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Abstract: Difference EIT reconstructs a signal generated

by conductivity contrasting regions. We explore the ef-

fect that, for large contrasts, conductive regions produce a

greater signal than non-conductive ones, and this difference

is determined by the region shape.

1 Introduction

EIT images conductivity contrasting regions within a body.

Image reconstruction algorithms (especially for difference

imaging) are based on linearization of the sensitivity mat-

rix. For this reason, the sensitivity of EIT to small contrasts

is well understood. A small change of σ +∆σ produces the

same magnitude of signal change as σ −∆σ (or, in logar-

ithmic space, σ
1+∆ and σ

1−∆). However, in practice, con-

ductivity contrasts can be large (i.e. air in the lungs, or hy-

pertonic saline in the blood).

In this paper we seek to understand the strength of EIT

signals as a function of the conductivity contrast ratio. Our

analysis is based on a simplification that the target is far

from measuring electrodes relative to its size (which is reas-

onable for many biomedical applications of EIT). In this

case, the contrast can be understood in terms of the polariz-

ation tensor, for which there is a well developed theory[1].

2 Perturbations and current streamlines

Perhaps surprisingly, the most important factor is the shape

of the target area with respect to the current stream lines. A

non-conductive target has most effect when it is mostly per-

pendicular to the streamlines, while, for a conductive target,

the effect is largest when parallel.

In order to illustrate this effect, we simluate an ellipt-

ical region of conductivity, σ , in an otherwise homogeneous

rectangular region of unity conductivity. Two electrodes

are placed at each horizontal end to produce a horizontal

voltage gradient. As shown in Fig.1, for a non-conductive

contrast (top row, with σ ≈ .05), the most significant effect

is when the major axis of the ellipse is oriented perpendic-

ular to the streamlines. On the other hand, for a conductive

contrast (bottom row, with σ ≈ 20), the most significant ef-

fect is the converse, when the major axis is parallel to the

streamlines.
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Figure 1: Streamlines surrounding an elliptical inclusion of vari-

ous contrasts in 2D. The elliptical horizontal/vertical major axis

dimension is left column: 2.0 and right column: 0.5. The con-

trast/background ratio was top row (non-conductive): exp(−3.0)≈
.05 and bottom row (conductive): exp(+3.0)≈ 20.

This makes intuitive sense. A contrasting region which

which blocks the streamlines will have the most effect when

it is non-conductive. However, a region which follows close

to the streamlines will, if conductive, draw in the stream-

lines, but, if non-conductive, have little effect.

3 Conductivity contrasts and EIT

In order to understand the how this effect manifests itself

into an EIT system in 3D, we consider a simplified chest

model as a cylinder with 16 electrodes in a central plane

(with hight/diameter ratio of one). A small central ellips-

oidal region is created as a conductivity contrasting target.

The ellipsoid has a circular cross section in the electrode

plane (with radius 0.1) but with a parameterized semi-axis

length, z = 0.1∗ r in the vertical direction. The cylinder had

unity conductivity, except for the ellipsoid, with conductiv-

ity σ .

A difference signal s(z,σ) = ‖v(z,σ)−vh‖2 was calcu-

lated, where v(z,σ) is the vector of EIT measurements us-

ing adjacent simulation and measurement for ellipsoid ver-

tical dimension z and conductivity σ , and vh = v(z,1) is the

corresponding homogeneous signal.

The signals normalized to their maximum values are

shown in Fig˙ 2. A similar effect is shown as before. A

flat ellipse gives a much larger signal for conductive con-

trasts, while, as the ellipse becomes tall, the non-conductive

contrast increases (with an equal effect when the ellipse be-

comes a infinite vertical cylinder).
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Figure 2: Normalized EIT signal, s(z,σ) versus conductivity con-

trast, σ , for different ellipsoidal vertical semi-axis ratios, r.

4 Discussion

We show that the signal amplitude saturates differently for

conductive and non-conductive targets, and this difference

depends on the object shape. A complete theory of this ef-

fect has been developed by [1], in which the polarization

tensors for 2D ellipses (eqn 4.11) and ellipsoids (eqn 4.14)

are given.
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