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Abstract: Two main approaches have been used to calcu-
late the Jacobian, J, or sensitivity matrix: the “adjoint field”
method and differentiation of the system matrix. While some
investigations have sought to test which is more efficient, we
show the approaches are equivalent, and an efficient imple-
mentation of either produces the same underlying algorithm.

1 Introduction
The sensitivity matrix, J, describes how small internal con-
ductivity changes relate to measurements; it is key to image
reconstruction and also to understanding the characteristics
of EIT configurations. Efficient calculation of the J matrix
is essential. Fig. 1 shows a body where data element di,j is
recorded using measurement mi and current cj patterns.

When a region k undergoes a change σk → σk + δσ, the
sensitivity is defined

Ji,j,k =
∂

∂σk
di,j (1)

Normally, J is represented as a matrix, by selecting rows cor-
responding to (i, j) pairs of (measurement, stimulation) in the
order applied by the EIT hardware.

Numerical methods are used to solve the forward problem
on arbitrary geometries, and the finite element method (FEM)
is widely used because it facilitates refinement in regions of
high electric field, such as near the electrodes. We assume
piecewise-constant conductivity on each element.

Two approaches to the calculation of J have been used
in EIT: adjoint-field methods[1, 3], and differentiation of the
FEM system (admittance) matrix[5], which we call the “ad-
mittance matrix differentiation method”. It is also possible to
approximate J using a “perturbation Jacobian.”
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Figure 1: FEM with six electrodes and internal nodes, using cur-
rent pattern cj and measurement pattern mi. Electrodes nodes are
enumerated after internal FEM nodes in this example.

2 Jacobian calculations
Measurements are di,j = mT

i vj , using the notation: continu-
ous values V , values on FEM nodes v, and values on nodes vk
in region k. After choosing a ground node, the node voltages
due to current pattern cj are vj = Y−1cj with admittance

matrix Y(σ) = CTS(σ)C, where σ is the vector of conduc-
tivities in each finite element, C is a connectivity matrix, and
S(σ) is a block diagonal matrix with blocks σkBk for each
region k

[Bk]`,m =

∫
k

φ`φmdA (2)

integrated over the volume of region k, where φ`, φm are
shape functions.

2.1 Adjoint-field method

The adjoint-field method calculates[1]

Ji,j,k =

∫
k

∇Vi · ∇VjdA, (3)

where Vj ,Vi are the body voltages from applying a cur-
rent cj and mi (interpreted as a current). Defining vj =
Y−1cj and vi = Y−1mi, eqn (3) may be represented as
Ji,j,k = vT

k,iBkvk,j , where node voltages in region k are

vk,i = Ckvi, for a selection matrix Ck (and similarly for j).
The Jacobian is then efficiently calculated for each region k

Ji,j,k = (CkY
−1mi)

T Bk (CkY
−1cj) (4)

2.2 Admittance-matrix differentiation method

From (1) and di,j = mT
i vj = mT

iY
−1cj [5],

Ji,j,k =
∂

∂σk
mT
iY

−1cj = mT
iY

−1

(
∂

∂σk
Y

)
Y−1cj

= mT
iY

−1CT
(

∂

∂σk
S(σ)

)
CY−1cj

= (CkY
−1mi)

TBk(CkY
−1cj) (5)

where Bk is the only non-zero block in ∂
∂σk

S(σ), and Ck is
the corresponding reduced connectivity matrix.

3 Discussion
The equivalence of (4) and (5) illustrates that an implemen-
tation of both methods yields the same underlying calcula-
tion (see also [2], ch. 3). Efficient implementation strategies
are also the same for both: pre-calculation of the matrices in
parenthesis, and calculation of larger blocks Bk for model re-
gions with the same parameter value in the inverse model.
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