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ABSTRACT
EIT waveforms have components synchronous with cardiac activ-

ity, which are often assumed to originate from the blood perfusion.
However, there are also numerous other contributions to this signal.
The goal of this paper is to provide a list of the factors which could
be at the origin of these cardiac-related components, to help guide
future research.

INTRODUCTION
As a functional imaging modality, EIT is understood to be sensit-

ive to the movement of conductivity-contrasting gasses (↓σ) and fluid
(↑σ). It is thus common to assume that the component of EIT images
synchronous with breathing originates in the movement of air, and
that the cardiac-frequency component originates from the perfusion
of blood. The validity of these assumptions is important for the in-
terpretation of EIT results. For example, simulations of chest-wall
movement identified a breathing-frequency contribution to lung im-
ages [1], which contribute up to 20% of the signal due to ventilation,
and depend on the geometry of chest wall movement. Thus, chan-
ging breathing movements (e.g. due to posture change) affects the
ventilation-EIT signal relationship.

For the case of cardiosynchronous EIT signals, the problems of in-
terpretation are more difficult. EIT is quite sensitive to heart activity,
and measures of almost any part of the body show clear cardiosyn-
chronous signals.

In several publications, these signals have been called “EIT perfu-
sion”, suggesting the EIT signal is caused by blood flow. However, it
is clear that continuous blood flow, by itself, cannot create EIT con-
ductivity changes (below). To avoid this problem various other terms
have been proposed:

1. “perfusion-related EIT signals”, which emphasizes that there is
a relationship to blood flow.

2. “pulsatilility”, which emphasizes the relationship to the pulsat-
ile signal.

For a review of the terminology and its use, see [2]. We recommend
the neutral term “cardiosynchronous” EIT signals.

METHODS
Our goal in this paper is to collect a list of the possible sources for

these cardiosynchronous signals. Some work has been done to model
and understand the effect of heart deformation and displacement [3],
and flow-induced blood conductivity changes [4], but a detailed list
of the possible sources is not available.
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Arteries with equal perfusion (i.e. mean flow Q1 = Q2) but different
compliance lead to different conductivity changes ∆σ.

RESULTS
We first classify phenomena by their physical mechanism:

- Cardiosynchronous mechanical deformations: heart motion
and the resultant movements of other structures.

- Blood volume changes: within the heart, a vessel or organ
- Red blood cell reorientation due to pulsatile blood flow [5]
- Reorientation of anisotropic structures: heart muscle, etc.

We then identify the possible sources and locations where the
mechanisms listed might occur (below).
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Diagram of possible sources of cardiosynchronous signals (by
mechanism). The pressure pulse propagation is modulated by the
pressures and compliances in the veins and arteries, and the compres-
sion and displacement of lung tissue due to lung arterial pulsatility
and heart motion. Also, the pulsatile signal from venous return var-
ies with intra-thoracic pressure. Finally, all factors will be affected by
the spatial sensitivity of the EIT imaging system given the electrode
positions and stimulation and measurement patterns.

REFERENCES
[1] A Adler, R Guardo, Y Berthiaume “Impedance Imaging of Lung

Ventilation: Do we need to account for Chest Expansion? IEEE T
Biomed Eng 43:414–421, 1996.

[2] I Frerichs, et al, “Chest electrical impedance tomography exam-
ination, data analysis, terminology, clinical use and recommenda-
tions: consensus statement of the TRanslational EIT developmeNt
stuDy group” Thorax, 72:83, 2017.

[3] M Proença, F Braun, M Rapin, J Solà, A Adler, B Grychtol, S
Böhm, M Lemay, J-P Thiran “Influence of heart motion on cardiac
output estimation by means of electrical impedance tomography:
a case study” Physiol Meas, 36:1175–1192, 2015.

[4] M Proença, Non-invasive hemodynamic monitoring by electrical im-
pedance tomography, PhD Thesis, Ecole Polytechnique Fédérale de
Lausanne, 2017. DOI.org/10.5075/epfl-thesis-7444,

[5] R L Gaw, The effect of red blood cell orientation on the electrical
impedance of pulsatile blood with implications for impedance cardio-
graphy, PhD Thesis, Queensland University of Technology, 2010.
eprints.qut.edu.au/39448/,

DISCUSSION
EIT is sensitive to blood flow and many other cardio-synchronous

effects, which we list here. Only some effects have been studied [4].
Our hope is that this list serves as a starting-point to better under-
stand the origin and relative contribution of these signals, as a frac-
tion of that from perfusion.


