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PROBLEM
Inverse problems lead to inherently low
resolution images which can be difficult to
verify. Regularization can stabilize solutions,
but lead to bias. Typically, the algorithms
successfully produce images, but the recon-
structed images have artefacts which may
lead to wrong interpretations. Our work
is motivated by this “debugging” process,
leading to two questions: How should one
go about determining whether a result is sat-
isfactory? And, if the result is wrong, what
caused the failure?

In this work, we report our processes,
and the techniques used to find issues in the
specific context of impedance imaging and,
more generally, for inverse problems. We
focus on the algorithmic aspects: the chal-
lenges in validating inverse problem codes
as well as their inputs and outputs [1].
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Figure 1 Explanations for data quality and model mismatch; data and model may have a mismatch which
leads to a reasonable (green) or suspicious (red) reconstruction; a suspicious mismatch may be resolved
and incorporated into the reconstruction or ignored by reducing its affect on the reconstruction

We wish to avoid conflating the reconstruction algorithm with the quality of the data. We ini-
tially rely solely on the forward model’s correct implementation to examine the data (Figure 1).
Data that agrees with the model to a certain degree will result in a “reasonable” reconstruction
while a significant data-model mismatch may cause a “suspicious” artifact. A suspicious arti-
fact may either be ignored, by discarding or de-weighting measurements, or the cause of the
problem can be resolved by adjusting the model to make the data useful in the reconstruction.

DEBUGGING
By developing these debug tools, we aim to improve the rigour and quality of image re-

construction in a comprehensive framework by enabling quick debug cycles that can feedback
to improved data acquisition strategies and better interpretive outcomes.

This work is naturally related to theories of
software and algorithm debugging [2], defect
and root cause analysis [3] and business pro-
cess analysis [4, 5]. Methods for debugging
software or hardware are very heuristic by
nature; they tend to be problem dependent.

We propose a set of tools to enable a “de-
bugging” workflow for evaluating an inverse
problem result. A systematic process such as
this can help the dissection of an algorithm
to locate a specific cause within the code base
or algorithm inputs. Our workflow provides
debugging tools at three stages for evaluat-
ing: 1) data and model quality, 2) algorithm
behaviour, and 3) regional image fit.

Given the challenges inherent in demon-
strating a correct or valid reconstruction, we
propose that, for inverse problems in gen-
eral, trust in the overall design may be con-
structed by testing units of functionality and
then building upon that foundation. Individ-
ual components may (#1) be validated to per-
form as expected in isolation, or (#2) com-
pared against some gold standard. Next, (#3)
the components can be reassembled and sim-
ulated data followed through the algorithmic
machinery; the outcome can be compared to
a synthetic model which was used to con-
struct the input data. Finally, (#4) the real
data can be compared to simulated data.

In this manner, a forward model using the finite element method may be validated against
resistor models and analytic solutions [1]. By selecting appropriate models, the Jacobian may
be validated by comparison against a finite difference perturbation. Data may be plotted to
quickly identify outliers or range conditions may be tested based on noise estimates [6, 7].

A model can be manually refined to bring it into closer agreement with the real measure-
ments. Model refinements may adapt the geometry, conductivity or other parameters to more
closely match external data or hypotheses. If the two data sets appear reasonably aligned, the
flow of the algorithm can be monitored between the two data sets to determine where process-
ing diverges. The reconstructed image of the real data may be contrasted with other images,
estimates of sensitivity, external information or extracted features (#5) to develop a meaning-
ful interpretation of the image in context. These ideas are illustrated in Figure 2, inspired by
Maslow’s Hierarchy of Needs [8]. Ultimately, the desired outcome is to either (a) explain the
unusual reconstruction as valid with a specific cause, (b) determine a mismatch in data quality,
or (c) identify some flaw in the algorithm or its implementation. One would expect that, after
some period of time with a stable code base, outcomes (a) and (b) would be predominant.
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Figure 2 Proposed hierarchy of validation; proposed in this thesis, internal checks of components and system form
a trusted platform upon which the input data may be compared to expectations , an interpretation (#5) decides
whether a result is reasonable, (#4) input and output may be compared, (#3) synthetic data may be used to
confirm correctness of the outcome for (a) analytic, (b) simplistic and (c) realistic data, analytic solutions provide a
mechanism for independently confirming forward model F correctness, (#2) consistency between related groups of
components may be validated and (#1) from each set of components checked for consistency at least one needs to be
confirmed to provide correct results, points of comparison are identified with dashed lines
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