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Abstract. Electrical impedance tomography (EIT) provides low-resolution images

of internal conductivity distributions, but is able to achieve relatively high temporal

resolutions. Most EIT image reconstruction algorithms do not explicitly account

for the temporal constraints on the measurements or physiological processes under

investigation. Instead, algorithms typically assume both that the conductivity

distribution does not change during the acquisition of each EIT data frame, and that

frames can be reconstructed independently, without consideration of the correlation

between images. A failure to account for these temporal effects will result in aliasing-

related artefacts in images. Several methods have been proposed to compensate

for these effects, including interpolation of raw data, and reconstruction algorithms

using Kalman and temporal filtering. However, no systematic work has been

performed to understand the severity of the temporal artefacts nor the extent to

which algorithms can account for them. We seek to address this need by developing

a temporal comparison framework and figures of merit (FOM) to assess the ability

of reconstruction algorithms to account for temporal effects. Using this approach, we

compare combinations of three reconstruction algorithms using three EIT data frame

types: perfect, realistic, and interpolated. Results show that, without accounting for

temporal effects, artefacts are present in images for dynamic conductivity contrasts at

frequencies 10 to 20 times slower than the frame rate. The proposed methods show

some improvements in reducing these artefacts.

Keywords : electrical impedance tomography, image reconstruction algorithm,

comparison framework, figures of merit

1. Introduction

Electrical impedance tomography (EIT) calculates images of internal conductivity

distributions from body surface measurements. Currently, the most promising

application of EIT is real-time monitoring of pulmonary ventilation (Adler et al 2012).

Compared to other medical imaging techniques, EIT has relatively low spatial resolution

but high temporal resolution. Commercially available lung monitoring EIT systems

(Draeger AG 2010, Swisstom AG 2014) are able to reconstruct and display images in
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real time at up to 50 frames/second. Faster EIT systems have been developed for other

applications such as the fEITER system for functional brain imaging working at up to

100 frames/second (McCann et al 2011).

EIT requires performing transimpedance measurements, typically from a set of 16

or 32 electrodes placed around the region of interest, such as the torso for monitoring

lung ventilation. From a set of electrodes, measurements are performed by applying a

current through a pair of electrodes while performing voltage measurements using all

other remaining electrodes pairs, and then switching the current stimulation to another

pair of electrodes in a sequential process. A complete set of independent measurements

is called a frame, from which an EIT image is calculated via a reconstruction algorithm.

Most EIT image reconstruction algorithms make the assumption that the

conductivity distribution does not change during the acquisition of an entire EIT frame.

This is of course an approximation since the lungs are breathing and the heart is beating

during the sequential process of data acquisition. This assumption is valid only if the

frame rate is much higher than the rate of physiological conductivity changes inside

the body area of interest. Yerworth and Bayford (2013) have suggested a ratio of 50

between frame rate and the highest frequency component should be sufficient. For EIT

of the torso, the fastest expected physiological impedance changes would come from

heart activity (fundamental frequency up to 220 beats/minute or 3.67 beats/second)

and high frequency oscillatory ventilation (HFOV) (fundamental frequency up to 60 Hz).

Harmonics of those fundamental frequencies may also cause aliasing artefacts.

Furthermore, in most reconstruction algorithms proposed, EIT frames are

independently reconstructed in a series of EIT images, as if there were no correlation

between successive EIT images. A few authors, however, have proposed innovative

methods to account for the fact that the conductivity distribution varies during the

acquisition of an EIT frame and/or the fact that successive EIT images are correlated

with one another, especially at high frame rates. Vauhkonen et al (1998) first proposed

using a Kalman filter approach to reconstruct EIT images to account for the temporal

correlation between successive EIT images. Other groups, such as Trigo et al (2004)

and Kim et al (2006), have further worked on refining and adapting the Kalman

filter approach to different scenarios. Adler et al (2007) first proposed a temporal

reconstruction algorithm that accounts for temporal correlation by reconstructing EIT

images while considering a total of 2d + 1 data frames, corresponding to the current

frame, d anterior frames and d posterior frames. More recently, Yerworth and Bayford

(2013) first proposed interpolating EIT measurements to account for the fact that

measurements in a frame are not acquired simultaneously. Related methods have

also been proposed by other groups, such as Voutilainen et al (2012), in the process

tomography field.

Although all these propositions seem promising, no comparison framework has been

proposed to assess the benefits and compare each of the proposed methods. In this

paper, we develop a comparison framework to measure the ability of EIT reconstruction

algorithms to account for temporal effects – the fact that measurements within a frame
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are not synchronous. Three reconstruction algorithms are presented: 1) Gauss-Newton

formulation, 2) temporal reconstruction algorithm, and 3) Kalman filter formulation.

Three types of EIT data frames are then defined: 1) perfect, 2) realistic, and 3)

interpolated. Finally, the comparison criteria are defined as an extension of the figures

of merit (FOM) proposed as part of the GREIT algorithm. Comparison results are then

presented and analysed.

2. Methods

EIT systems used for monitoring lung ventilation acquire transimpedance data from a

set of ne (typically 16 or 32) electrodes, typically uniformly spaced around the torso.

The most common data acquisition pattern is the Sheffield protocol, which consists

of applying current through an adjacent pair of electrodes while measuring voltages

using all remaining adjacent pairs of electrodes, and then repeating current application

through the next adjacent electrode pair. It provides nm = ne(ne − 3) measurements,

half of which are independent, which constitutes an EIT data frame v ∈ Rnm . For a

typical 16-electrode EIT system, nm = 208.

Most EIT systems reconstruct time difference images (TDI) that represent the

variation in conductivity distribution between the current frame, v, and a reference

frame, vr. vr typically corresponds to an average measurement, or a time such as

end-expiration where the conductivity is relatively stable. TDI requires difference data

y ∈ Rnm defined as y = v − vr, or normalized difference data, y = (v − vr)/vr (where

the division operator / is meant as vector-element by vector-element division). For TDI,

x ∈ Rnn represents variations in conductivity distribution between two instants, σ−σr,

where nn is the number of pixels or finite element model (FEM) elements in the image.

For small conductivity variations around σr, the relationship between the difference

data y and image x is obtained from the forward problem:

y = Jx + n (1)

where J ∈ Rnm×nn is the sensitivity matrix or Jacobian and n ∈ Rnm is random

measurement noise assumed to be zero-mean Gaussian distributed. J is typically

calculated using the FEM and depends on the geometry, stimulating current patterns,

reference conductivity distribution, and electrode model. The inverse problem of

calculating x knowing y, the geometry, stimulating patterns, and electrode model, is

ill-conditioned.

2.1. Image Reconstruction Algorithms

2.1.1. Gauss-Newton Formulation Most non-temporal EIT reconstruction algorithms

can be represented in terms of Tikhonov regularization, where the solution x̂ minimizes:

x̂ = arg min
x

[
||y − Jx||2

Γ−1
n

+ λ2||x− x0||2Γ−1
x

]
(2)
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where x0 is the expected conductivity change (usually zero for TDI). Γn ∈ Rnm×nm is the

measurement noise covariance matrix and Γx ∈ Rnn×nn is the expected image covariance

matrix. λ ∈ R is an hyperparameter adjusting the weighting between both norms.

Solving (2), we obtain:

x̂ =
((

JTΓ−1
n J + λ2Γ−1

x

)−1
JTΓ−1

n

)
y = By Classical form (3)

x̂ =
(
ΓxJ

T
(
JΓxJ

T + λ2Γn

)−1
)

y = By Wiener filter form (4)

where B is the reconstruction matrix. Since measurement noise is usually uncorrelated,

covariance matrix Γn is typically set to a diagonal matrix. Covariance matrix Γx, is

usually assembled in its inverse form Γ−1
x = FTF to emphasize in matrix F what is not

desirable in the final conductivity distribution (Adler and Guardo 1996).

2.1.2. Temporal Reconstruction Algorithm A temporal reconstruction algorithm (Adler

et al 2007) was proposed to account for the temporal correlation in successive EIT

data frames and images. An extended difference data vector ỹt is defined at time t as

the vertical concatenation of the d previous, current and d future data frames. The

corresponding extended conductivity variation x̃t is similarly defined. Equation (1)

expressed with these extended vectors then becomes
yt−d

...

yt
...

yt+d


︸ ︷︷ ︸

ỹt

=



J · · · 0
. . .

... J
...

. . .

0 · · · J


︸ ︷︷ ︸

˜J


xt−d

...

xt
...

xt+d


︸ ︷︷ ︸

x̃t

+


nt−d

...

nt
...

nt+d


︸ ︷︷ ︸

ñt

(5)

or ỹt = J̃x̃t + ñt in compact form. Equations (2) and (4) then become

ˆ̃x = arg min
x̃

[
||ỹ − J̃x̃||2

Γ−1
ñ

+ λ2||x̃− x̃0||2Γ−1
x̃

]
(6)

ˆ̃x =

(
Γx̃J̃

T
(
J̃Γx̃J̃

T
+ λ2Γñ

)−1
)

ỹ = B̃ỹ (7)

where J̃ = I⊗J, I is the identity matrix, and ⊗ represents the Kronecker product. Since

the measurement noise characteristics should be similar for all data frames, Γñ = I⊗Γn.

The time correlation between successive frames is represented by a correlation γ with a

value between 0 and 1. The matrix Γ is defined as

Γ =


1 γ · · · γ2d−1 γ2d

γ 1 · · · γ2d−2 γ2d−1

...
...

. . .
...

...

γ2d−1 γ2d−2 · · · 1 γ

γ2d γ2d−1 · · · γ 1

 . (8)
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From this definition of Γ, Γx̃ = Γ ⊗ Γx where Γ reflects the time correlation between

successive images while Γx represents spatial correlation between adjacent elements of

an EIT image.

2.1.3. Kalman Filter Formulation The Kalman filter formulation expresses the forward

problem as a state estimation problem, where the state vector at the kth instant of a

time sequence is the image xk. The state transition equation is

xk = Axk−1 + w (9)

where A ∈ Rnn×nn is the state transition matrix that relates the current state at time

k to the previous state at time k − 1. Most often A is set to the identity matrix

which corresponds to the random walk model. Vector w ∈ Rnn is the state noise

which is typically a zero-mean Gaussian with a covariance matrix of Γw representing

the modeling error of the state transition matrix.

The observation equation is obtained from (1) as

yk = Jkxk + n (10)

A prior estimate x−k and its covariance matrix P−k are first calculated from (9) as

x−k = Ax̂k−1 (11)

P−k = AP̂k−1A
T + Γw. (12)

The a posteriori estimate x̂k and its covariance matrix P̂k can be calculated as

x̂k = x−k + Kk(yk − Jkx
−
k ) (13)

P̂k = (I−KkJk)P
−
k . (14)

where Kk = P−k JTk (JkP
−
k JTk + Γn)−1 is the Kalman gain. Equations (11) through (14)

have to be run iteratively on successive EIT data frames to reconstruct EIT images

using the Kalman filter formulation.

2.2. EIT Data frames

During EIT data acquisition, the conductivity distribution varies due to physiological

activities such as respiration, blood circulation and digestion. As previously stated,

most EIT reconstruction algorithms assume that the conductivity does not vary during

the acquisition of a data frame, v ∈ Rnm . In fact, each measurement, vi ∈ R, depends

on the conductivity distribution σ when it is made, vi = fi(σ(t)). Here, vi is the ith

measurement within frame v. In order to evaluate the assumptions, we define three

types of EIT data frames: perfect, realistic and interpolated.
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2.2.1. Perfect EIT Data Frames We define perfect EIT data frames as frames in which

all EIT measurements are acquired simultaneously. EIT data frames are uniformly

sampled at the frame rate (ff = 1/Tf) where Tf is the time frame period. Perfect EIT

data frames are therefore defined as

vp(nTf) =


v1

v2

...

vnm−1

vnm

 =


f1(σ(nTf))

f2(σ(nTf))
...

fnm−1(σ(nTf))

fnm(σ(nTf))

 (15)

where n ∈ N is an integer. Perfect EIT data frames therefore represent the type of frames

most EIT reconstruction algorithms expect, where there is no change in conductivity

distribution during the frame acquisition.

2.2.2. Realistic EIT Data Frames However, real EIT system cannot acquire every

measurement of a frame simultaneously. Serial devices sequentially acquire all

measurements, and parallel systems make simultaneous voltage measurements but

sequential current stimulations. We consider a serial device where each measurement

is acquired at a frequency fm = 1/Tm equal to nmff where nm is the number of

measurements per frame and Tm is the time necessary (including set-up and acquisition)

to acquire one measurement. For some systems, Tm might vary depending on whether

the current injecting electrodes are commuted or not for one particular measurement.

Here, we assume Tm to be constant.

We define a realistic EIT data frames to be sampled at the frame rate (ff = 1/Tf)

where Tf corresponds to the time period between adjacent frames.

vr(nTf) =


v1

v2

...

vnm−1

vnm

 =


f1(σ(nTf))

f2(σ(nTf + Tm))
...

fnm−1(σ(nTf + (nm − 2)Tm))

fnm(σ(nTf + (nm − 1)Tm))

 (16)

where n ∈ N is an integer. Realistic EIT data frames represent those obtained from a

serial EIT system. We later show the artefacts from reconstruction algorithms that do

not account for temporal effects.

2.2.3. Interpolated EIT Data Frames Yerworth and Bayford (2013) proposed

interpolation of EIT measurements in order to reduce artefacts in EIT images from

time-varying conductivities. Linear and frequency-domain interpolation strategies were

defined. Using linear interpolation, an interpolated EIT data frame vi(nTf) is calculated

from successive realistic EIT data frames vr((n− 1)Tf) and vr(nTf) as

[vi(nTf)]i =
(i− 1)[vr((n− 1)Tf)]i + (nm − (i− 1))[vr(nTf)]i

nm

(17)
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2.3. Performance Figures of Merit

While no figures of merit (FOM) have been defined to assess the performance of temporal

EIT image reconstruction algorithms, several FOM have been defined for non-temporal

reconstruction algorithms as part of the GREIT algorithm (Adler et al 2009). We

summarize their definition, and extend them for temporal EIT reconstruction algorithms

in the following section.

2.3.1. GREIT Figures of Merit: Five FOM were defined, in order of perceived

importance. Each FOM is calculated from a reconstructed image of a small (5% of

the medium diameter) spherical conductive target located at a distance rt from the

medium centre. From the reconstructed image x̂, a one-fourth amplitude binary image

x̂q is defined as all pixels exceeding 1
4

of the image maximum.

• Amplitude response (AR) is the ratio of pixel amplitudes in the reconstructed image

to the conductivity contrast of the target.

AR =
Σk[x̂]k

Vt
∆σ
σr

(18)

where k represents the kth pixel, Vt is the target size (volume or area), σt and σr

are the conductivities of the target and medium background, and ∆σ = σt − σr.

• Position error (PE) is the difference between the expected target position rt and

its position in the reconstructed image x̂.

PE = rt − rq (19)

where rq is defined as the centre of gravity of binary image x̂q.

• Resolution (RES) evaluates the size of the reconstructed target as a fraction of the

medium size.

RES =

√
Aq

A0

(20)

where Aq =
∑

k[x̂q]k is the number of one-pixels in x̂q and A0 is the number of valid

pixels, which corresponds to the area in pixels of the entire reconstructed medium.

• Shape deformation (SD) represents the distortion of the small spherical conductive

target from a circle in the reconstructed image.

SD =

∑
k/∈C [x̂q]k∑
k[x̂q]k

(21)

where C corresponds to a circle centred at rq with an area equivalent to Aq.

• Ringing (RNG) evaluates the extent of areas of opposite signs surrounding the main

reconstructed target area.

RNG =

∑
k/∈C∧[x̂q]k<0[x̂q]k∑

k∈C [x̂q]k
(22)

where C corresponds to a circle centred at rq with an area equivalent to Aq.
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(a)

(b)

Figure 1. (a) Sequence of images for one cycle of a sinusoidal conductivity change

reconstructed with the Gauss-Newton algorithm from three different EIT data frame

types: perfect (top row), realistic (middle row) and interpolated (bottom row). (b)

Figures of merit calculated for four cycles of the image sequences represented in (a):

1) amplitude response (AR), 2) position error (PE), 3) resolution (RES), 4) shape

deformation (SD), 5) ringing (RNG), and 6) temporal amplitude response (TAR).
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2.3.2. Extension for Temporal EIT Reconstructions Figure 1(a) shows sequences of

EIT images reconstructed for a target whose conductivity is sinusoidally varying at

0.2 cycles per frame for a total of one cycle, using perfect (top), realistic (middle) and

interpolated (bottom) data frames. Ringing and shape deformation artefacts can clearly

be seen especially in the middle sequence using realistic frames and for smaller target

amplitudes. The top five rows of figure 1(b) show FOM calculated for four cycles of the

three image sequences from figure 1(a) using GREIT FOM definitions. All FOM vary

over time (expressed as frame number) especially for realistic frames. Except for AR,

FOM do not vary for perfect frames. The GREIT definition of AR from (18) can be

modified to account for that:

TAR =
Σk[x̂]k

Vt
∆σ(t)
σr

(23)

where TAR stands for temporal amplitude response and ∆σ(t) is now a function of

time and is adjusted according to the known sinusoidal amplitude of the conductivity

target. TAR is represented on the bottom row of figure 1(b). In this case, only images

reconstructed from perfect frames exhibit a constant TAR for all images of the sequence.

From observations of FOM in figure 1(b), we define for temporal image

reconstruction algorithms the following extended FOM based on the FOM defined for

GREIT. They will be defined as 1) TAR, 2) PE, 3) RES, 4) SD, and RNG calculated

on a sequence of images reconstructed for a number of complete cycles of a sinusoidally

oscillating conductivity target. The FOM will be expressed as the mean and standard-

deviation over the whole sequence of images for all five FOM.

2.4. Simulations

All simulations were performed in EIDORS version 3.7.1. A 3-D FEM model of a

cylinder was designed for the forward problem with the following parameters: height 2,

radius 1, 55 181 elements and one 16-electrode (circular, radius 0.05) plane located at

mid-height. A small spherical (radius 0.05) conductivity target located at mid-height

at a radial distance r varying from 0 (medium centre) to 1 (medium boundary) was

introduced in the cylinder. The background (reference) conductivity of the medium was

set to 1 while the conductivity of the target σt was varied as a function of time as:

σt = 1−
cos(2πfc/mtm + φ)

2
+ 0.01 (24)

where fc/m is the frequency expressed in cycles per measurement, tm is the measurement

number starting at zero for the first measurement of the first frame and φ represents

a phase shift. The frequency expressed in cycles per frame fc/f is equal to nmfc/m

where nm represents the number of measurements per frame. A small offset of 0.01

was added to prevent the target from reaching the same conductivity as the background

and disappearing from the expected reconstructed images, which would cause numerical

issues for the division in TAR. Frames are simulated for an integer number of cycles nc

to obtain a total of nf = nc/fc/f frames. FOM are computed for each of the nf frames.
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Figure 2. Overview of the proposed methodology. Data are simulated (FEM model,

top left) for a contrast which varies over time (top right), and then reconstructed into

an image sequence (right middle) from which temporal figures of merit (bottom right)

are calculated. For each choice of data generation (e.g. frequency, phase) and image

reconstruction (i.e. choice of algorithm and its parameters) parameters, the mean ± std

of each FOM are calculated.

Mean and standard-deviation for each of the FOM are then computed over the nf FOM

values obtained for the nf frames. Figure 2 summarizes the methodology used for all

simulations.

For each simulation set, a radius r, frequency ff , phase φ, number of cycles nc and

SNR is set. One of the following parameter is then varied over a range of reasonable

values: 1) number of cycles, 2) frequency, 3) phase, 4) radius, 5) SNR, and 6) algorithm

hyperparameter. If unspecified, the algorithm hyperparameter has been set according

to the noise figure method to obtain a noise figure of 0.5 (Graham and Adler 2006).

Three reconstruction algorithms have been considered: 1) Gauss-Newton (λ = 0.0453

with a 0.5-exponent NOSER prior (Cheney et al 1990)), 2) temporal (d = 3, γ = 0.8,

λ = 0.0453 with a 0.5-exponent NOSER prior) and 3) Kalman filter (λ = 0.0453 with

a 0.5-exponent NOSER prior). For the Kalman filter, 100 dummy frames (in which

the target conductivity followed (24)) were added at the beginning of the simulation in

order for the Kalman filter performance to stabilize.
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3. Results

Simulations of FOM for all combinations of the three reconstruction algorithms and

three types of EIT data frames have been performed. Complete simulation results

are available in the electronic supplement which also includes additional results for

two extra reconstruction algorithms: Backprojection and GREIT. In the next sections,

only significant results about the effects of the number of cycles, frequency, phase,

radius, SNR, and hyperparameter are discussed and presented for selected reconstruction

algorithms and types of EIT data frames.

3.1. Number of Cycles

The FOM were analysed as a function of the number of cycles. Clearly, the FOM for

Gauss-Newton are not affected by the number of cycles. For the temporal reconstruction

algorithm, small variations were observed for the SD mean and all standard-deviations

except for TAR for less than 3 cycles. For the Kalman filter, despite the fact that 100

dummy frames were used for stabilization purposes, there is a significant dependence on

the number of cycles and some parameters, such as TAR and RNG, do not seem to reach

a plateau even for 32 cycles. This is mainly due to the parameter we use for the Kalman

filter that provides a significant amount of temporal correlation. The behaviour of the

Kalman filter is similar in this case to what happens for an infinite impulse response

(IIR) filter. For the rest of the simulations, we elected to use four as the number of

cycles, which seems reasonable for most reconstruction algorithms, Kalman filter being

the only exception.

3.2. Frequency

Figure 3 shows FOM calculated as a function of frequency for the Gauss-Newton

algorithm for three different types of EIT data frames. For perfect EIT data frames,

FOM are, of course, independent of frequency. For interpolated EIT data frames,

FOM are always closer to those of the perfect data frames except for TAR where

the interpolation actually worsened the FOM. This peculiar behaviour can be better

understood by looking at figure 1(b) where it can be seen that TAR actually improves for

interpolated frames when the value of the conductivity target is large but worsened when

it is small. So the accuracy of the amplitude over an entire sinusoidal cycle is worse for

interpolated frames than for realistic frames. As expected, FOM worsened for realistic

and interpolated frames as the frequency of the conductivity variations increases. For

realistic frames, frequencies as small as 0.01 cycles/frame still produce some variations

in FOM which is especially obvious while looking at the standard-deviations of FOM.

3.3. Phase

Phase (φ from (24)) represents the phase shift between the conductivity variation of the

target and the beginning of the first EIT frame. All FOM were affected in a periodic way
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Figure 3. Temporal FOM as a function of frequency for Gauss-Newton reconstruction

algorithm using perfect (——), realistic (· · · · · ·) and interpolated (- - - -) frame types.

(Phase = 0, Number of cycles = 4, radius = 2/3, SNR = ∞).

by the variation of phase. This can be explained by the fact that the 208 measurements

are made in a given sequence and some measurements are more sensitive to the selected

conductivity target location than others. If the target conductivity is smallest or largest

due to the phase shift when the most sensitive measurements are made, this will greatly

affect the FOM values. For the Kalman filter, the FOM are relatively independent of

phase except for TAR. For the Gauss-Newton algorithm, most FOM exhibit a periodic

behaviour except for RES. The temporal reconstruction algorithm exhibits a relatively

periodic behaviour except it seems more erratic for small phase values for PE and SD.

3.4. Radius

Figure 4 shows FOM calculated as a function of radius for the Gauss-Newton algorithm

for three different types of EIT data frames. In general, the FOM for perfect frames

are better than those for interpolated frames which are better than those for realistic

frames. The only exception is TAR when the conductivity target is located between
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Figure 4. Temporal FOM as a function of radius for Gauss-Newton reconstruction

algorithm using perfect (——), realistic (· · · · · ·) and interpolated (- - - -) frame types.

(Frequency = 0.1 cycles/frame, Phase = 0, Number of cycles = 4, SNR = ∞).

about 0.7 and 1.0, close to the medium boundary. In these locations, interpolation

seems to worsen the amplitude response. There is a sharp change in FOM behaviour

for the region where the radius is between 0.8 and 1.0. The RNG and PE is worst but

the TAR, RES and SD is best.

3.5. SNR

SNR was calculated as a ratio of the amplitude of the difference signal y = (v − vr),

and varied from 10−1 to 104. In this case, simulations were performed for a frequency of

0 cycles/frame which means that the conductivity target was not varying as a function

of time. Only the noise was varied as a function of time and, in this case, the number

of cycles (100) means the number of random noise vectors that were considered for

the mean and standard-deviation calculations. Figure 5 shows FOM calculated as a

function of SNR for three different reconstruction algorithms with realistic data frames.

Most performance indicators behave as a sigmoid function with two plateaus and varies
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Figure 5. Temporal FOM as a function of SNR for Gauss-Newton (——), Kalman

(· · · · · ·) and temporal (- - - -) reconstruction algorithms using realistic frame type.

(Frequency = 0 cycles/frame, Phase = 0, Number of cycles = 100, radius = 2/3).

sharply in between. The Kalman filter however is able to maintain its high performance

for much lower SNR than the temporal reconstruction algorithm which is itself better

than Gauss-Newton. For very low SNR, the performance of the Kalman filter are

however more erratic than those of the other two algorithms that are more constant

in this low-SNR region.

3.6. Hyperparameter

For the Gauss-Newton and temporal algorithms, as hyperparameter value is increased,

FOM reach a plateau where TAR is maximal, PE is relatively small, RES is worst,

SD is worst, and RNG is best. The behaviour of both algorithms is about the same

except in the case of the temporal algorithm where TAR mean and standard-deviation

values are higher for higher values of the hyperparameter. The behaviour for Kalman is

very different than the other two algorithms. For instance, FOM reach no plateaus as

hyperparameter increases. This peculiar behaviour for Kalman is probably explainable
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by the fact that only one hyperparameter controls both spatial and time correlations

which both affects FOM but in a different way.

4. Discussion and Conclusion

This paper considers the problems caused by the assumption that EIT data in each

frame are recorded at the same instant. We have developed a framework to evaluate

reconstruction algorithms as a function of various temporal characteristics of the EIT

data. Simulations have been performed to apply those FOM on a combination of

three reconstruction algorithms and three EIT data types. Extensive comparisons

are provided and made available in the electronic supplement. Results show that

the FOM are mainly sensitive to the reconstruction algorithm, the parameters of the

reconstruction algorithm, the position of the small conductive target as well as the

frequency and phase of the change of the conductivity of the target. The same FOM

can be used to assess pure SNR performance when the frequency is set to zero.

Our results show that artefacts due to the temporal nature of EIT data occur

much earlier than previously thought. Frequency-related artefacts have been observed

at frequencies lower than one tenth of the frame rate. These results support the

recommendation of Yerworth and Bayford (2013) that a frame rate of at least 50

times higher than the highest frequency component should be used if no temporal

reconstruction or interpolation techniques are used. Imaging results also show that

previously observed artefacts in images with different reconstruction algorithms might

be due to the fact that we are trying to image changes of conductivity that are at the limit

of being too fast to be observed. This phenomenon could be better understood as an

imaging equivalent to the aliasing that occurs during signal processing with insufficient

sample rate.

With this comparison framework, we simulate a sinusoidally varying conductivity

target at different locations and frequencies. In practice, however, breathing and cardiac

activities produce much more complex conductivity variations. The lungs and heart

external surfaces are expanding and contracting during breathing and cardiac activities.

The change in conductivity is also not purely sinusoidal as several harmonics would have

to be considered to simulate the cardiac and lung related conductivity variations. The

comparison framework however presents a simple yet useful scenario to quantitatively

assess reconstruction techniques.

So far, it is impossible to declare a clear winner between the interpolation technique,

the Kalman filter and the temporal filter as they all have exhibited strengths and

weaknesses in different areas as shown in the FOM results. Furthermore, the parameters

of each algorithm could have been optimized to improve performance of any particular

FOM. The main point of this paper was rather to provide a platform for comparing

temporal reconstruction algorithms including 1) a target with sinusoidally varying

conductivity variation, 2) five FOM whose mean and standard-deviation have to

be calculated and 3) three types of EIT data frames. We showed that it can be
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applied with different temporal reconstruction algorithms. We thus recommend this

comparison framework as a tool for developing future generations of optimized temporal

reconstruction algorithms and will make it publicly available through EIDORS.
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