluate a number of template
update schemes. They found that a scheme in which an
original template was updated selectively using later presen-
tations (“AUGMENT-UPDATE”) outperformed one in which
the original template data were discarded altogether (“BATCH-
UPDATE”). From this, we might infer that the magnitude of
the template aging effect was not significantly greater than
that of the intraclass variance, at least over the relatively short
interval of their study (approximately four months).

A comparable study into face recognition was recently
conducted by Manjani et al. [10]. Fingerprint aging might
be expected to share some of the same physiological factors
that they identified for face aging – in particular, skin textural
changes and loss of tissue elasticity. They evaluated both 2D
and 3D facial recognition algorithms on a dataset of sixteen
participants acquired over a period of ten years, comparing
genuine acceptance rate (GAR) at 0.1% false acceptance rate
(FAR) for short-term intervals (less than three months between
enrolment and verification) versus long-term intervals (more
than five years between enrolment and verification). Unlike

the present work, the intervals were not blocked into absolute
acquisition times i.e. all intervals greater than five years were
taken together. They were able to reject at α = 0.05 the null
hypothesis that the short- and long-term genuine scores were
drawn independently from normal distributions of equal mean
and variance (t-test), or from the same continuous distribution
(Kolmogorov-Smirnov test). In the case of the algorithm that
performed best over the long-term intervals (“3D Region
Ensemble: Product”), they found weak evidence against the
corresponding hypotheses for the imposter scores: this is
consistent with our model, in which the imposter distribution
was assumed to be constant.

Template aging in the iris modality was addressed recently
by Hofbauer et al. [5]. They noted some controversy about its
existence, and discussed the difficulty of controlling confound-
ing factors independently – in particular, the cases of illumina-
tion and pupillary dilation. There was only a single long-term
time interval – in this case of four years – while the study
consisted of data from 47 subjects. The authors considered
two schemes for re-normalization of pupil diameters: a “rubber
sheet model” (RSM) and a “biomedical model” (BMM). They
showed that while such re-normalizations were somewhat
effective in improving long-term match accuracy, there was
still a decrease in performance between intra-year and inter-
year comparisons. This suggests that while systematic changes
in pupillary diameter are a factor in iris template aging, they
are not the only such factor.

In this paper we have developed and defined a measure
of template aging which we call biometric permanence PB ,
based on the change in FNMR (at a given FMR) between the
template aging interval under test, and a short-time test. While
intuitive, this definition of PB is practically difficult to apply
to estimate small changes in permanence in a longitudinal
study subject to experimental error and visit-to-visit systematic
biases. To address this issue, we have introduced the matched
delta method. Comparisons of these methods were performed
using simulated data, and it was determined that the new
method showed dramatically reduced sensitivity to systematic
biases. Simulations were designed to evaluate two aspects of
the proposed robust calculation method in comparison to the
calculation of PB from Eq. 1. First, simulations test the first
and second order statistical properties (i.e. bias and variance);
and, second, the sensitivity of the methods to visit-to-visit
biases.

Fig. 3 compares the two methods to the analytical val-
ues (Eq. 7). For two different values of presentation noise
(columns), the presence or absence of visit biases is evaluated.
A single sample of visit biases is evaluated in each case;
multiple values at a single time interval indicate different ways
in which the given time offset can be calculated. Without
visit biases, the methods perform similarly, while their pres-
ence dramatically impacts the values calculated using Eq. 1.
Meanwhile Fig. 4 investigates the statistical properties of the
methods. As sample number increases, the variance decreases
and bias between methods decreases towards zero, as expected



from our analytical model.
We are in the process of applying this methodology to

data collected in a multi-year, multi-vendor experimental fin-
gerprint acquisition and matching study, involving over 350
participants, with a gallery size in excess of 12,000 ISO/IEC
standards-compliant two-finger biometric enrolment templates
and obtained with a variety of commercially-available finger-
print sensor technologies.
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