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Abstract. Most applications of thoracic EIT use a single plane of electrodes on the
chest from which a transverse image “slice” is calculated. However, interpretation
of EIT images is made difficult by the large region above and below the electrode
plane to which EIT is sensitive. Volumetric EIT images using two (or more) electrode
planes should help compensate, but are little used currently. The Graz consensus
reconstruction algorithm for EIT (GREIT) has become popular in lung EIT. One
shortcoming of the original formulation of GREIT is its restriction to reconstruction
onto a 2D planar image. We present an extension of the GREIT algorithm to 3D and
develop open-source tools to evaluate its performance as a function of the choice of
stimulation and measurement pattern. Results show 3D GREIT using two electrode
layers has significantly more uniform sensitivity profiles through the chest region.
Overall, the advantages of 3D EIT are compelling.

1. Introduction

Electrical Impedance Tomography (EIT) creates images of the distribution of impedance
within a body from electrical stimulation and measurement at the body surface. EIT is
sensitive to movement and changes in conductivity contrasting fluids and gasses. The
most common application of EIT is for imaging of the thorax (Adler et al 2012), where
the physiology of interest (air and blood flow) involves processes which can be imaged
by EIT. The vast majority of EIT studies of thoracic function have used a placement
of electrodes in a transverse, or slightly oblique (Vonk Noordegraaf et al 1996), plane
around the chest. Using these electrodes, EIT measurements are made and a 2D image
has been reconstructed, representing a “slice” through the chest.

Such EIT images are clinically useful, especially as a “bedside” approach to
monitor ventilated patients. In a prone or supine patient without significant obstructive
lung disease, lung aeration and perfusion are understood to redistribute primarily in
the gravity direction. Since a 2D EIT image from transverse-plane electrodes can
provide this gravity-related information, 2D EIT thorax images can be interpreted as
representing most of the key clinical information (Adler et al 2012).

Overall, however, a 2D EIT “slice” provides limited information on the thorax.
First, in many lung pathologies, lung tissue behaviour is significantly inhomogeneous.
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The most common examples are obstructive lung diseases which have large regional
variations. Additionally, even if we are only interested in a transverse section, the 2D
EIT image does not provide a true slice. Because of the diffusive nature of electrical
current propagation, EIT is sensitive to conductivity changes in a region above and below
the plane of interest. For interpretation of EIT images, it is important to understand
the spatial extent of EIT sensitivity. For example, in some cases, the compression of
abdominal gas has been indicated as a source of EIT lung image artefacts (Ambrisko et
al 2015). The extent to which out of plane contributions are shown in the EIT image
is determined by the vertical sensitivity profile (Rabbani and Kabir, 1991). The EIT
sensitivity region has been described as a “lens shaped” region extending to 1

2 of the
body diameter above and below the electrode plane (Putensen et al 2006, Adler et al
2015).

Image reconstruction in EIT must solve the ill-conditioning caused by the large
differences in sensitivity between internal and near-surface conductivity changes. Several
authors have considered 3D EIT reconstruction. Metherall et al (1996) used a Moore-
Penrose pseudo-inverse of the 3D sensitivity matrix. Several subsequent authors
have extended this approach to a regularized Gauss-Newton inverse (e.g. Blue et al
2000, Borsic et al 2010). Another mathematically interesting approach uses the D-
bar scattering transform (Knudsen et al 2009). Most algorithms use some type of
regularization technique to allow control of the resulting compromise between robustness
to noise and resolution in the reconstructed images.

Since its publication (Adler et al 2009), GREIT (Graz consensus Reconstruction
algorithm for EIT) has become popular in lung EIT applications. The original
formulation and implementation was limited to cylindrical geometries with planar
electrode arrangements, but subsequent adaptations facilitate reconstructions on
arbitrary geometries (Grychtol et al 2012). Recently, Ahn et al (2014) proposed and
tested in a 360-electrode micro-EIT setup an extention of the GREIT algorithm to 3D.

This overview shows that 3D EIT reconstruction algorithms are both required and
available. Why, then, are they so rarely used in human and animal experimental and
clinical studies? We suggest two main explanations. First, the detailed performance
of 3D EIT is not understood, including what specific advantages it offers versus the
number of extra electrodes required. For example, questions such as the vertical
sensitivity or resolution of a given configuration, how far apart the electrode planes
should be, what stimulation and measurement patterns are best, and what kinds of
imaging artefacts can be expected? This lack of information is partially caused by our
second explanation: a lack of available hardware and software. Few EIT systems have
been made specifically for 3D imaging, and it is difficult to reconfigure other systems
for this purpose. Additionally, the application of such a large number of electrodes is
inconvenient without multiple electrode bands. From an imaging point of view, there
has been a lack of easy-to-use tools to adapt 3D EIT reconstruction to generic body
shapes and electrode configurations.

In this paper, our goal is to provide tools that address these requirements. We
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reformulate the GREIT algorithm to make the parameters associated with the vertical
resolution explicit. Using this formulation, we explore the vertical sensitivity of 3D EIT
measurements and reconstructions. All software and FEM models are available under
an open-source license as part of EIDORS version 3.8 (Adler et al 2015a).

2. Methods

In the following sections, we develop the formulation of regularized linear difference EIT
reconstruction, and show the GREIT algorithm and its relationship to other regularized
approaches such as the Gauss-Newton formulation. We then develop an extension of
GREIT to 3D imaging, and describe the figures of merit appropriate for 3D EIT. Finally,
a model to study the forward and reconstruction sensitivity is introduced, and an open-
source software implementation is developed and discussed.

2.1. GREIT formulation

The formulation developed here yields an identical expression to that of Adler et al
(2009); however, this formulation is simpler, and makes relationship of GREIT to
other Bayesian approaches clear. The notation is similar, but not identical, to the
previous work. We consider a body with a baseline (i.e. before changes, signified as
(b)) conductivity distribution parameterized as σ(b), where parameters are normally the
piecewise constant conductivities within each element of a finite element model (FEM).

Linear difference EIT is sensitive to a change, ∆σ = σ(a) − σ(b), between after,
σ(a), and before, σ(b). Changes can occur over time (time-difference EIT, tdEIT) or
frequency (frequency-difference EIT, fdEIT). A frame of voltage measurement data, v,
is acquired through a set of stimulation and measurement patterns. The generation of
voltage data is modelled by the forward problem, F (·), typically using a FEM, which
yields two data frames: v(b) = F (σ(b)) and v(a) = F (σ(b) + ∆σ). Based on two frames
of measured data, a measurement change vector, y, can be defined for difference EIT
(yi = v

(a)
i − v

(b)
i ) or normalized-difference EIT (yi = v

(a)
i /v

(b)
i − 1). Here, subscripts

indicate selection of the an element from a matrix, so the ith element of v(b) is v(b)
i .

Image reconstruction in difference EIT seeks to reconstruct an image, x̂,
parameterized over elements or voxels, from the difference data, y. In 3D EIT, the
imaged region, x̂, is normally smaller than the forward-modelled region, because,
far from the electrodes, there are areas of such low sensitivity that they cannot be
reconstructed reliably, but which have enough effect that they should be modelled in
the forward problem. This situation differs from 2D EIT, where it is common for x̂ to
represent the same shape as σ. In so called 2.5D approaches, x̂ is limited to a slice, but
σ represents a change through the entire vertical dimension crossing the slice.

In addition, the forward model requires a high accuracy (and a corresponding
high density of mesh parameterization) in areas of high electric field (such as near
the electrodes). The inverse parameterization does not benefit from an increased mesh
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density near the electrodes, since the spatial variation of the underlying conductivity
change is not different in these regions. To allow different forward and inverse
parameterizations, the relationship between forward and inverse parameterization is
modelled by a coarse-to-fine map, M, which projects ∆σ = Mx. Each element, Mi,j,
thus represents the volume fraction of each forward-model region i contained within the
inverse model region j.

We are interested in linear reconstruction algorithms for difference EIT, in which
image reconstruction can be represented by a reconstruction matrix, R, by which the
reconstructed image is calculated from the difference data as

x̂ = Ry. (1)

The GREIT approach defines the best reconstruction matrix over a set or distribution
of “training” targets, t(i). R thus minimizes an error ε2,

ε2(R) = E
w

[
‖x−Ry‖2

]
(2)

where the expectation, Ew[·] is over the training target distribution. For each “training”
target, the corresponding data, y, and a “desired” image, x, are generated. The choice
of a 2-norm allows for a linear calculation for R. w is the weight assigned to each target,
t, to represent the importance of its contribution.

When “training” is defined by a distribution, Ew[·] is weighted by w. When
training is defined by a set of N targets, the expectation is modelled as an average,
Ew [x] = 1

N
ΣN

i=1wixi. Values of w are normalized so their average is 1.
The reconstruction matrix is chosen by minimizing ε2, and setting ∂ε2(R)/∂R =

0. Using the commutative property of the expectation operator and the identity
∂

∂R‖x−Ry‖2 = −2(x−Ry)yT from Petersen and Pedersen (2012), we get

∂

∂R
ε2 = E

w

[
∂

∂R
‖x−Ry‖2

]
= −2E

w

[
(x−Ry)yT

]
= 0 (3)

We thus have

E
w

[
xyT

]
− R E

w

[
yyT

]
= 0 (4)

from which the GREIT reconstruction matrix, R, can be calculated

R = E
w

[
xyT

] (
E
w

[
yyT

])−1
(5)

Equation (5) can be calculated in two ways, depending on whether training data
are defined as a set or as a distribution.

2.1.1. GREIT defined from training sets. A set of Nt training samples are defined at
a set of locations to cover the region to be reconstructed. For each sample, ti, a desired
image, xi is defined. Here, we use the subscript i to signify the ith vector in the set. This
desired image covers a larger region than the point locations of the training samples;
this is motivated by the inherently limited resolution of EIT. For a 16-electrode system,
a recommendation of 20% of the medium diameter was given by Adler et al (2009).
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For each sample, ti, the corresponding difference data, yi are generated. Typically,
these are calculated using a numerical model (such as a FEM); however, it is also possible
to directly measure, y. Gaggero et al (2014) used a robot to place targets in a tank
phantom, and showed the resulting images were improved over simulated values. This
improvement was explained as reflecting the fact that measurements also include the
specific system inaccuracies which are not part of the numerical model.

To model system noise, a set of Nn additive noise samples are simulated or acquired.

E
w

[
yyT

]
= 1
Nt

Nt∑
i=1

wi yiyT
i + 1

Nn

Nn∑
i=1

ninT
i (6)

E
w

[
xyT

]
= 1
Nt

Nt∑
i=1

wi xiyT
i (7)

The sum, ΣNn
i=1ninT

i = Σn, estimates the noise covariance, Σn. It is based on an
average weight, w = 1, because noise samples are independent of target location. If
an a priori estimate of the noise covariance is available, this value is used directly.
It is most common to assume noise samples are independent and uncorrelated across
measurements, and thus the covariance is a scaled identity matrix, Σn = σ2

nI. However,
in practice, noise may reflect many other correlated contributions, such as crosstalk
between channels. Electrode movement can also be represented as a correlated noise
(Adler and Lionheart, 2011).

The sums, ΣNt
i=1wiyiyT

i , and ΣNt
i=1wixiyT

i , are weighted by wi to represent the
importance of each training sample i to the reconstructed image. If errors at a particular
position in an image are more serious for some reason, wi for ti at those positions
is increased. The reconstruction matrix will then “prefer” greater accuracy in these
locations. The effect of weighting can also be achieved by the selection of training
targets. By choosing more samples within a given image region, the effective w for
targets in that area is increased.

2.1.2. GREIT defined from distributions. Given a training distribution t ∼ N (0,Σt)
we have the distribution of training targets, x, and measurements, y,

x = Dt (8)
y = Jt + n (9)

where D is the “desired image” matrix, which maps each training sample location onto
the larger desired image region as discussed above. J is the Jacobian or sensitivity matrix
of the forward model, F (·). Including a coarse-to-fine mapping, J = JfM, where Jf

is the Jacobian defined on the finer mesh discretization. Noise, n, is distributed as
n ∼ N (0,Σn).

E
w

[
yyT

]
= JE

w

[
ttT

]
JT + E

w

[
nnT

]
= JΣ∗t JT + Σn (10)

E
w

[
xyT

]
= DE

w

[
ttT

]
JT = DΣ∗t JT (11)
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where Σ∗t is the effective covariance of the training targets when weighted by w. The
noise covariance Σn is not affected by weighting, since we assume noise is independent
of target location.

Thus the reconstruction matrix from (5) is

R = DΣ∗t JT
(
JΣ∗t JT + λΣn

)−1
(12)

where, in order to achieve a desired noise performance, the noise covariance is scaled
by a hyperparameter, λ. The value of this hyperparameter is found by bisection search
until the noise performance of the reconstruction matrix matches a specified noise figure,
which was recommended to be 0.5.

Equation (12) can be shown to be equivalent to a Gauss-Newton reconstruction
matrix, RGN , obtained by Generalized Tikhonov regularization to minimize the norm

‖t− Jy‖2
W + ‖t‖2

Q (13)

to calculate a reconstructed t̂ = RGNy, and thus a reconstructed desired image
x̂ = Dt̂ = DRGNy.

From (13),

RGN =
(
JT WJT + Q

)−1
JT W = Q−1JT

(
JQ−1JT + W−1

)−1
(14)

which is equivalent to the GREIT formation if Tikhonov parameters are chosen such
that W = Σ−1

n , and Q = (Σ∗t )−1.

2.1.3. Definition of desired images One key parameter influencing the properties of
the GREIT reconstruction matrix is the definition of the desired images. In Adler et
al (2009), desired images were defined as circles centered at the point targets’ position,
with an inner circular zone where the amplitude is flat and a zone outside a larger
circular boundary where the amplitude is zero. Between the two circles, the amplitude
is required to “gradually decrease”.

We propose a formalization of the desired image definition by means of a sigmoid
function of position

f(r) =
(

1 + es|r−r0|

esR

)−1

, (15)

where r is the position vector in 2- or 3D, r0 is the target center, R is the desired
radius and s is a scalar controlling the blur, as illustrated in Grychtol et al (2015). The
desired image x is the discretization of f(r) onto the image. Each image pixel or voxel is
assigned the value of f(r) integrated over the volume (area in 2D), which we implement
numerically by evaluating the function at a distribution of interior points.

2.2. Figures of Merit

As described in the previous section, the reconstruction matrix is determined by the
choice of training targets, desired images, and noise characteristics. Since this selection
involves the choice of several tunable parameters, Adler et al (2009) proposed a set of
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figures of merit by which the perfomance of the reconstruction matrix may be evaluated.
In this section, these figures are reviewed, and modifications proposed for evaluation of
3D algorithms.

For evaluation, “point” evaluation targets are introduced, te, for which the
corresponding difference data, ye, are either simulated or measured, and a reconstructed
image, x̂e = Rye, calculated. For notation, te is at position vector rt, and has a
corresponding desired image, de. From x̂e a 1

4 -maximum image, x̂q, is calculated. Each
element i of x̂q has value 1 if the corresponding (x̂e)i ≥ 1

4max(x̂e), and zero otherwise.
Figures of merit for amplitude, position, shape, and noise are defined. A vector, a,
representing volume (or area) of each reconstructed image element is defined; for a
voxel- or pixel-based reconstruction, elements of a are equal.

2.2.1. Figures of merit for reconstructed amplitude. The amplitude response (AR) is
the normalized global image sum, AR = 1

k
aT x̂e, where the normalization k is defined so

that AR is proportional to target volume and conductivity for small targets. A uniform
AR across the imaged plane was identified as the most important parameter. However,
in 3D this is not possible or desirable far from the electrode planes. Instead, we seek a
uniform AR within electrode layer region.

Since AR is a global image parameter, we also define an amplitude response in
the target region, ART, which represents AR only in the desired image region. Thus,
ART = 1

k
aT diag(de)x̂e, and represents the amplitude of the part of the reconstructed

image which is correctly located within the desired image, and thus exclude image
artefact regions.

2.2.2. Figures of merit for reconstructed position. Errors in the reconstructed position
are measured by the position error, PE = rt − rq, where rt = |rt| is the distance of
the target from the image centre, and rq = |rq| is the distance of the reconstructed
area from the image centre. PE is positive for a reconstructed image which is too
close to the boundary, and negative when it is too close to the body centre. In 3D, a
scalar PE is less informative, so Cartesian components, (PEx, PEy, PEz), are defined
from the vector rt − rq. In Adler et al (2009), rq is the center of gravity of x̂q.
Instead, we propose to use the centre of gravity of the amplitude-scaled 1

4 -maximum
area, diag(x̂e)x̂q. This amplitude-scaled region is more visually representative of the
location of the reconstructed image.

2.2.3. Figures of merit for reconstructed shape. Three figures of merit are defined to
describe the shape of the reconstructed region. The most important is the resolution,
defined on a 2D slice as RES =

√
Aq/A0, where Aq is the area of the 1

4 -maximum
image, x̂q, and A0 is the whole slice area. In 3D, there is a need to define resolutions in
each dimension (RESx, RESy, and RESz). We propose a full-width quarter-maximum
(FWQM) definition in each dimension. Thus, for example, RESz is the distance between
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the lower and upper 1
4 -maximum point in the graph of the global image sum along the

z-axis.
For 3D GREIT, ringing (RNG) and shape deformation (SD) are defined similarly to

their 2D definitions. First, a volume Vq is defined as the volume of the 3D 1
4 -maximum

image, x̂q. A sphere, Sq, is defined of volume Vq centred at the target location, rt. SD is
calculated as the fraction of the volume of V which is not within S. SD becomes large
as the shape of the reconstructed region differs from a sphere. This difference in shape
will also be reflected by differences between the resolution in the cartesian axes.

The ringing measures whether reconstructed images show areas of opposite sign
surrounding the main reconstructed target area. RNG is defined as the ratio of image
amplitude of the opposite sign outside S to the image amplitude amplitude within S.
The best performance is that RNG be low and uniform, since regions with an opposite
sign can be misinterpreted in an image.

2.2.4. Figures of merit for reconstructed noise. The noise performance of GREIT is
defined by the amplitude of the noise distribution, Σn. This is measured by the noise
figure, NF = SNR[x̂]/SNR[y], which is the ratio of SNR in the reconstructed image to
that in the difference data. Here the signal to noise ratio, SNR[·] = mean[·]/std[·], is
defined as the ratio of image and signal amplitude to standard deviation, rather than
the more usual energy to variance ratio.

3. Evaluation

The developed reconstruction algorithm was evaluated in two ways: using a tank
phantom, and using a detailed FE model of the thorax from which the sensitivity of
various patterns could be evaluated.

3.1. Tank phantom

A cylindrical tank phantom was used and filled with a saline solution. This phantom
is composed of an acrylic glass cylinder with an internal diameter of 290 mm and a
height of 375 mm. The phantom has four rows of 32 4 mm gold-plated electrodes each,
of which upper and lower rows were used. The electrodes were thus spaced by 70 mm.
The phantom was filled with 22 L water mixed with 200 g of NaCl. A non-conductive
spherical test object of 45 mm diameter and 50 ml volume was used.

Using a test harness, the ball was moved from the centre to the boundary of the
tank in three different layers, corresponding to the centre (middle between the planes),
half way from the centre to the upper plane, and in line with the upper plane.

Data were acquired using the Pioneer Set (Swisstom AG, Landquart, Switzerland).
Thirty two electrodes were placed with odd numbered electrodes on the upper ring
and even numbered electrodes on the bottom ring, such that electrode #2 is directly
below #1. The acquisition protocol was using a “skip 4” pattern on both stimulation
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and measurement. Data were acquired first for a homogeous phantom, and then for at
least 100 frames at each object position. Data frames were averaged at each scenario to
reduce system noise.

Figure 1: Left: FE model of a water tank showing cut planes between voxel layers
and positions of a non-conductive spherical target (axes in meters). Right: images
reconstructed using the proposed algorithm. Each row corresponds to one voxel layer,
and each column to a different target position.

Reconstructions of tank data are shown in figure 1. On the left, the finite element
model of the tank is shown along with the positions of the non-conductive ball target.
At right, the reconstructed images are shown in each column. Each 3D reconstructed
image is divided into 9 horizontal cut planes. The images show the ability of 3D GREIT
to successfully differentiate the vertical position of the target.

Variations in vertical and radial position of a non-conductive spherical target are
successfully reconstructed. As expected, amplitude response and resolution fall toward
the long axis of the tank and away from the electrode plane. On the other hand, ringing
seems to be stronger in the electrode planes.

3.2. Thorax finite element model

A detailed FEM of the thorax was created, with the goal of providing a test framework
for this study, as well as a representative thorax FEM on which future simulation work
can be done. The basic shape was defined as part of Adler et al (2009), using the
the male visible human body dataset (Ackerman 1998). The provided photographic
images (of vertical spacing 20 mm) were used to generate the surface models from
which the finite element meshes were generated, similarly to the method described in
Tizzard et al 2005. Using this volume mesh, the surface mesh was extracted, electrodes
placed on the surface and the volume remeshed as desribed by Grychtol and Adler
(2013). Regions for the heart and lungs were defined based on ellipsoid geometries in
anatomically appropriate regions. The diaphragm was also modelled as an ellipsoid
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region surrounding the abdomen. The model is shown in figure 2, and is available in
the EIDORS mk library model function.

Multiple electrodes are defined onto the surface of the FEM in order to allow
for evaluation of different electrode placement and stimulation strategies; the model
contains 86843 nodes and 425913 elements. At each electrode a highly refined mesh
is defined in order to better model the local current distribution and sensitivity. A
central electrode plane is defined corresponding to the 6th − 7th intercostal space at the
parasternal line with 32 electrodes. Above and below this central plane by 25 mm, planes
of 16 electrodes are defined. Using this model, it is possible to select the electrodes used
within EIDORS, by using only those which correspond to a simulated position.

Figure 2: Detailed male thorax FEM based on the visible human dataset. Four views
are shown (axes in millimeters). Lung (blue) and heart (red) are illustrated with respect
to transparent (other tissues). Three layers of electrodes are visible on body surface as
regions with refined mesh.

One important question in 3D EIT is the selection of stimulation and measurement
patterns. There is a much richer choice of such patterns than in a single plane placement,
and many questions are open, such as whether there is a trade-off between vertical and
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horizontal resolution and sensitivity in the 3D image. While we are not able to address
this issue in detail, we illustrate a way forward using the 3D FEM and imaging tools we
describe. Using the thorax FEM described, we calculated the sensitivity for forward and
inverse solutions. Stimulations were calculated for a homogeneous model, and for a case
with physiologically realistic organ conductivities. Compared to soft tissue conductivity,
σ, lung region conductivity was set to be 0.20 × σ, while the heart was set to 1.5 × σ.
stimulation and measurement patterns. For each model, a selection of stimulation
pattern strategies was used, as shown in figure 3. The three patterns chosen were
motivated by Graham and Adler (2007) and designed to explore the space of patterns
sensitive to horizontal and vertical gradients. The planar pattern is primarily sensitive
to horizontal gradients, since most stimulus current travels horizontally. The odd/even
pattern is more sensitive to vertical gradients; all stimulation and measurement patterns
cross the centre plane. Finally, the square pattern has half of its stimulations in
a single plane and half which cross the centre. All patterns simulated here can be
implemented with an adjacent drive EIT system by switching the electrode positions
and then reordering the data.

(a) One electrode plane (b) Odd / even pattern

(c) Planar pattern (d) Square pattern

Figure 3: Electrode stimulation and measurement configurations considered, assuming
that a pair-drive EIT system has an equal “skip” value for both stimulation and
measurement pairs: (a) One electrode plane with skip 4, (b) Two planes with an even
(4) skip (Odd/even), (c) Two planes with an odd (5) skip (Planar), (d) Square pattern
(skip 4).

3.3. Forward and Inverse Sensitivity

For interpretation of EIT images, it is important to understand the spatial region to
which EIT is sensitive. In 3D EIT, it is expected that the sensitive region will depend
on the electrode placement, stimulation pattern, and other anatomical factors related
to the shape of the thorax and the presence of inhomogeneities, especially the lungs.
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We distinguish the concepts of forward- and inverse-sensitivity regions. Two areas
with equal forward sensitivity cause an equal change in amplitude of the difference
signal, ‖y‖. However, the reconstruction process will not necessarily project these to
equal amplitude reconstructions, x. Instead, two regions of equal inverse sensitivity will
have equal amplitude resonse.

Forward sensitivity, Si, was calculated, for each FEM element, i, as the root mean
square of the sensitivity Jacobian, and then normalized to the volume of that element,
Vi. Thus, Si = 1

Vi
‖Ji‖, where Ji is the ith column of the Jacobian, J. The distribution

of sensitivity is shown in figure 4 for one- and two electrode planes using an adjacent
(skip 0) and larger skip patterns. The most uniform sensitivity is achieved with two
planes and a larger skip.

Skip 0
1× 32

Skip 4
1× 32

Skip 0
2× 16
square

Skip 4
2× 16
square

Figure 4: Forward sensitivity of thorax model with lung and heart regions. Darker
image regions indicates increasing log sensitivity. For each row, the indicated skip
pattern and electrode arrangement (layers×electrodes/layer) is used. Image columns
from left to right: saggital (x = −75 mm), coronal (y = 50 mm), and transverse (at the
centre electrode plane). All images use the same colour scale.

GREIT inverse models were defined for each stimulation pattern, including the 2D
(single plane of 32 electrodes) and 3D (two planes of 16 electrodes) cases. In 2D, the
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data are reconstructed onto 690 square pixels of a 32×32 pixel grid defined at the plane
of electrodes. In 3D, the volume of the model is span by a 52 × 33 × 39 grid of cubic
voxels, of which 29886 intersect with the model and are used for reconstruction. The
grid of voxels is chosen such that at the middle electrode plane the pixels and voxels
align exactly. The side length of each voxel and pixel was 10.959 mm. For all inverse
models, the targets used for calculating the GREIT reconstruction matrix were spherical
(circular for 2D) contrasts with a diameter of 40 mm placed at the center of each voxel
(pixel in 2D). The weight hyperparameter, equal for all targets, was chosen such as to
achieve a noise figure of 1.0 at the center of the lung objects at the middle electrode
plane.

To illustrate the inverse sensitivity, we extend to three dimensions the concept of
amplitude response maps described in Grychtol et al (2012). Briefly, the difference
measurements caused by a number of small spherical targets (radius 10 mm) with a
conductivity contrast of 0.01 × σ were calculated and reconstructed with each inverse
model. The targets were arranged in several cut planes in a regular grid with 10 mm
spacing. From these target positions, an amplitude response map was created by
assigning each target position the amplitude response value of the reconstructed image
of that individual target.

3.4. Reconstruction sensitivities

The primary motivation for using a 3D placement of EIT electrodes is to control the
imaging volume to which EIT is sensitive. Using the 3D GREIT formulation and the
thorax model developed, we present an inital exploration of this question. We identify
three main factors influencing the sensitivity for two electrode layers:

• Layer separation: The reconstruction volume and measurements become more
independent as layers are further separate. We consider a layer separation of 50 mm
and compare it to a single electrode layer (of 32 electrodes).
• Stimulation and measurement pattern: As the active electrodes are further apart,

the sensitive region is driven further into the body (Adler et al 2011). This effect
is expected to occur also in 3D, but with an additional constraint: the vertical
resolution is likely to depend on what fraction of patterns cross the central area.
• Body inhomogeneities: The presence of conductivity inhomogeneities in the thorax

disturbs the pattern of current flow, shielding the inner lungs and heart (Grychtol
and Adler 2014).

Simulations were performed over a range of values of the indicated factors, and
the figures of merit calculated. In figure 5, the amplitude response map is shown for
a lung-filled model for a single- or two-layer stimulation and for two stimulation and
measurement patterns and with different skip distances. A large difference is visible
between the patterns, using an adjacent (skip 0) pattern, the sensitive region remains
close to the electrodes. For the increased skip (electrodes approximately 45◦ apart), the
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Figure 5: Amplitude response map of GREIT reconstruction in a thorax model
with lung and heart regions. Darker regions indicate increasing absolute amplitude
response. For each row, the indicated skip pattern and electrode arrangement
(layers×electrodes/layer) is used. Image columns from left to right: saggital (x =
−75 mm), coronal (y = 50 mm), and transverse at the lower and centre electrode
planes. Images for the 1 × 32 and 2 × 16 arrangements use different, but consistent,
colour scaling.

sensitive region is much more uniform. With two layers, the uniformity of the sensitivity
is improved across the thorax.

The uniformity of the amplitude response map is significantly improved using two
electrode layers and a larger skip pattern. While the square pattern is shown, the
image from the odd/even and planar arrangements were similar. It is also interesting to
compare the amplitude response map for a homogeous thorax (figure 6), which is again
much more uniform in the central transverse plane.
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Figure 6: Amplitude response map for homogenous thorax model, in comparison to
figure 5. Images are scaled such that the value in the centre of the model is the same.

4. Discussion

This paper extends the GREIT framework of Adler et al (2009) to 3D imaging
using several electrode planes. For lung imaging, there are two main motivations
for such image reconstruction. First, many common lung pathologies are inherently
inhomogeneous and should thus be imaged volumetrically so there is a better chance of
seeing the relevant areas. Also, even if a volume image is not desired, the “slice” given
by a single plane system represents a poorly constrained lens-shaped region. In this
case, 3D image reconstruction is of interest as a way to reject out of plane contributions
and deliver a better 2D slice.

By itself, 3D EIT imaging is not novel; early work by Rabbani and Kabir (1991)
considered the volumetric sensitivity of EIT; 3D reconstruction was first shown by
Metherall et al (1996) for difference EIT, but has since also been used in many absolute
EIT algorithms. GREIT has also recently been extended to 3D by Ahn et al (2014).
Given all this work on 3D EIT, it is surprising that almost all thoracic EIT imaging
is still done with a single plane of electrodes. This paper is motivated to make the
contributions to address what we perceive as holding EIT back: 1) easy to use 3D
algorithm tools, and 2) an evaluation framework to understand when, and how much,
benefit is available from 3D imaging.

To address the first requirement, the GREIT algorithm is reformulated to make
clear its relationship to other regularized linear difference approaches, and specifically
the Gauss-Newton algorithm. While the formulation is equivalent, GREIT makes
its dependence on the parameters of the “training” set explicit. With parameters
formulated as training and desired image sets, it is hopefully more clear how to adjust
the algorithm to meet various figures of merit. This algorithm has been made available
as part of EIDORS 3.8 and its software interface is detailed (??).

To address the second requirement, we develop a framework for evaluation of
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the sensitivity and reconstruction figures of merit for various two-layer electrode
configurations. A thorax FEM with electrode refinement is developed, and a number
of electrode positions and stimulation and measurement configurations are evaluated.
While this analysis was not comprehensive, one clear observation is that two-layer EIT
electrode configurations have significantly more uniform sensitivity profiles through the
body. It is worth noting that for 3D imaging, an accurate knowledge of relative positions
of the electrode planes is especially important (Bayford et al 2008). Errors in model of
electrode plane separation would corrupt the image reconstruction accuracy.

While our results show promise, it is also clear that there are many aspects of 3D
EIT with two electrode layers that are poorly understood and need clarification: How
far apart should the layers of electrodes be? What skip distance should be used for
pair-drive stimulation and measurement patterns? Should all the pair-drive patterns
cross the centre plane, or is z-resolution sufficiently improved when only a fraction
of them do so? Specifically for the GREIT algorithm, we ask: What is the desired
image for an out-of-plane target? How, if at all, should the desired image amplitude
be affected by the measurement sensitivity? How many targets are necessary, and how
should they be distributed? If non-uniform voxel sizes are used (especially off-plane in
the z-direction) this will impose a spatial low-pass regularization effect; is this effect
desired and when? If not, then there is a high computational cost of calculation of the
3D GREIT reconstruction matrix.

In summary, this paper develops the formulation of the GREIT algorithm for 3D
EIT with multiple electrode planes and shows promising results in terms of more uniform
sensitivity across the chest. Given these results, we argue that patient-friendly multiple-
plane EIT systems should be developed to make these technical advantages available in
the clinic.

Appendix A. Implementation

Software to implement 3D GREIT has been developed and an easy-to-use interface
released as part of EIDORS version 3.8 (Adler et al 2015a). An example of a functioning
set of code is given in listing 1.

First, a forward model (fmdl) must be defined (line 1), which, in this case, uses a
prepackaged FEM. A forward model defines the finite element geometry, regions within
the body (i.e. organs), electrode sizes and locations, and has pointers to approriate
FEM forward solvers. Onto fmdl, the pattern of stimulation and measurement must be
assigned (line 2); here using a function to define adjacent stimulation and measurement
onto two rings of 16 electrodes. Next (line 3), an inverse model for difference EIT is
defined (select imdl), for which a reconstructed parameterization is created over a
voxel volume (mk voxel volume). In line 4, options for the GREIT model are defined;
here the noise performance and target radius are set, and other values left to the default.
Last, in line 5, mk GREIT model is called to create the GREIT inverse model, imdl.
EIDORS creates a 3D solver, based on the 3D voxel volume provided.
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Listing 1: Example script to create a 3D GREIT inverse model.
1 fmdl = mk library model( 'cylinder 16x2el coarse' );
2 fmdl.stimulation = mk stim patterns( 16, 2, [0,1], [0,1]);
3 imdl = mk voxel volume( select imdl( fmdl ));
4 opt.noise figure= 1.0; target radius= 0.15;
5 imdl = mk GREIT model( imdl, target radius, [], opt);
6 imgr = inv solve(imdl, v time0, v time1);

In line 6, the inverse solver, imdl (created in the line 5), is used to reconstruct
image imgr. Since this is a difference image, two measurements are required, v time0
and v time1. This image can then be rendered in 3D or using various slice selection
approaches. The preceeding example shows a use of the default parameters. The
documentation for each function shows the use of optional values to adjust the algorithm.
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