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Abstract—Electrical impedance tomography (EIT) is a non-
invasive method to image conductivity distributions within a
body. One promising application of EIT is to monitor ventilation
in patients as a real-time bed-side tool. Thus it is essential that
an EIT system reliably provide meaningful information, or alert
clinicians when this is impossible. Because the reconstructed
images are very sensitive to system instabilities (primarily from
electrode connection variability and movement), EIT systems
should continuously monitor and, if possible, correct for such
errors. Motivated by this requirement, we describe a novel
approach to quantitatively measure EIT data quality. Our goals
are to: define the requirements of a data quality metric, develop
a metric q which meets these requirements, and an efficient
way to calculate it. The developed metric q was validated using
data from saline tank experiments and a retrospective clinical
study. Additionally, we show that q may be used to compare
the performance of EIT systems using phantom measurements.
Results suggest that the calculated metric reflects well the quality
of reconstructed EIT images for both phantom and clinical data.
The proposed measure can thus be used for real-time assessment
of EIT data quality and, hence, to indicate the reliability of any
derived physiological information.

Index Terms—Electrical impedance tomography, data quality,
image quality, patient monitoring.

I. INTRODUCTION

Electrical impedance tomography (EIT) images the conduc-
tivity distribution within a body from current patterns and
measurements made at electrodes attached to the body’s sur-
face. EIT imaging of the upper thorax is a promising tool for
monitoring of lung ventilation to provide timely information
on the state of lung tissue and identify regions of normal
ventilation, lung collapse or overdistention [1], [2]. However,
EIT measurements are subject to errors caused by human body
dynamics (movement and sweat), electrode contact variability
or loss, and electronic imperfections such as noise or drift.
[3], [4]. If treated as valid signal, the potentially large number
of false alarms caused by such errors can render the device
useless in the clinical environment. It is therefore necessary for
an EIT system to recognize and compensate for such errors, or
alert clinicians when this is not possible, rather than quietly
presenting inaccurate information. There is therefore a need
for a reliable data quality indicator to continuously assess
the acquired data in real-time and ensure that diagnostic or
therapeutic decisions are based on accurate information.

Overall, data quality is an increasingly salient topic in
biomedical engineering. As biomedical data acquisition and

processing systems support (or take) more decisions in modern
societies, from the clinic to border control, accurate data
becomes of paramount importance. Poor quality data can lead
to wrong decisions with grave consequences. In the field of
biometrics, for instance, dedicated workshops have already
been conducted [5] and a systematic taxonomy (character,
fidelity and utility) for image quality has been developed [6].
Systematic approaches to data quality assessment have been
proposed (e.g., [7]). Several studies tackled the issue of signal
quality in electroencephalography (EEG) (e.g., [8], [9]) which,
like EIT, uses voltage readings from multiple electrodes on
the body’s surface. However, to the best of our knowledge, no
systematic approach to measures of data quality suitable for
real time monitoring have been derived.

While EEG signals from individual electrodes are generally
analyzed independently, EIT imaging depends on data from
all electrodes for image reconstruction. Additionally, in most
practical systems, data from different electrodes are interde-
pendent to a degree. A single measurement error can cause
the failure of image reconstruction. Thus, past effort has been
directed at detecting and compensating for these errors. Asfaw
and Adler [10], [11] proposed a method of automatic detection
of faulty electrodes and unreliable measurements by means
of finding single electrodes whose readings are inconsistent
with the rest, an idea which we further exploit here. Bover-
man et al. [12] described the use of the complete electrode
model (CEM) to compensate for badly connected electrodes.
They suggested to take into account during the reconstruction
the actual electrode contact impedance, for which analytical
solutions exist [13], albeit only for a 2D homogeneous disk,
and a fast statistical estimation method using Magic Toeplitz
Matrix have been developed [14]. However, these methods
are not suitable for continuous monitoring because of the
unstable procedure for the failing electrodes and the need
for recalculating the sensitivity matrix for the changes of
CEM parameters. An online algorithm for the management
of faulty electrodes based on the principle of reciprocity for
EIT measurements was developed by Hartinger et al. [15].
However, in ventilation, imaging reciprocity is broken by
physiological changes occurring between measurements, par-
ticularly for slower EIT systems or during high-frequency
ventilation. More practical and fast-processing approaches are
needed for real-time monitoring applications.

Development of signal quality measures has also been
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motivated by the desire to assess and compare the performance
of EIT systems. Although signal to noise ratio (SNR) is
commonly used, its value may vary greatly according to test
conditions and capacity of the testing system and depends on
the number, location, and distribution of the electrodes [16].
Thus it is difficult to compare different EIT systems in terms
of SNR. Riu and Anton [17] proposed an additional measure
to assess the quality of EIT measurements based on comparing
the actual and expected signals from a known test object. A
procedure and a set of parameters to evaluate and calibrate
the performance of EIT using a saline phantom and cubic
test objects was also proposed [18]. These approaches are not
suited for online data quality monitoring in ventilation imaging
where no test object can be placed inside the body.

Another approach is to assess the quality of the recon-
structed images rather than the signal used to calculate them.
A comprehensive set of parameters for assessment of EIT
reconstruction algorithms in terms of image quality has been
proposed [19]. While EIT image quality naturally depends
on data quality, the reconstructed images are also strongly
dependent on the reconstruction strategy and in particular the
choice of the regularization (hyper)parameter. Furthermore,
noise is likely to be amplified through the reconstruction
process [20] due to meshing errors, resulting in image arti-
facts and degraded image quality, while a single (partially)
disconnected electrode can cause complete failure of image
reconstruction despite good data from all other electrodes.
Thus, an image-based quality metric is not well suited for
unsupervised real-time assessment of data quality.

In order to address the requirement for continuous EIT data
quality assessment for monitoring applications in the intensive
care unit (ICU), a novel formulation to measure data quality
is proposed. Our goal is to provide a quantitative assessment
of data quality suitable for real-time display alongside the re-
constructed images and hence able to affect clinical decisions.

The paper is organized as follows: In the next section, we
first state the requirements for a useful data quality metric.
We then elaborate our formulation of such a metric (II-B),
and describe the data and procedure used to evaluate it. After
presenting the results in section III, we discuss the proposed
quality metric in terms of the identified requirements and offer
concluding remarks in section IV.

II. METHODOLOGY

In this section we first present the requirements a data
quality measure q for EIT should satisfy and a short overview
of our approach to derive such q. Second, we elaborate the
formulation of q. Lastly, we describe the data and procedures
used for its evaluation.

A. Overview

In order for a data quality metric q to be easily interpretable
and able to inform diagnostic interpretation of EIT images, it
should satisfy the following requirements:

1) q should vary between 0 and 1 (0 ≤ q ≤ 1) such that q
of 1 (a high value) indicates a good signal, while 0 (a
low value) stands for a bad signal.
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Fig. 1: A graph showing the general overview for data quality
calculation based on a model and data.

2) q should increase as we include more data (q from E+1
good electrodes > q from E good electrodes).

3) q should decrease as we include bad data (q from E
good electrodes + 1 bad electrode < q from E good
electrodes).

4) q should decrease if data are good but incorrect (e.g.
electrodes were placed incorrectly).

It is clear that in order to satisfy the last requirement the
quality metric q must take into account a model of the stud-
ied domain and the specific measurement strategy employed
(forward model). We thus base our approach to measure data
quality on the jackknife concept [21]. In short, based on
a forward model and a vector of voltage differences, we
attempt to recover the value of each individual measurement
from all the other measurements (the jackknife estimate).
By comparing the actual measurements with their estimates,
we calculate measurement errors which we scale, transform
and aggregate into a single scalar quantity with the desired
properties. Our approach is illustrated schematically in Fig. 1.

B. Data quality formulation

We consider the large class of linear EIT reconstruction
algorithms based on the sensitivity matrix approach. We
formulate q for normalized difference reconstruction, which
is a common approach in thoracic EIT due to its increased
resilience to movement and shape errors with respect to the
(not normalized) difference approach. However, the formula-
tion for difference imaging is equivalent, differing only by a
scale factor.

During an EIT measurement, we acquire normalized voltage
difference data d = (v− vr) /vr, where v and vr are the
current and reference measurements, respectively. From d we
wish to reconstruct images of relative conductivity changes
m = (σ − σr) /σr between two states: the current conduc-
tivity distribution σ and the reference conductivity distribution
σr inside the medium. Such difference, or functional, imaging
is well suited for, e.g., monitoring of physiological changes
during breathing.

The data d and image m are related by a physics model
F (·):

d = F (m) ≈ Jm (1)

where J is the M ×N sensitivity (or Jacobian) matrix which
linearizes the model F (·) at a background (or reference)
conductivity σr, M is the data length, and N is the number
of elements in the image m. J is calculated as:

[J]i,j =
∂[F (σr)]i
∂[σr]j

(2)
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for i = 1 . . .M and j = 1 . . . N . J is often calculated by the
finite element method (FEM) and depends on (a model of) the
medium’s shape and background conductivity distribution as
well as electrode placement and measurement strategy.

We wish to define the vector ε ∈ RM — the error to signal
ratio — as the estimated error over signal, such that for i =
1 . . .M

εi =
di − d̂i
S

=
1

S

(
θTi

(
d− d̂i

))
, (3)

where d ∈ RM is the vector of measured data, and d̂i is
a jackknife estimate of d based on all the data d but its i-
th element, θi is a vector (M × 1) of zeros with a single
element [θi]i = 1 and S represents signal strength. However,
we do not know a priori what constitutes the “signal” in
an EIT measurement. Instead, we define S as the mean of
normalized difference data obtained by simulating using Eq. 1
the appearance of a small (20% medium radius) spherical
contrast (2:1 contrast-to-background conductivity ratio) at the
center of the medium.1

The first order jackknife estimate, d̂i, is obtained by recon-
structing an image m̂i using all data d except its i-th element

m̂i = Rid, (4)

and then projecting the data from this estimate

d̂i = Jm̂i = JRid, (5)

where Ri is the reconstruction matrix that can be written in
the Wiener filter form [20] as:

Ri = ΣmJT
(
JΣmJT + λ2Σn

)−1
(6)

where Σm is an estimate of the prior model element covari-
ance, while Σn is an estimate of the data noise covariance, and
λ is a hyperparameter controlling the amount of regularization.
The required amount of regularization depends on the forward
model from which J and Σm are derived. To cater for any
model, here λ is set objectively such that noise amplification
as defined in [20] in the center of the medium equals 1. This
configuration-independent method of setting the hyperparame-
ter has been shown to consistently produce good quality recon-
structions qualitatively indistinguishable from expert heuristic
selection and with close to optimal resolution [22].

Typically, we assume that all data noise is equal on each
channel and thus Σn = I. However, the reconstruction matrix
Ri explicitly ignores data channel i, and thus assumes that
data noise on channel i is much larger (by an additive factor
µ� 0), which we model as

Ri = ΣmJT
(
JΣmJT + λ2 (I + µΘi)

)−1
(7)

where Θi is a matrix (M ×M ) of zeros with [Θi]ii = 1 [23].
Thus, we have

εi =
1

S

(
θTi

(
d− d̂

))
=

1

S

(
θTi (d− JRid)

)
=

1

S

(
θTi (I− JRi) d

)
. (8)

1Here, for difference imaging, we would use kS instead of S, where k is a
scaling factor accounting for the possibly different scales of the simulated and
real signal (due to signal amplification/attenuation or modeling inaccuracies
in J).

We define a “quality” matrix, Q which represents this
calculation for each data element. Each row i of Q is given
by Qi = θTi (I − JRi). Q can be precalculated, as it depends
only on the geometry, and the stimulation and measurement
patterns. Thus

ε =
1

S
(Qd) (9)

Q can be calculated efficiently, as shown in Appendix A, the
code for which will be part of the next release of the EIDORS
suite [24].

Finally, to derive the proposed quality measure q, we first
calculate a vector q expressing the quality of each measure-
ment i as

qi =

(
1

2

)|εi|
. (10)

Thus, lim|εi|→0 qi = 1 indicating perfect quality, and
lim|εi|→∞ qi = 0 for bad quality data. While any positive
number <1 would satisfy the requirements of our formulation,
our choice means that when |εi| = 1, qi = 1

2 , which we feel
helps interpretation of the calculated values.

The proposed data quality measure q is the arithmetic mean
of all the elements of q

q =
1

M

M∑
i=1

qi , (11)

where M is the length of the data vector d. The calculation of q
requires one matrix multiplication per data set (eq. 9), which is
comparable to the computational requirement of linear image
reconstruction.

C. Evaluation

The proposed quality metric q was evaluated under labora-
tory and clinical conditions. We used a physical phantom to
investigate several scenarios where a variable number of elec-
trodes were affected by degraded contact quality. Recordings
from two pediatric patients with lung disease from a published
study were utilized to assess performance and demonstrate the
utility of q in the clinical setting. We evaluated q in light of the
requirements identified in section II-A and by comparison with
bespoke measures of image quality. Additionally, although
not the main focus of this study, we used q to compare the
performance of three available EIT systems using phantom
measurements.

1) Data:
a) Phantom measurements: The phantom test system

consisted of a cylindrical plastic tank filled with saline so-
lution, a cubic test target and the Sigma Tome II EIT system
(Ecole Polytechnique Montréal, Canada). The tank (diameter
= 29 cm, height = 36 cm) was filled with 22 liters of saline
solution (conductivity σ = 0.8 Sm−1 as measured with a
conductivity meter ECTestr (Oakton Instruments, USA)) and
equipped with 4 rows of 32 electrodes of which 16 equidistant
electrodes on a single row approximately 17 cm below the
water surface were used.

Different degrees of electrode contact deterioration were
obtained through varying the contact resistance of individual
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Fig. 2: Test scenarios with 1, 2, 4 and 6 affected electrodes.

electrodes by either connecting a resistor between the electrode
and the connector on the tank, or completely disconnecting the
electrode. The resistor values used were 0 (no additional re-
sistor), 1 kΩ, 4.7 kΩ, 100 kΩ and open circuit. Measurements
with 0, 1, 2, 4 and 6 affected electrodes were collected. As
shown in Fig. 2, we considered a typical pattern of failure
for belt-mounted electrodes whereby multiple neighboring
electrodes become simultaneously disconnected. This also
represents the worst-case scenario in terms of sensitivity loss.

For each resistor value and number of affected electrodes,
first a homogeneous measurement was acquired to be used as
reference for difference imaging the subsequent acquisitions
with a non-conductive (σ � 10−4 Sm−1) plastic cube of
100 ml (4.6 cm side length) as a target. The target was
suspended at the level of the electrode plane from a robotic
arm placed above the tank [18]. It was moved across the tank
along a line passing through its center in 7 steps of 4 cm. The
system was allowed to rest for at least 15 seconds after moving
the target to the next position before the next measurement was
acquired in order for the water surface to stabilize.

A typical 16-electrode EIT system with adjacent stimulation
and voltage measurement patterns was used. Current was
injected between a pair of adjacent electrodes and voltages
were measured between all other pairs of adjacent electrodes
(13 in total). Thus, for each data frame, 208 (16 × 13)
voltage measurements were acquired of which only 104 are
independent due to reciprocity. All measurements were taken
under normal room temperature of 20◦C.

b) Clinical data: The human breathing data were taken
from [25] 2 , where pediatric patients with acute lung injury
or acute respiratory distress syndrome (ALI/ARDS) were
recruited to monitor their lung mechanics during mechanical
ventilation using EIT. The experimental protocol consisted of
(i) a baseline ventilation stage, (ii) a lung recruitment stage,
and (iii) a PEEP (positive end-expiratory pressure) titration
stage with sequentially decreased airway pressure. A tidal
volume of 6 mL/kg of body weight was used as baseline
ventilation using volume-controlled (VC) mode. During the
lung ventilation stage, patients were ventilated in pressure-
controlled (PC) mode with sequentially increased airway
pressure. During the PEEP titration stage, PEEP level was
decreased sequentially to the lowest possible setting.

Measurements were acquired using the Goe-MT II EIT
device (CareFusion, Hoechberg, Germany) operated in single

2available at http://eidors3d.sourceforge.net/data contrib/
cg-2012-ards-recruitment/cg 2012 ards recruitment.shtml

frequency, where 16 electrodes were used, and adjacent stim-
ulation and measurement patterns were applied. Here we use
the measurement data of patient 1 and 7 from the original
study [25], where further details can be found. Patient 1 is
representative of the study; images at all stages of the protocol
grossly correspond to expectations (shift of ventilation to
lower parts of the image at higher PEEP). Reconstructions
for patient 7 are physiologically implausible for at least two
stages of the protocol and have more artifacts, despite best
attempts (thorax-shape model, motion compensation, Gaussian
smoothing filter).

c) System evaluation: Three available EIT systems were
used to acquired measurements on the phantom described
above. A smaller cubic plastic target (volume 50 ml, side
length 3.6 cm) was suspended in the saline solution at the level
of the electrode plane and moved from the center of the tank
outwards in 7 steps of 2 cm. A total of 20 data frames acquired
by each system were analyzed. To avoid unfair comparison,
the results are reported as originating from System A, System
B or System C, without referring to any specific system or
manufacturer.

2) Data processing: All analysis and data processing re-
ported here were carried out in MATLAB (The Mathworks,
Natick, MA) using EIDORS 3.6 3 [24]. EIT reconstructions
of phantom data were calculated using the one step Gauss-
Newton solver with a Laplace spatial prior and assuming
equal noise on each normalized difference data channel.
To demonstrate that the remaining electrodes still provide
good data, and thus validate our experimental design, we
also reconstructed the phantom data using the strategy of
[23], which removes the influence of specific measurements
without introducing artifacts caused by replacing them with
zeros. For reference, we also calculated the q metric for the
hypothetical situation where less measurements were acquired
(we removed measurements originated from the affected elec-
trode(s) from the data vector d and, consequently, from the
Jacobian matrix J). We used the ‘d2c2’ 2D FEM models
from EIDORS’ mk_common_model function for calculating
the Jacobian J and reconstructing the phantom data. For
clinical data we tried the thorax-shaped ‘d2t2’ 2D model as
well as the ‘adult male 16el lungs’ 3D FEM provided by
the mk_library_model function in our attempts to obtain
good reconstructions of the suspect data.

To assess the proposed data quality metric q, we devised two
ad hoc measures of image distortion caused by deteriorated
electrode contact to compare against. We used the fact that in
our controlled experiment we know what the reconstructions
look like when all electrodes are properly connected (the “ref-
erence” image) and how they deteriorate as electrodes become
disconnected. Since they require knowledge of the expected
result, these ad hoc measures are not possible surrogates for
the proposed data quality. The measures are:
• Deviation from reference image (D) calculated as

the average absolute value of element-wise difference
between a given image m̂ and a reference image m̂ref ,
normalized to mean absolute element value in the refer-

3http://www.eidors.org

 http://eidors3d.sourceforge.net/data_contrib/cg-2012-ards-recruitment/cg_2012_ar ds_recruitment.shtml
 http://eidors3d.sourceforge.net/data_contrib/cg-2012-ards-recruitment/cg_2012_ar ds_recruitment.shtml
http://www.eidors.org
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ence image:

D(m̂) =
|m̂− m̂ref |
|m̂ref |

(12)

where (·) denotes the arithmetic mean of all the vector’s
values and | · | the per-element absolute value.

• Image standard deviation (S) calculated from all values
in a reconstructed image m̂. This measure is motivated
by our observation that reconstructions of tank measure-
ments with all electrodes properly connected are smooth,
whereas deteriorated electrode contact results in high
amplitude ripples (c.f. Fig. 3a)

S(m̂) =

√√√√ 1

M

M∑
i=1

(
m̂i − m̂

)2
. (13)

III. RESULTS

A. Phantom Measurements

Sample reconstructions from the phantom study are pre-
sented in Fig. 3a. Superimposed on the documented [26]
features of one step Gauss-Newton solvers (which are charac-
terized by increased ringing close to the boundary and loss of
amplitude in the center of the medium) a clear pattern emerges,
whereby the more electrodes fail the more artifacts appear
in the image, particularly in the vicinity of the affected side
(top). For comparison, in Fig. 3b we show reconstructions of
the same data after accounting for the affected electrodes using
the approach of [23]. Image artifacts are considerably reduced,
but targets close to the affected side are not reconstructed
correctly, as a result of the aforementioned loss of sensitivity.

Fig. 4 shows the relationship between the proposed quality
metric q and the target position for the different numbers of
affected electrodes and two resistor values. Overall, signal
quality q fell as more electrodes were affected. In benign
cases (up to 1 affected electrode), q was uniform across the
bulk of the medium, falling off slightly close to the boundary.
However, as more electrodes were affected on one side of the
phantom, q begun to exhibit position dependence, although no
clear pattern emerged.

Values of q averaged over all target positions for different
resistor values are reported in Fig. 5 as a function of the
number of affected electrodes. For reference, the q values
obtained by removing the affected measurements from the
data vector d and the Jacobian J are also shown (indicated
as “rmvd”). The average quality q deteriorates as electrodes
fail, with higher resistor values causing greater decrease.
Measurements recorded with the 1 kΩ resistor show only very
slight decrease in quality. This is also reflected in the images
reconstructed from these measurements which do not show
noticeable artifacts until 4 electrodes fail, and even then only
close to the affected side (images not presented). The quality
obtained when ignoring all affected data is always higher than
that containing more, but corrupt, data. Interestingly, excluding
the first electrode resulted in a slight increase in q.

Finally, Fig. 6 presents the relationship between the data
quality q and the ad hoc measures of image distortion D and

S introduced in section II-C2. A clear relationship is observed
on both graphs. q is very sensitive to both D and S; it falls
rapidly as either metric increases (hence the logarithmic scale
on the graphs).

B. Clinical data

The average data quality values for the two patients at
each stage of the protocol in [25] (described in section
II-C1b), are shown in Fig. 7, along with our reconstructions
with different reconstruction algorithms. Data from patient 1
exhibits consistent, high q values; its reconstructions show
the expected shift of ventilation to dorsal (dependent) lung
areas (lower part of the image) as PEEP is increased (R1–
R4) and respective ventral movement during the downward
PEEP titration (T1–T4). In contrast, q values for data from
patient 7 are lower and reconstructions show more artifacts.
Data quality is particularly low at stages R3 and T1; this is
corroborated by worst, physiologically implausible or outright
failed, reconstructions at these stages.

Analysis of the standard deviation of difference data (not
presented) revealed 3 times higher noise at these stages as
compared to the other protocol steps. This could be caused by
patient movement or partial electrode disconnection.

C. System evaluation

The q values together with reconstructed images for the
three evaluated EIT systems A, B, and C are presented in
Fig. 8. System A showed stable high data quality values,
with a slight tendency to decrease as the target was moved
closer to the boundary. Data recorded by System B were of
the lowest quality in the central part of the medium, but
show comparatively little position dependence. The quality
of data provided by System C was most sensitive to target
position. The data quality values in Fig. 8a are consistent
with the visual appearance of the reconstructed images in
Fig. 8b (all of which were reconstructed with the Gauss-
Newton algorithm introduced in section II-C2): System A and
B show, respectively, least and most artifacts throughout, while
for system C artifacts are weak when the target is in the center
and strong close to the boundary. These results also reflect
findings of an earlier study comparing the three systems [18],
where it was found that systems B and C exhibit higher per-
channel errors than system A.

IV. DISCUSSION AND CONCLUSION

In this paper, we proposed a novel approach to assess
data quality of an EIT system quantitatively and evaluated
its performance in laboratory and clinical conditions, as well
as a means of assessing EIT system performance. In section
II-A, we set out with a list of requirements that a useful
quality metric should possess. We discuss them in light of
the presented results as follows:

1) q should vary between 0 and 1: this is guaranteed by
eq. 10 and 11. However, more work is required to
determine the threshold q below which the data is no
longer usable, and our experience with three different
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(a) (b)

Fig. 3: (a) Reconstructions of phantom measurements of several target positions (indicated on top) obtained with different
numbers of affected electrodes (indicated on the left). Contact quality of the indicated electrodes was degraded by the
introduction of a 4.7 kΩ resistor. (b) Reconstructions of the same data using the approach of [23] which reduces the impact
of data from the affected electrodes.
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Fig. 4: Graphs showing the relationship between q values and target position for various numbers of affected electrodes
(indicated in the legends) and resistor values of (a) 4.7 kΩ and (b) 100 kΩ. Higher values on the horizontal axis indicate
greater proximity to the location of the affected electrodes (c.f. top diagrams in Fig. 3). Error bars indicate standard errors
from 20 measurements.
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Fig. 5: Average data quality q as a function of the number
of affected electrodes. Electrodes were either disconnected
(“open”), removed from the recorded data (“rmvd”), or had
their contact quality deteriorated by the introduction of resis-
tors with the specified values. Each point represents an average
value of 140 measurements (20 measurements for each of the
7 target positions). Error bars express standard error.

EIT systems suggests that such a threshold may be
system-specific.

2) q should increase as we include more good data: al-
though this feature is not mathematically guaranteed
in our formulation, it is implicitly embedded in our
method through its reliance on the jackknife estimates
whose accuracy will increase as more good electrodes
are added onto the medium. However, this increase is
subject to the law of diminishing returns, conditional on
the quality of the additional data, and depends on the
positioning of the electrodes on the body surface. This
is exemplified by the slight increase in q we observed
in Fig. 6 after measurements associated with the first
electrode were removed from the data vector d; further
analysis revealed that measurements from electrode 1
happened to have the lowest average quality in our
experiment. Nonetheless, the downward trend in q with
reduced data is evident in Fig. 6.

3) q should decrease as we include bad data: this require-
ment is satisfied as evidenced by Fig. 6, where q is lower
in all instances when electrodes affected by low quality
contact are included in the data as compared to when
they are excluded.

4) q should decrease if data are good but incorrect: al-
though we did not present results to demonstrate this
feature of q, it can be intuitively argued that when the
acquired data do not correspond to the model (specif-
ically, the Jacobian J) used to calculate the jackknife
estimates, the latter will be a poor fit for the data so q
will be low. A mismatch between model and data occurs
not only when electrodes are placed incorrectly, but

also when assumptions about the shape and conductivity
distribution of an imaged body are inaccurate.

Another desirable property of a quality metric is consistency
with respect to the type of data error, meaning that data
affected by equivalent errors should be marked with the same
quality score. However, because the impact of an electrode
error in EIT depends on a multitude of factors such as the elec-
trode’s position, the imaged body’s conductivity distribution,
the location of conductivity changes within it, the stimulation
and measurement strategy as well as the performance of the
other electrodes and the characteristics of the EIT system, it
is unclear how equivalent errors can meaningfully be defined
for EIT. Thus, we did not include this property among the
requirements for q.

In all our analyses, q was found to correspond well with the
subjective and, in the case of the phantom study, objectively
quantified image quality. Whenever q was lower, artifacts
appeared on the images. This is particularly evident from the
comparison of q with the ad hoc image distortion metrics pre-
sented in Fig. 6 (which are only possible to calculate because
in the controlled environment of a phantom model we know
what the images are supposed to look like). However, because
q is independent of the user’s reconstruction algorithm, it is not
causally related to the appearance of artifacts. Indeed, some of
our reconstructions of the clinical measurements found to be
suffering from low data quality (Fig. 7) appeared sufficiently
plausible that they could be mistaken for valid images and
analyzed. An indicator based on the quality metric we propose
would allow doctors to better assess the plausibility of images
and thus prevent erroneous diagnosis.

Also in comparing the three available EIT systems q offered
useful quantitative information that was not otherwise appar-
ent. All three systems had very similar average SNR values of
44.2, 44.5 and 45.9 dB for systems A, B and C, respectively.
This result lends further support to the claim that SNR is a
poor indicator of EIT system performance.

Encouragingly, our analysis of the impact of severity of
electrode contact deterioration presented in Fig. 5 revealed that
small variations in contact impedance (here, a 1 kΩ resistor)
have only very slight impact on data quality. Because such
small changes in skin contact are an inevitable consequence
of human physiology, this result is particularly reassuring for
the application of EIT as a long-term ventilation monitoring
tool.

Because we set out to develop a data quality metric, as
opposed to an image quality indicator, we explicitly formulated
q to be independent of whatever reconstruction algorithm is
used to reconstruct the data (but not the model of the domain
from which they originate, i.e. the Jacobian matrix). This we
achieved by embedding a fixed way to derive a reconstruction
matrix into the calculation of the jackknife estimates on which
our metric is based (eq. 6). It is conceivable, however, that
the same reconstruction algorithm used to reconstruct the EIT
images could inform the jackknife estimates. Thus, q would
reflect not only the quality of the acquired data, but also the
faithfulness of the reconstructions to the data.

Our purposeful design of the quality metric to be dependent
on the model of the domain, in order to allow detecting data
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Fig. 6: Graphs showing the relationship between q values and the ad hoc image quality metrics (a) D and (b) S (see
section II-C2). Each point represents an average of 20 measurements for each applicable combination of resistor value and
number of affected electrodes. Points corresponding to reference measurements (i.e. all electrodes, no resistors) are additionally
marked with circles. Note the logarithmic scaling of the horizontal axes.
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Fig. 7: Clinical data (patients 1 and 7 from [25]): (a) data quality metric for each stage of the protocol for both patients;
and (b) the corresponding reconstructions obtained with I: one-step Gauss-Newton solver with Gaussian high pass filter image
prior and movement compensation [27] and a 2D forward model, II: one-step Gauss-Newton solver with Laplace image prior
and a 3D forward model, and III: GREIT algorithm built on a forward model including lung tissue contrast based on a CT
from an adult male (not part of the study) [26]. Protocol: R1–R4 — recruitment by increasing PEEP; T1–T4 — PEEP titration
(decrease).
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Fig. 8: Performance evaluation of EIT systems A, B and C:
(a) reconstructed images of different target positions (indicated
on top), and (b) the associated data quality q.

that is disturbance-free but erroneous due to incorrect setup,
could also be considered a limitation in that the quality of
the model affects the metric. Thus, too coarse a model or one
containing meshing errors will cause q to have a lower value
than would be possible with a finer model better reflecting
the studied domain. However, our intention is for the quality
metric to be calculated using the same forward model as the
reconstructed images and to inform their interpretation. Since a
poor forward model leads to poor reconstructions, we consider
the dependence of the proposed quality metric q on the former
to be a desirable feature.

EIT system instabilities as well as the inevitable environ-
ment noise and patient-related artifacts affect the accuracy of
reconstructed EIT images and, potentially, subsequent diag-
noses based on them. Due to its independence from the recon-
struction algorithm and low computational cost the proposed
metric is well suited for long-term real-time assessment of data
quality in patients undergoing mechanical ventilation therapy,
and other applications of difference EIT. When provided
alongside the reconstructed images, the data quality metric
can inform their analysis, preventing misinterpretations and
increasing the overall reliability of the EIT technology.

APPENDIX A
FAST CALCULATION OF THE “QUALITY” MATRIX Q

In this section, we develop an efficient approach to calculate
matrix Q. This is not critical, since the matrix is precalculated,
but it is useful for equipment startup. Consider Qi = θTi (I−
JRi) and

I− JRi = I− JΣmJT (JΣmJT + Σn)−1

= (JΣmJT + Σn)(JΣmJT + Σn)−1

− JΣmJT (JΣmJT + Σn)−1

= Σn(JΣmJT + Σn)−1 (14)

where Σm is an estimate of the prior model element covari-
ance, while Σn is an estimate of the data noise covariance.
Typically, we assume that data noise is equal on all channels
and thus Σn = λ2I. However, reconstruction matrix Ri

explicitly ignores data channel i, and thus assumes that data
noise on channel i is much larger (by an additive factor
µ� 0). Hence, Σn = λ2 (I + µΘi).

Thus, we can re-write eq. 14 as:

I− JRi = Σn

(
JΣmJT + Σn

)−1
= Σn

(
X + λ2µΘi

)−1
(15)

where X = JΣmJT +λ2I. The inverted term represents “rank-
one matrix perturbation” whose inverse may be calculated as
[27]

(X + αabT )−1 = X−1 − αX−1abT X−1

1 + αbT X−1a
(16)

where α = λ2µ and, since Θi = θiθ
T
i , a = b = θi. When

α� 1 the denominator tends to

1 + αbT X−1a ≈ αθTi X−1θi = α[X−1]i,i (17)

so the inverted term in eq. 15 becomes

(X + λ2µΘi)
−1 = X−1 − (X−1θi)(X−1θi)T

[X−1]i,i
, (18)

which can be calculated from X−1 without the need to
perform additional matrix inverse operations, since the inverse
(denominator) in the perturbation term is scalar.
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