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Abstract: We present a computer-aided approach to segmenting suspicious lesions in digital 

mammograms, based on a novel maximum likelihood active contour model using level sets 

(MLACMLS). The algorithm estimates the segmentation contour that best separates the lesion 

from the background using the Gamma distribution to model the intensity of both regions 

(foreground and background). The Gamma distribution parameters are estimated by the 

algorithm. We evaluate the performance of MLACMLS on real mammographic images. Our 

results are compared to those of two leading related methods: The adaptive level set-based 

segmentation method (ALSSM) and the spiculation segmentation using level sets (SSLS) approach, 

and show higher segmentation accuracy (MLACMLS: 86.85% vs. ALSSM: 74.32% and SSLS: 

57.11%). Moreover, our results are qualitatively compared with those of the Active Contour 

Without Edge (ACWOE) and show a better performance. Further, the suitability of using ML as 

the objective function as opposed to the KL divergence and to the energy functional of the ACWOE 

is also demonstrated. Our algorithm is also shown to be robust to the selection of a required single 

seed point. 

Index Terms—Active contour models, computer-aided diagnosis, level sets, maximum likelihood, 

Gamma distribution, mammography 

1. Introduction 

Mammography has a demonstrated potential for increasing survival rates through early detection 

of intangible tumors and small lesions (Rangayyan, 2005). Digital mammography uses X-rays to project 

structures in the 3D female breast onto a 2D image (Rangayyan, 2005). Breast cancer is the leading type 

of cancer in women and the second most fatal (American Cancer Society, 2006). Tumors appear as 
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medium-gray to white areas on digital mammograms (Egan, 1988) and their shapes are described by 

standardized keywords (The Mosby Medical Encyclopedia, 1992) grouped as oval, irregular, lobulated, or 

round, whereas their margins are expressed as circumscribed, obscured, ill-defined or spiculated. 

Spiculated lesions are most often associated with cancerous pathologies (Demirkazık et al., 2003), and the 

presence of irregularly-shaped masses and spicules increases the probability of malignancy (Jeske et al., 

2000). In addition to the variable tumor shape and appearance, the inherently noisy nature of digital 

mammograms, low contrast of suspicious areas, and ill-defined mass border make lesion segmentation an 

important and challenging problem. 

The current standard of breast cancer detection using mammogram is "single reading of 

mammograms" in the United States, whereas in many European countries “the double reading” is the 

standard (Gilbert et al., 2008). A current study in 2008 shows that the breast cancer detection rate using 

single reading with a mammography Computer Aided Detection (CAD) system could be similar to that of 

the two readers without computer assistance (Gilbert et al., 2008). In this study 31,057 women 

undergoing routine screening mammography at three centers in England were randomly assigned to 

double reading, single reading with CAD, or both (Gilbert et al., 2008). The cancer detection rate for the 

two standards was measured to be equivalent. The double reading detected 199 of 227 cancers (87.7%), 

while the single reading with CAD detected 198 of 227 cancers (87.2%) (Gilbert et al., 2008). The single 

reading with CAD can be concluded to be an alternative to the double reading (Gilbert et al., 2008). 

Hence, the single reading with CAD decreases the image review process time while retaining the same 

accuracy as the double reading.  

Although mammography CAD system involves a preprocessing stage, a segmentation stage, and 

a classification stage, the success of clinical adoption of CAD depends mainly on the accuracy of the 

mammography segmentation algorithm (Jay et al., 2004). Nevertheless, there is no specific value of 

segmentation accuracy that guarantees the success of the overall CAD system. One study considers three 

different levels of segmentation accuracy for mammogram: near perfect, acceptable, and unacceptable  
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(Jay et al., 2004). The unacceptable segmentation leads to a false positive decision (Jay et al., 2004). 

According to our results, the proposed segmentation method provides acceptable level of segmentation 

accuracy with an overall accuracy of 86.85%, offering a highly accurate segmentation stage for a CAD 

system. The developed segmentation method can be applied for treatment planning, disease monitoring, 

or clinical studies. However, our motivation has been for disease monitoring. 

Several approaches have been reported for mammography segmentation, including statistical 

thresholding (Catarious et al., 2004), texture analysis (Sahiner et al., 1998, 2001), and level sets (Sethian, 

2002). Catarious et al. (2004) proposed the Catarious Segmentation Method (CSM) which is an iterative 

thresholding algorithm that uses Fisher’s Linear Discriminant Analysis (LDA) to distinguish pixels inside 

the initial mass area from those outside. Besides the need for training, the main drawback of statistical 

segmentation is evident in low contrast images, in which the algorithm erroneously classifies background 

region pixels as part of a lesion, resulting in over-segmentation. Sahiner et al. (1998) proposed a 

specialized image transformation called Rubber Band Straightening Transform (RBST) for 

mammographic image analysis. The textural features derived from RBST are based on the location of the 

mass border, which makes it vulnerable to noisy, ill defined borders. Sethian (2002) used level sets with 

the fast marching algorithm to segment masses. To control the evolution of the active (or deformable) 

zero-level set curve, Sethian used a gradient-based stopping term, which produced less robust results 

because of the noisy nature of mammograms with ill-defined or obscured borders. Sethian’s approach is 

an example of active contour models (ACM), a class of techniques that have gained considerable attention 

in the medical image analysis community, since the seminal 1988 work of Kass, Witkin, and 

Terzopoulos, because of their ability to integrate image pixel data into smooth and connected boundaries. 

ACMs are classified into two main groups: parametric, e.g. (Kass et al., 1998; Yezzi et al., 1997), and 

implicit, or level set based active contours (Paragios, 2000; Sethian, 2002; Osher and Paragios, 2003). 

Although the previous level set approaches were applied to many applications, only a few were applied to 

the segmentation of mammography (Sethian, 2000; Ball and Bruce, 2007a, 2007b), and these approaches 
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did not model the detailed statistical characteristics of mammogram images. Robust mammography 

segmentation methods would benefit from the topological adaptability and mathematical rigor of level 

sets based ACM as long as they encode properties specific to the mammographic images. The energy 

function defining an ACM typically includes cost terms reflecting visual cues which define the target 

object to be segmented. These terms can be divided into regional terms (e.g. expected pixel intensity), 

boundary (high intensity gradient magnitude along the object boundary), and shape terms (statistical 

model of shape variability). The type of information included in the energy function determines the 

effectiveness and the range of application of the ACM. Leventon et al. (2000) and Rousson and Paragios 

(2002) performed Principal Component Analysis on signed distance functions to augment levels set based 

active contours with shape priors. However, lesions do not have a predefined shape hence incorporating 

shape prior is ineffective. Even more signed distance functions are not closed under linear combinations 

rendering statistical shape modeling difficult (Changizi and Hamarneh, 2010; Andrews et al., 2011). 

           In this paper, we propose a novel level set active contour model designed for the delineation of 

lesions in digital mammograms. The algorithm is based on the maximum likelihood (ML) segmentation 

model but extended to accommodate a mammography-specific intensity distribution. The proposed level 

sets (LS) based MLACM (hereinafter referred to as MLACMLS) retains the advantages of the region-

based active contour without edges of Chan-Vese (2001) for dealing with noisy images with weak 

boundaries and simultaneously integrates our knowledge of the statistical distribution of mammogram 

gray levels to adapt the region based active contour of Chan-Vese for the digital mammogram.  The 

proposed segmentation algorithm outperforms qualitatively and quantitatively its preceding level set 

active contour based counterparts as well as a threshold based method (CSM), as a non-active contour 

based method which has previously been deemed as a successful mammography segmentation method. 

The main difference of the proposed segmentation method comparing with the previous works (Refregier 

et al., 1997; Horritt, 1999; Nascimento et al., 2005; Ayed et al., 2005) is that the MLACMLS estimates 

and updates the shape factor (K) of the Gamma distribution in every iteration of the level set evolution, 
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while in the previous works, the shape factor is always a pre-determined constant value for the foreground 

and the background, see Appendix A. By calculating the shape factor as in the proposed method, the 

segmentation algorithm is less sensitive to different parameter settings of the imaging system that, in turn, 

result in Gamma distributions with different parameters. An example of the histogram of images taken 

using different imaging systems is shown in Fig. 3(b) and Fig. 5(b). The shape of the histogram profile 

varies for different imaging systems; a property that should be taken into account in the segmentation 

algorithm. The proposed segmentation algorithm updates the shape factor of the Gamma distribution in 

every iteration, and is therefore capable of fitting to different histogram profiles, a trait absent from the 

previous works. Also, Ayed et al. consider the scale factor of the Gamma distribution for the foreground/ 

the background as the average of the intensities inside/outside the region under evolution. However, such 

simple averaging approach for updating the scale factor, which is akin to how the mean intensity 

paramters are updated in the seminal 2001 work of Chan and Vese, is not capable of handling images 

with heterogeneous intensity patterns as visible in mammogram. Moreover, the two component Gamma 

distribution is indeed a good fit for native mammography images; however we pair the 2-parameter 

Gamma-distribution based level set segmentation method (MLACMLS) with a preprocessing filter, fuzzy 

contrast-limited adaptive histogram equalization (FCLAHE), detailed in section 2, which results in 

improved accuracy compared to when the FCLAHE is not used. 

 

Several papers have incorporated the image intensity probability density functions (PDFs) into 

active contour models for image segmentation (Rathi et al., 2006; Georgiou et al., 2007; Michailovich et 

al., 2007; Sandhu et al., 2008). These papers typically seek to segment image regions by finding an 

optimum point of a PDF similarity metric, see Georgiou et al. (2007) for an overview. For example, 

Freedman and Zhang (2004) compare maximizing the Bhattacharyya (BH) measure or minimizing the 

Kullback–Leibler (KL) divergence for tracking purposes; and Rathi et al. (2006) minimize the BH 

measure to separate regions of different distributions. Recent works have shown that the choice of 
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similarity metric has a significant effect on segmentation performance; for example Michailovich et al. 

(2007) show the BH measures outperforms the KL divergence, and Sandhu et al. (2008) show a newly 

developed metric outperforms both BH and KL metrics.  

The most similar papers to our work, which focus on spiculation segmentation using level sets, 

are by Ball and Bruce. They suggested two algorithms, the first is for periphery segmentation of a mass 

and is named adaptive level set-based segmentation method (ALSSM) (Ball and Bruce, 2007a), and the 

second is a method for spiculation segmentation using level sets (SSLS) (Ball and Bruce, 2007b). The 

SSLS is a two-stage algorithm; it first uses the Generalized Dixon and Taylor Line Operator (GDTLO), 

an extended version of the DTLO, to detect the spicules, and then merges the detected spicules with the 

periphery segmentation of the mass, obtained from ALSSM. The segmentation method proposed in this 

paper (MLACMLS) analyzes tumors of any type (spiculated or otherwise) under a single, variational 

energy-minimizing framework. Results show improved segmentation at lower computational cost and 

without the need for post-processing such as merging. Our approach has similarity to previous active 

contour based models. Chesnaud et al. (1999) presented a statistical region based active contour adapted 

to different noise models using ML criterion. They proposed a general model for different statistical laws. 

To devise a general formula for all images, some of the considered statistical distributions (such as 

Gamma distribution) were simplified to one-parameter statistical distributions (i.e. unity shape factor). 

Such simplified distributions lead to less precise models of the image intensity in mammograms. In our 

approach, we adopt the Gamma distribution for the foreground and background without any 

simplification to model mammograms and perform the segmentation (section 2.3).   

In this work, we focus more on spicules segmentation for two reasons: They contain the most 

significant features for diagnosing a mass as malignant, and the segmentation of spicules continues to 

defy an automatic and accurate solution.  We test our method on the Digital Database for Screening 

Mammography (DDSM) (Suckling et al., 1994), which contains low contrast mammography images, and 

acts as a suitable benchmark for evaluating mammography segmentation algorithms. 
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             Prior to applying MLACMLS to segmenting a suspicious mass in low-contrast mammography 

images (such as the images from the DDSM database), we process the images with an enhanced version 

of the contrast-limited adaptive histogram equalization (CLAHE) (Pisano et al., 2000), which we referred 

to as the fuzzy CLAHE (FCLAHE) (Rahmati et al., 2010). FCLAHE enhances the original 

mammographic image while minimizing the effect of changing the statistical distribution of its intensity, 

for more details see section 2.  

 

  The remainder of the paper is organized as follows: In the next section, we review the FCLAHE 

as the preprocessing filter for mammogram. In section 3, we first outline the motivation behind choosing 

the Gamma distribution to model the characteristics of the gray levels of digital mammograms (section 

3.1). In section 3.2, we review the ML segmentation method. We present the mathematical details of 

MLACMLS in section 3.3.  In section 4, we present extensive experimental results including: evaluating 

the robustness of MLACMLS with respect to seed point selection and its single tunable parameter; the 

superiority of choosing the Gamma distribution for modeling mammograms over the Rayleigh 

distribution and the Poisson distribution (a pre-assumed distribution to be adequate for modeling the 

intensity of mammogram); the favorable performance of MLACMLS over SSLS and ALSSM; and the 

suitability of adopting the ML as the objective function for the active contour as opposed to maximizing 

the KL divergence method (Georgiou et al., 2007). We finally present discussion and conclusions in 

section 5.  

2.  PREPROCESSING FILTER (FCLAHE) 

In this section, we review the applied preprocessing filter (the FCLAHE) for mammogram 

proposed in our previous work (Rahmati et al., 2010). As per the conclusions of Pisano et al. on the 

efficacy of the CLAHE (Pisano et al., 2000), the original mammographic images are first processed using 

the CLAHE to eliminate noise and then the result is processed using a nonlinear filter, which incorporates 

the advantages of a nonlinear fuzzy function. We integrate these steps into the FCLAHE algorithm as 
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follows. We use the fuzzy function proposed by Guliato et al. (2003a) within a new form to provide a 

non-linear adjustment to the image based on its gray level statistics. The fuzzy function assigns a 

membership value between 0 and 1 to the pixels based on the difference between their gray levels and a 

seed point, located at the mass core. The fuzzy function is defined as (Guliato et al., 2003a): 

 

      
 

       
                                                                                   

where p is the intensity of the pixel being processed, d is the intensity difference between p and a seed 

point, and β controls the opening of the function. The larger the difference, the lower the membership; 

and as β increases, the opening of the F(p) decreases. Fig. 1 visualizes the behavior of this function.  

 

Fig. 1. Fuzzy function behavior of (1) for various values of β. 

The non-linear filter called fuzzy contrast-limited adaptive histogram equalization (FCLAHE) 

transforms the gray level intensities as follows:  

           

                                                                                                    

  

where            is the new intensity,             ,           . The seed point is selected, by an 

expert user, e.g. a radiologist, in the center of the mass core, the brightest region in 

mammograms.                denotes the average of the gray levels of the pixels within a radial 
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distance              away from a seed point.            is the original intensity of a pixel located 

at the coordinate (x, y). F(p) is the fuzzy function defined in (1).  In (2), it is assumed that the intensities 

of the pixels at a distance (r) away from the seed point are similar unless there are inhomogeneities in the 

background. Wherever there is a region of high contrast in the background, this region will result in 

higher values for            and hence it will be more different than   , i.e.               

                           will give a higher value. According to (1),            , will therefore 

yield  a lower value. This, in turn, will attenuate the second term in the right hand side of (2), and 

          will be assigned   .  If there are no inhomogenieties in the background, then    will be close 

to           , i.e.           , and F(0) will yield unity, which in turn assigns           to           ,  

(i.e. the intensity of the pixel does not change). An example of how FCLAHE filter works on a real image 

is demonstrated in Fig. 2. 

 

Fig. 2. Example of applying the FCLAHE algorithm on a mammographic image. (a) Original  
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mammographic image from DDSM. (b) The image in (a) enhanced using CLAHE has a good contrast but 

some inhomogeneities (one of them is marked by the red oval) in the background may be mistaken for a 
real mass. (c) The image (a) enhanced using our proposed FCLAHE with β = 0.01 has an acceptable 

contrast for the main mass only while significantly reducing the contrast in the background. (d) FCLAHE 

image with β = 0.02 possesses the same characteristics as in (c). (e) The intensity variations of pixels 
located a radial distance r from the seed point. In particular, the effect of the inhomogeneous background 

of the tumor at a distance of 110 is highlighted in (e) by the red oval. The highest intensity variation of 60 

occurring at distance 110 is due to the inhomogeneous region marked by the red oval in (b). The solid line 
in black in (e) represents the average intensity value of pixels placed a distance r away from the seed 

point. 

 

In fact, equation (2) removes inhomogeneities; which may be mistaken for a real lesion in the 

subsequent segmentation algorithm, and simultaneously preserves the intensity of the mass core, e.g. r<40 

in Fig. 2(e). The advantage of the FCLAHE filter is its ability to eliminate noise while preserving the 

intensity characteristics of the mammographic image (Figure 2(c), (d)). This feature of FCLAHE is 

crucial for the subsequent segmentation approach which relies on analyzing the statistical distribution of 

the intensities in the mammogram. 

 

3.  Methods 

 3. 1.   Statistical Distribution of Image Intensity in Mammograms 

The proposed approach is motivated by the need to accurately model the statistical properties of a 

mammography image. There is a strong dependence between the segmentation accuracy and the PDF of 

the noise present in the image (Martin et al., 2004). In this work
1
, we improve the mammography 

segmentation accuracy by adapting the Gamma distribution, offering two tunable parameters. The two 

parameters demand more computations to evolve the MLACMLS (Appendix A and B). Nevertheless, we 

adopt the 2-parameter Gamma distribution for modeling the PDF of mammograms because, first, tumors 

appear as medium-gray to white areas on digital mammograms (Egan, 1988) with a relatively long tail in 

their histogram (Figure 3) and, second, because there is a wide range of databases for mammograms 

                                                             
1
 Preliminary version of using MLACMLS for mass segmentation appeared in our earlier work (Rahmati 

and Ayatollahi, 2009), in which Poisson distribution with a single tunable parameter was used. 
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acquired using different devices and settings, so a two-parameter distribution allows more flexibility to 

adapt the PDF to this variability compared to a one-parameter model, e.g. adapting to distributions that 

can vary from the one in Fig. 3(b) with a long tail to the one in Fig. 5 (b) with a very short tail. A one-

parameter distribution, such as the Rayleigh distribution or the Poisson distribution, is sensitive to the 

intensity variations of mammogram as they model a limited range of intensity variations, and finally, our 

empirical results (section 4.4) show that the Gamma distribution provides a better fit to mammography 

data compared to the Poisson distribution that has a single parameter for controlling the tail of the 

distribution and to the 1-parameter Rayleigh distribution. 

   

 

 
 

Fig. 3. Example histogram of a typical mammographic image. (a) A spiculated malignant tumor 
(reproduced with permission from Guliato et al. (2003)). (b) The histogram of (a), which depicts a long 

tail connecting the two peaks describing the main tumor (the narrow band peak at intensity 215) and its 

background (the wide band peak around intensity 25). Note that the histogram is without applying any 

filtering. 
 

 3. 2. ML Segmentation  

  We use the ML segmentation in a new level set based ML form specialized for mammographic 

images (section 3. 3). The ML segmentation considers an image I as a real positive function defined on a 

rectangular domain        (Sarti et al., 2005) with PDF p(I). An initial closed curve C divides the 
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image I into an inside region Ωi and an outside region Ωe .                      is the probability of the 

random field inside the curve and                      is the probability outside the curve (Sarti et al., 

2005). Assuming independence between pixel intensities, the likelihood function is given by the product 

of the inner and the outer probability (Azzalini, 1996), i.e. P[I|C] = Pi  e. Then the curve C that 

maximizes this likelihood function is considered the solution to the segmentation problem. In the 

continuous formulation, the log likelihood function l can be written as (Sarti et al., 2005):  

                                          
     

                                               
     

 

 

  3. 3.   ML active contour model using level sets (MLACMLS) 

3.3.1. The energy functional 

    Following the justification of section 3.1, we substitute the Gamma distribution into (3) with 

different parameters for inside and outside the contour. The Gamma distribution is defined as: 

                            
 
       

 

      
                                                                                

 where k is the shape factor, θ is the scale factor,      is the Gamma function and I(x, y) is the image 

intensity. The corresponding log likelihood is given by (Appendix A): 

                                                                                                                                                 

where      
 

  
                     

 

  
    Ai and Ae are the number of pixels inside and outside of 

the curve C, respectively, and Si and Se are given by: 
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The estimated parameters of the PDF have been derived in Appendix A and are summarized in 

equations A5, A6, A15, and A16. The PDF parameter estimation procedure is done after every iteration of 

the algorithm and the new parameters replace the old ones in the next iteration. 

A regularizer term, R(C)=length(C), to smooth the shape of the curve is incorporated into (5) as 

described by Chan and Vese (2001). The energy functional is now rewritten as: 

                                                                                                                                        

 

3.3.2. Level set formulation 

      Prior to minimizing the energy functional by deriving the associated Euler-Lagrange equation, we 

first replace C in (8) with a level set function Φ     , with the inside of the curve now captured by    

Φ(x, y)>0, outside the curve by Φ(x, y)<0, and the curve C itself is given by {(x,y) ; Φ(x, y) = 0}. With 

H(Φ) denoting the Heaviside function, the energy functional can be rewritten as:  

                                                                                                                                   
  

in which: 

       
   

             

           

   
                      

           

                                                                                              

       
   

                 

               

   
                          

               

                                                                                

After computing the first variation of (9) (Appendix B), the derived Euler-Lagrange equation is expressed 

as:   

                 
   

     
  

            

   
 

  

   
                       

 

   
     

 

   
   

  

   
      

            

   
  

  

   
                      

 

   
      

 

   
   

  

   
                                                            (12) 

where      is the dirac delta,      the Digamma function,           are two auxiliary vectors introduced 

in the appendix B,                 
                        

.  

Finally, the segmentation update equation is given by: 
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where Φ(x, y, 0) denotes an initial function defined by             , where d is the signed distance 

function (Sethian, 1996), and      denotes the exterior normal vector to the boundary ∂Ω. The level set 

evolution process is terminated when the image domain is segmented in two maximally homogeneous 

areas, as the inside and the outside of the curve. We have applied the Sussman reinitializing procedure 

(Sussman et al., 1994) to prevent the level set function from becoming too steep or too smooth. The 

proposed segmentation algorithm is summarized in table 1.  

 

Table 1 

Summary of the proposed segmentation algorithm.  

 

1. Apply the preprocessing filter on the original image using equation (2). 

2. Initialize a contour in the domain of the image.  

3. Calculate the signed distance function   of the initial contour.  

4. Calculate     using equation (13). 

5. Update   using                 
 
 . 

6. Repeat steps 4 and 5 until convergence (change in   is less than a threshold). 
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4. Results  

We tested the method on 100 test images including 50 spiculated tumors and 50 other types of 

masses selected from the DDSM database. The 100 images selected are those deemed by two expert 

radiologists as containing a hard to segment tumor. To account for inter-rater variability in the ground 

truth, in addition to the manually drawn contours in DDSM, two expert radiologists provided two 

additional delineations of the tumors in the mammographic images. For each image, the ground truth 

delineation was obtained by following the rule that a pixel belongs to the mass when it is included in at 

least two out of the three delineations drawn by the experts (i.e. a majority vote).  

The only manual operator intervention needed in our implementation is the placing of one seed 

point approximately in the middle of the mass core. Then, a square ROI sized 256×256 pixels (116.4 

mm
2
) centered at the seed point is selected. The ROI must contain the tumor to be segmented, and one 

tumor should segmented at a time (i.e. one tumor per ROI). If more tumors need to be segmented, then 

several ROIs (one for each tumor) must be used. The size of the tumors in our data set was not more than 

256×256; however, if the tumor can potentially occupy an area larger than 256×256, then larger ROI 

must be used. Prior to segmentation, we filter the images with the FCLAHE filter, which requires the 

setting of an “openness” parameter β (Rahmati et al., 2010). The FCLAHE is applied only for the 

MLACMLS; however, the other competing methods benefit from applying the noise reduction filter 

proposed in their respective papers. β was optimized on a random training set of 80 images and fixed 

across the remaining 20 test images. The optimization procedure was repeated 5 times to test on all 100 

images (blocked-based cross validation). The optimality criterion was the overlap against the ground 

truth, measured using the Jaccard similarity coefficient (Jaccard, 1908) defined in (14). Then, β was fixed 

for all our experiments at an average value of 0.012. Similarly, the length parameter µ in (13) was fixed at 

0.0012 for all test images. The value of µ relates to the size of the tumor under investigation; smaller 

tumors, such as calcifications, require smaller µ to be detected, and vice versa. According to our 
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experiments, the possible range of values for the shape parameter over our data base is between 40 and 

140 and, albeit small, the values of scale factors in A5 and A6 do not approach zero.  

The proposed segmentation algorithm was implemented and tested on a Pentium IV (PC), Intel 

3.0 GHz, with Windows XP Professional, 3.0 GB RAM, in MATLAB 7.0 (Mathworks, Natwick, USA). 

The time needed to process one 256×256 image varied from 10 to 60 seconds depending on the initial 

contour position and the type of the lesion under investigation. The spiculated masses required longer 

time (about 1 minute) to analyze because the segmentation needs to be performed for the spicules around 

the mass core as well. The calculation of the sign distance function, step 3 in table 1, requires an average 

of 0.0014 seconds. To calculate    ,  step 4 in table 1, the following parameters must be updated: Length 

parameter (the first term in (13)),   ,   ,   ,   ,    ,    . The average required calculation time for 

updating the parameters is 0.0177 seconds. With all the parameters updated, the calculation of     

requires, on average, 0.0028 seconds. Our implementation uses optimized matrix operations. In total, each 

iteration takes about 0.1192 seconds. As shown in figure 5, at most 500 iterations were sufficient for 

convergence. For further speed improvements, parallelization and hardware acceleration may be explored, 

but were deemed unnecessary for our purposes.  

The proposed segmentation method has been applied to two types of tumors: non-spiculated 

tumors (Figure 4) and spiculated tumors (Figures 5-7). To evaluate the segmentation accuracy of our 

proposed method (MLACMLS), we compare it with ALSSM and SSLS, since these are the closest to our 

work, are the most recent state-of-the-art methods that use level sets for spiculation segmentation with 

promising results, and both of them have been previously tested using the DDSM. For the competing 

methods (ALSSM and SSLS), we implemented the algorithm following the details provided in those 

papers. The implementations were validated by testing them in images and observing similar results to 

those reported in the original papers. In comparison to SSLS and ALSSM, we note the following 

advantages that our method offers: we use the same level sets algorithm to segment both spiculated and 
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non-spiculated tumors, independent of the type of tumors (Figures 4 and Figure 7); we provide an 

automatic segmentation algorithm with higher accuracy in tumor delineation, including spicules, 

demonstrating lower sensitivity to the variations in the algorithm’s parameters (Figures 11 and Figure 

12); and, finally, we are able to detect the thickness of distinct spicules more precisely (Figure 7).  

Qualitative results are shown, in section 4.1, for a subset of the database (to conserve space), 

while the quantitative analysis is performed over the complete aforementioned dataset of 100 images. 

Quantitative analysis, in section 4.2, includes evaluating the assumption of Gamma distribution and 

comparing our results with the delineation drawn by experts. This comparison is evaluated in terms of 

segmentation accuracy, calculated using an overlap measure (defined in section 4.2), the error in extracted 

shape features’ values, and the correlation coefficient of each single shape feature with the ground truth. 

Detailed quantitative results are given in Section 4.2; however, we summarize the results here for 

convenience. MLACMLS achieved the lowest error and highest correlation values. In particular, 

MLACMLS achieved a segmentation accuracy of 86.85% (vs. 57.11% for SSLS and 74.32% for 

ALSSM) averaged over the delineation of all tumors from each type in our database, with an overall 

average error in the obtained shape features’ values of 0.0299 (vs. 0.0768 for SSLS and 0.0321 for 

ALSSM) and average shape features correlation coefficient of 0.8395 (vs. 0.7052 for SSLS and 0.7105 

for ALSSM).  

To investigate the assumption of Gamma distribution on all the images, first, the similarity 

between the PDF estimated by the proposed algorithm and the histogram of the mammographic image is 

evaluated (Figure 5). Then, the Kolmogorov Smirnov test in Georgiou and Chen (1998) is applied to 

evaluate the similarity between the estimated PDF and the real histogram of the mammogram.  The test 

was performed on all the images with a fixed openness value of 0.012. The hypothesis of Gamma 

distribution was admitted on 96 out of the 100 images when setting the test significance at 0.05. The four 

failed images were of spiculated tumors with ill-defined edges. Changing the openness value to 0.01 for 

these four images only resulted in admitting the hypothesis test. 
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Moreover, the proposed segmentation method has an acceptable robustness for both seed point 

selection and β variations where the overlap decreased by at most 10% for choosing different seed points 

and by at most 12% for β values in the range [0.01, 0.02], see section 4.3.  In section 4.4, we compare the 

performance of the MLACMLS when adapting three different PDFs (Gamma distribution, Poisson 

distribution, and Rayleigh distribution), resulting in the best average segmentation accuracy of 86.85% for 

the Gamma distribution vs. 81% for Poisson distribution and unsuccessful segmentation results for 

Rayleigh distribution. The performance of the proposed log-likelihood function as objective function 

which evolves the contour is compared to that of KL divergence metric in section 4.5, offering the 

superiority of the proposed objective function. 

The proposed segmentation algorithm showed less sensitivity to the initialization: when 

perturbing the size of the initial contour by 100% the segmentation results did not change more than 8%, 

the sensitivity to changing the shape of the initial contour from a box to a circle was less than 4%, and the 

segmentation accuracy perturbed by less than 10% when changing the location of the initial contour from 

being at the boundary of an inclusion to completely inside the inclusion. 

 

 

4.1. Qualitative comparison results 

      In this section, some typical pathological cases are presented along with the segmentation results 

obtained with the MLACMLS, SSLS, ALSSM and CSM, as well as the physician-supplied ROI and the 

ground truth. We present the same study cases in Ball and Bruce (2007a, 2007b). In Fig. 4, we have 

considered non-spiculated lesions.  
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Fig. 4. Qualitative segmentation results on four sample images. (left column) Original mammogram 

image. (middle column) CLAHE (Pisano et al., 2000) enhanced image with overlays of the DDSM ROI 
(white line), ALSSM segmentation (black line) and CSM segmentation (black and white dashed line) 

reproduced with permission from Ball and Bruce (2007a). (right column) Final segmentation image of 

MLACMLS algorithm performed on the enhanced image with FCLAHE (green line) in comparison with 
the ground truth (white line). The different rows represent different example cases. 

 

    The MLACMLS and ALSSM results are more similar to the ground truth than the CSM when 

segmenting non-spiculated masses. The CSM result has, except in two cases (Fig. 4 (a) and (c)), some 

relatively noticeable differences in comparison with the ground truth; it can be seen that the CSM over-

segments while the ALSSM tends to slightly under-segment in some cases (Fig. 4(a) and (b)). We note 

that MLACMLS is a good compromise between these two previously developed methods. Finally, as per 
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the ground truth in Fig. 4, the accuracy of the MLACMLS to segment non-spiculated tumors appears 

higher in comparison with other previously developed algorithms. 

Fig. 5 and Fig. 6 depict the iteration process of MLACMLS for spicules, selected from two 

different datasets (DDSM and Guliato et al., 2003a). The fitness curve and the behavior of log likelihood 

functions along the evolution are also visualized in Fig. 5. The plateau in the log likelihood curve   is an 

indication that the curve C has segmented the image into two maximally similar regions as foreground 

and background.  The fitness curve in Fig. 5 (b) represents a good agreement between the estimated PDF 

of MLACMLS and the real histogram.  

 

 
 
 

Fig. 5. Segmentation of a spiculated tumor from the DDSM database. (a) Evolution of the initial curve 

(the first row as well as the first and the middle column of the second row). (b) The estimated Gamma 
probability density function (dotted) and the measured histogram of the mammogram image background 
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(solid) (c) The behavior of the log likelihood functions during the evolution of the curve C, including log 

pi (solid red line), log pe (dashed green line), and log likelihood   (point dashed blue line). Note that the 

original image is already filtered by the FCLAHE. 

 

 

 In Fig. 5, the evolution of the curve C for a hard to segment, spiculated, malignant tumor, 

reproduced from Guliato et al. (2003a), using MLACMLS is visualized. The final segmentation result of 

MLACMLS shows an acceptable segmentation result in comparison with the expert delineation reported 

in Guliato et al. (2003a).  

 

 

 

Fig. 6. Segmentation of a malignant spiculated tumor, reproduced with permission from Guliato et al. 

(2003a), using the MLACMLS. (a) Initial condition. (b), (c) two steps of the contour evolution. (d) The 

final delineation in green which has a close agreement with the region delineated by an expert in white. 
Note that the original image is already filtered by the FCLAHE. 

 

 The comparison of the segmentation results of the SSLS and the MLACMLS with the ground 

truth for some spiculated tumors, achieved from DDSM database is depicted in Fig. 7. As shown, there is 

a low similarity between the SSLS and the ground truth. The MLACMLS clearly outperforms the SSLS 

in delineating spiculated tumors in these examples. Also, the thickness of the distinctive spicules is 

visually detected with more precision than the SSLS. Fig. 6 and 7 show examples of the performance of 

our proposed algorithm when applied to images captured by different imaging systems. 
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Fig. 7. Examples of the spiculation segmentation. (left column) CLAHE filtered image. (middle column) 

SSLS segmentation with overlays of the physician-supplied ROI (white line) reproduced with permission 

from Ball and Bruce (2007b). (right column) MLACMLS delineation (black line) applied to the enhanced 

image using FCLAHE with the contour of ground truth (white line).      

 

The comparison between the MLACMLS and Active Contour without Edge (ACWOE) of Chan 

and Vese is shown in Fig. 8. Although the results of both methods for different initialization (small, large, 

and tiled) and different tumor types (non-spiculated and spiculated) are somewhat similar, the ACWOE 

fails to consistently minimize the energy function over iterations, producing erroneous false positives in 

the background for the non-spiculated tumor. The only case that the MLACMLS does not possess a 

continuously increasing likelihood curve is when using a tiled initialization (right column in both panels 

of Fig. 8). However, in this case, the likelihood curve is improved after a small number of iterations. The 

energy function of the ACWOE fails to be minimized when using large initialization (middle column in  
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4.2. Quantitative results 

             We implemented the competing methods in Ball and Bruce (2007a, 2007b) and compared their 

performance to the proposed MLACMLS (Tables 2-6). We compare the values of shape descriptors since 

both panels). The MLACMLS qualitatively outperforms the ACWOE in segmenting the non-spiculated 

tumor and the spiculated tumor when using either small or large initialization (the first and the middle 

columns in both panels of Fig. 8).   

 

Fig. 8. Comparison between the MLACMLS and the ACWOE sensitivity to initialization.  Two types of 

images: spiculated on the left panel and non-spiculated on the right panel. Three different types of 

initialization (small, large, tiled) seen in the three columns of each panel. Best parameters chosen for 

each case (exhaustive search, trial and error, empirically set). First row show initialization overlaid on 

the original image. Second row shows the result of our MLACMLS and the third row ACWOE. For each 

case study in each column, the likelihood function of the MLACMLS is represented in the fourth row as 

well as the energy function of the ACWOE in the fifth row. 



   
 
 

24 
 

many algorithms rely on shape measures to perform a CAD process. To quantify segmentation accuracy, 

we use the Jaccard index (Jaccard, 1908) to measure the overlap (OV) between two segmented areas A 

and B as follows: 

   
     

     
                                                                                          

where A is the ground truth delineation, B is the delineated area by the algorithm, and OV =1 when A and 

B match perfectly. The shape features examined are normalized compactness and several moment 

invariants. In particular, we calculate the normalized compactness as (Shen et al., 1993; Rangayyan et al., 

1997): 

     
   

  
                                                                                      

where p and A are the contour perimeter and enclosed area, respectively. Moreover, we examined a set of 

shape features invariant to translation, rotation, and scaling and representing the moments of distances to 

the centroid of the region (Gupta and Srinath, 1987), which are calculated as follows: 

    
 

 
         
   

   

                                                                         

where d(n) is the Euclidean distances between the centroid of the area and all of the pixels along the 

contour. The p
th 

central moment is defined by (Rangayyan et al., 1997):
  

   
 

 
           

  

   

   

                                                                

where m1 is when p=1 in (16). Finally, to express the shape complexity, Shen (1992) and Shen et al. 

(1994) defined three normalized low-order moments that constitute the shape features, as follows: 
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An additional shape descriptor,           is considered to show the roughness of a mass (Shen et 

al., 1994). The values of all of the shape features considered are limited to the range [0, 1].  

Table 2 shows the shape features (cf, F1, F
’
2, F

’
3, mf) for the ALSSM, SSLS, MLACMLS and for the 

ground truth (expert), as well as OV. The values in this table are evaluated for all the images depicted in 

this paper, which have been selected from DDSM. As seen in Table 2, MLACMLS exhibits the maximum 

similarity (OV) to the ground truth delineation for all cases, and exhibits highest correlation with ground 

truth shape features for 29 out of 35 values (83%). For most of the cases in Table 2, cf for the spiculated 

tumors is higher than the other kinds of the masses. Except for one case, the mf values for MLACMLS, 

which act as a good indicator of shape roughness, are higher for spicules than other kinds of tumors. 

Considering the values of the shape features of the MLACMLS listed in table 2, we notice that there 

exists a noticeable difference between the corresponding shape feature values associated to the non-

spiculated tumors (the first four study cases in table 2 for the MLACMLS) and those related to the 

spiculated ones (the last three study cases in table 2 for the MLACMLS). Therefore, we may conclude 

that the selected shape features can be shown to be robust features in a CAD system where we want to 

determine the type of a tumor, being either spiculated or non-spiculated. Further, the difference of 

features listed in Table 2 is small between the MLACMLS and the ALSSM in most of the cases where a 

non-spiculated tumor is segmented. The best way to compare these two methods is the OV value (Overlap 

measure). Although the OV values for these two methods are close, the MLACMLS outperforms the 

ALSSM in segmenting spiculated tumors, where the ALSSM fails to work properly as it is only designed 

to segment non-spiculated tumors. Note that the spiculated masses have higher probability to be a 

malignant tumor than the non-spiculated ones.  
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Table 2 

Quantitative results: the comparison between MLACMLS, ALSSM, SSLS and the ground truth (expert).   

Case OV cf            mf Method 

Figure 

4(d) 

0.7741 

0.8467 

    

0.9225 

0.8983 

0.9121 

0.2959 

0.2962 

0.3059 

0.2369 

0.2593 

0.2927 

0.3941 

0.3985 

0.4160 

0.0982 

0.1023 

0.1101 

ALSSM 

MLACMLS 

EXPERT 

Figure 
4(c) 

0.8934 
0.9123 

 

0.9127 
0.8771 

0.8968 

0.2037 
0.1807 

0.1911 

0.1624 
0.1385 

0.1482 

0.2697 
0.2379 

0.2449 

0.0660 
0.0572 

0.0538 

ALSSM 

MLACMLS 

EXPERT 

Figure 

4(a) 

0.6543 

0.6733 
 

0.9504 

0.9228 
0.9251 

0.2958 

0.3233 
0.2262 

0.1994 

0.1746 
0.1577 

0.3589 

0.3972 
0.2805 

0.0630 

0.0739 
0.0543 

ALSSM 

MLACMLS 

EXPERT 

Figure 

4(b) 

0.7023 

0. 7710 

 

0.9492 

0.9340 

0.9604 

0.2180 

0.2219 

0.2843 

0.0789 

0.0714 

0.0352 

0.2779 

0.2812 

0.3477 

0.0599 

0.0592 

0.0634 

ALSSM 

MLACMLS 

EXPERT 

Figure 
7(a) 

0.4946 
0.7538 

 

0.9900 
0.9614 

0.9526 

0.3451 
0.3264 

0.2873 

0.1592 
0.1296 

0.1217 

0.4615 
0.4182 

0.3749 

0.1164 
0.0918 

0.0876 

SSLS 

MLACMLS 

EXPERT 

Figure 

7(b) 

0.4933 

0.7564 
 

0.9784 

0.9532 
0.9507 

0.4139 

0.3047 
0.2778 

0.2950 

0.2170 
0.2447 

0.5347 

0.3928 
0.3754 

0.1208 

0.0881 
0.0976 

SSLS 

MLACMLS 

EXPERT 

Figure 

7(c) 

0.6187 

0.7525 

 

0.9818 

0.9400 

0.9489 

0.4453 

0.3798 

0.3386 

0.2911 

0.2247 

0.2011 

0.5665 

0.4739 

0.4484 

0.1212 

0.0941 

0.1098 

SSLS 

MLACMLS 

EXPERT 

Note that the first four cases in the table are non-spiculated tumors and the latter three cases are spiculated one. The 

method to achieving the maximum similarity to the ground truth for all features of each study case is marked with a 

shaded cell.  
 

Table 3 shows four morphological features (area, axis ratio, eccentricity, and perimeter length) 

as well as two statistical features (gray level mean and gray level std. dev.) applied for MLACMLS, 

ALSSM, SSLS, and expert over the same study cases in table 2. For each case, it shows that the area, the 

perimeter length, and the gray level std. dev. (APG) are the most robust features, showing higher feature 

difference between each method and the expert. The APGs may be alone applied for comparison between 

the MLACMLS, the ALSSM, and the SSLS or they are utilized along with the shape features from table 

3. In either way, we have concluded that the MLACMLS, with having less overall difference to the 

feature values of the expert, outperforms the ALSSM and the SSLS. Note that in the case that the shape 

feature differences between either the MLACMLS and the expert or the ALSSM and the expert in table 2 

is trivial, we also compare the methods using the feature difference between the APGs of each method 

and the expert from table 3.  
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Table 3 

Quantitative results: the comparison between MLACMLS, ALSSM, SSLS and the ground truth (expert) 

using morphological features and statistical features. 

                          Morphological features             Statistical features 

 Area 

(pixels) 

Axis 

Ratio 

Eccentricity 

 

Perimeter 

length 

Gray level 

mean 

Gray level 

std. dev. 

Method 

Figure 

4(d) 

23765 

24532 

25727 

1.21 

1.12 

1.10 

0.422 

0.442 

0.433 

789.45 

813.17 

838.16 

179.34 

184.82 

182.04 

18.496 

18.243 

18.314 

SSLS 

MLACMLS 

EXPERT 

Figure 

4(c) 

37867 

32216 
31893 

1.35 

1.33 
1.26 

0.682 

0.662 
0.614 

876.32 

826.82 
771.02 

185.32 

188.24 
192.74 

16.512 

15.956 
13.252 

ALSSM 

MLACMLS 

EXPERT 

Figure 

4(a) 

32054 

30465 

36914 

1.31 

1.29 

1.15 

0.671 

0.632 

0.500 

887.45 

898.67 

926.32 

198.32 

200.01 

181.52 

16.76 

18.898 

26.282 

ALSSM 

MLACMLS 

EXPERT 

Figure 
4(b) 

25891 
28898 

37481 

1.49 
1.43 

1.16 

0.694 
0.718 

0.514 

752.87 
856.66 

844.03 

197.21 
193.77 

180.57 

18.421 
20.302 

22.130 

ALSSM 

MLACMLS 

EXPERT 

Figure 

7(a) 

19948 

23325 
21954 

1.48 

1.75 
1.85 

0.736 

0.797 
0.842 

1188.02 

1130.65 
1059.58 

163.43 

196.31 
193.19 

44.23 

20.83 
21.76 

SSLS 

MLACMLS 

EXPERT 

Figure 

7(b) 

22201 

36261 

36068 

1.40 

1.05 

1.14 

0.701 

0.291 

0.492 

998.34 

1113.72 

1571.37 

173.78 

150.49 

150.94 

42.34 

29.61 

31.62 

SSLS 

MLACMLS 

EXPERT 

Figure 
7(c) 

28530 
35083 

35122 

1.10 
1.24 

1.37 

0.43 
0.68 

0.59 

1446.4 
1093.01 

1239.04 

173.55 
194.23 

196.25 

55.67 
31.10 

30.94 

SSLS 

MLACMLS 

EXPERT 

 

In addition, the OV accuracy values for ALSSM, SSLS and MLACMLS calculated for 100 cases 

in our database, are presented in Fig. 9. The OV measures for the MLACMLS are presented in two 

categories: The non-spiculated lesions and the spiculated ones (Figure 9). The maximum overlap value of 

95% is obtained using MLACMLS whereas the minimum overlap value of 51% is obtained with SSLS. 

Fig. 9 shows that the SSLS achieves the lowest accuracy when delineating the spiculated tumors 

compared to other kinds of masses. Also, MLACMLS for all study images is more accurate than SSLS or 

ALSSM.  
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Fig. 9. The accuracy of the MLACMLS for delineating 100 images in our database in comparison with 

that of the ALSSM and the SSLS (β=0.012). Note that the NS stands for the non-spiculated masses and 

the S stands for the spiculated ones. 

 

To measure the interrater reliability measures, for every case study in our data base, we first 

calculated the overlap criterion between every two combination of the manually segmented images (M1, 

M2, and M3) as well as the overlap between the image of the proposed, automated segmentation method 

(AU) and the manual delineation. Then for each combination, the std. dev. of the overlap measures over 

all study cases in our database is calculated. Table 4 represents the results of the interrater reliability for 

each combination.  

Table 4  

Summary of interrater reliability measures. 

 

Table 5 shows the mean overlap values achieved by ALSSM, SSLS and MLACMLS are 

respectively 74.32%, 57.11% and 86.85%, calculated on the all our database. Also, the minimum std of 

0.052 is achieved by MLACMLS.  

M1,M2 M2,M3 M1,M3 M1,AU
 

M2,AU M3,AU 

Mean Std Mean Std Mean Std Mean Std Mean  Std Mean Std 

87.70 5.06 89.68 4.87 87.74 5.16 84.77 5.79 85.14 5.42 85.33 5.39 
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Table 5 

Summary of segmentation overlap results. 

Method Average of 

OV(%) 

Median of 

OV(%) 

Minimum of 

OV(%) 

Maximum of 

OV(%) 

Std of OV(%) 

MLACMLS 86.85 87 69 96 5.2314 

ALSSM 74.32 75.2 62 89 6.8575 

SSLS 57.11 58.1 51 66 5.9766 

Note that the results are averaged over all images in our database, and the best method is shaded in each column. 

 

The average errors in shape feature values are summarized in Table 6. MLACMLS achieved the 

best results with an overall average error of 0.0299 and the least std. of 0.0171. In fact, MLACMLS has 

the lowest values for maximum error, median and std. of errors as compared to either ALSSM or SSLS. 

Also, the minimum error value of 0.0111 is less than SSLS (0.0281) and was almost equal to that of 

ALSSM (0.0098), which demonstrates that MLACMLS compares favorably with the competing methods.  

Table 6 

The average error of shape features. 

Note that the method with the minimum Error is shaded in each column. 
* Avg = Average. 
** ∆x = x (Method) - x (Expert). 

 

The correlation coefficient between the shape features of each method and the same shape factor 

of the ground truth as well as the statistical significance are presented in Table 7. All the image data in 

our database are considered in this Table. The highest correlation coefficients are achieved by 

MLACMLS in comparison to the other methods. The maximum correlation coefficient of the 

MLACMLS, ALSSM and SSLS are 93.21%, 90.78%, and 89.05%, and their minimum correlation 

coefficient are 70.54%, 41.34%, and 54.22%, respectively. MLACMLS achieved the minimum variability 

in the correlation values (less than 23%). Our results show that the performance of the methods is 

statistically significant with p values less than 0.05. 

 

Method 

Avg
*
 

∆cf 
** 

Avg
*
 

∆F1
** 

Avg
*
 

∆ F2
’** 

Avg
*
 

∆F3
’** 

Avg
*
 

∆mf
 ** 

Overall 

Avg
*
  

Error 

 

Min. 

Error 

Max. 

Error 

Median  

Error 

Std  

Error 

MLACMLS 0.0116 0.0440 0.0388 0.0440 0.0111 0.0299 0.0111 0.0440 0.0388 0.0171 

ALSSM 0.0147 0.0416 0.0428 0.0517 0.0098 0.0321 0.0098 0.0517 0.0416 0.0186 

SSLS 0.0337 0.1302 0.0597 0.1323 0.0281 0.0768 0.0281 0.1323 0.0597 0.0511 
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Table 7 
Computing the correlation coefficient between shape factors of each method and the same shape factors 

of the ground truth segmentation, performed over the whole of our database. 

Note that the method with the maximum correlation coefficient is shaded in each column. 
* 
Exp = Expert. 

** ρ= Correlation coefficient. 
*** SS= Statistical Significance. 
 

 

To investigate the effect of the FCLAHE on the accuracy of the segmentation with MLACMLS, 

we present, in Fig. 10, the OV values for each study case with and without FCLAHE. We note an increase 

in the overlap with expert segmentation by around 34% (from 52.23% to 86.85%) when FCLAHE was 

employed (averaged over 100 images), compared to a 16.3% increase when using FCLAHE for CSM. 

The above results support the conclusion of our previous work (Rahmati et al., 2010) which stated that 

FCLAHE works better for a PDF-based segmentation algorithm, such as MLACMLS. 

 
 

Fig. 10. The effect of the FCLAHE on the accuracy (OV) of the MLACMLS. 
 

 

 
 

Method cf, Exp
* 

F1, Exp
* 

F2
’
, Exp

*
 F3

’
,Exp

* 
mf, Exp

*
 

 ρ
**

 SS
*** ρ

**
 SS

***
 ρ

**
 SS

***
 ρ

**
 SS

***
 ρ

**
 SS

***
 

MLACMLS 0.9234 2e-5 0.7241 7e-5 0.9321 1e-5 0.7054 8e-5 0.9123 3e-5 

ALSSM 0.8023 1e-4 0.4134 5e-4 0.9078 4e-5 0.5431 3e-4 0.8861 4e-5 

SSLS 0.6235 4e-4 0.5986 4e-4 0.8905 9e-5 0.5422 3e-4 0.8712 6e-5 
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4.3. Method’s robustness and sensitivity to parameters  

4.3.1. MLACMLS robustness with respect to seed point location 

             In this sub-section, the robustness of MLACMLS is evaluated against varying the location of the 

seed point selected by the user. Various seed points are selected on a radial line connecting two seed 

points: one at the center of the mass and the other at the mass boundary, i.e. gradually moving away from 

the core of the mass towards the boundary. Fig. 11 shows two sample seed points and the corresponding 

segmentation. We considered the worst state of the segmentation accuracy for each image when the seed 

points are changed. The mean (over the 100 images) and the std of the worst state of the segmentation 

accuracy calculated on our database were 79.1 and 7.12, respectively. Also, the maximum segmentation 

error for changing seed point computed on our image database was less than 10%.  

 

Fig. 11. Example of the MLACMLS performance when two different seed points are used to initialize the 

segmentation of the same image. (a) The seed point (black dot inside the mass) is placed in near the mass 

core. (b) The seed point (black dot) is placed near the boundary of the mass. Note that the images are 

already filtered by the FCLAHE. 

 

4.3.2. Robustness to changes in FCLACHE’s openness parameter  

      As previously mentioned, prior to using MLACMLS, we use the FCLAHE filter and set its 

openness parameter (β) to 0.012.  Although, this parameter is strictly a parameter of FCLAHE and not of 
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the proposed MLACMLS, we assess the robustness of MLACMLS to changes in this pre-processing 

parameter. Our experiences indicate that appropriate values of β are in the range [0.01, 0.02]. Fig. 12 

depicts the final delineation contour of MLACMLS for the minimum and the maximum value of β for 

two mammographic images chosen from the two different data bases (DDSM and the images reproduced 

from Guliato et al. (2003a, 2003b)). Fig. 12 shows negligible difference between the final 

segmentations.  For higher β values, the segmentation algorithm tends to over-segment. Fig. 12(a) with 

low contrast is slightly more sensitive to β variations than Fig. 12(c) with high contrast.  

 

Fig. 12. MLACMLS robustness with respect to the choice of β for two mammographic images that 

contain spiculated tumors. The final segmented image with β value of 0.01 is shown in (a) and 0.02 in (b) 
performed on a low contrast image of DDSM. The  final contour of MLACMLS with  β value of 0.01 in 

(c) and 0.02 in (d) for  the image reproduced with permission from Guliato et al. (2003b), with higher 

contrast compared to that in of DDSM.  

 

 

      The mean and the std of the worst segmentation accuracy (OV) for changing values of β with a 

step size of 0.001 in the range of [0.01, 0.02] computed on our database were 77.1 and 6.61, respectively. 

The maximum change of OV value was less than 12% as β changed by 100% (from 0.01 to 0.02).  
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4.4. Modeling mammograms by other distributions 

In this sub-section, we assess the performance of our method when using probability distributions 

other than the Gamma distribution for modeling the variation of gray levels of mammographic image. In 

particular, we examine the performance of MLACMLS when using the Rayleigh distribution and the 

Poisson distribution (Rahmati and Ayatollahi, 2009). The final results of applying Rayleigh distribution 

to achieve the ML segmentation, detailed in section 3.3, are depicted in Fig. 13 for a spiculated tumor and 

for a non-spiculated tumor in Fig. 14. Note that, in Fig. 14, there is no convergence using this distribution 

and the contour tends to get bigger and bigger with iteration number. In Rahmati and Ayatollahi (2009), 

we applied the Poisson distribution to segment breast lesion, and we achieved an average segmentation 

accuracy of 81%, compared to 86.85% in this work using the Gamma distribution.  

 

 

 

 
 

 

 
 

 

 

 
Fig. 13. Segmentation of a spiculated tumor from DDSM database with the assumption of Rayleigh 

distribution to evaluate the ML segmentation: From left to right columns, initial contour, the evolved 

contour in the iteration 56 and the resulting contour in iteration 171. Note that the contour continues to get 
bigger and bigger for higher iteration numbers and does not converge. The segmenttaion of the same 

image using Gamma distribution is shown in Fig. 7(a). Note that the original image is filtered by the 

FCLAHE. 
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Fig. 14. Segmentation of a non-spiculated tumor from DDSM database with the assumption of Rayleigh 
distribution to evaluate the ML segmentation: From left to right columns, initial contour, iteration 55 and 

iteration 175.  The segmenttaion of the same image using Gamma distribution is shown in Fig. 4(a). Note 

that the original image is filtered by the FCLAHE. 
 

 

 

 
             In Fig. 15, we show the accuracy value of the MLACMLS for 100 images of our database when 

using three distributions: Rayleigh, Poisson, and Gamma. Comparing the competing distributions, the 

assumption of Gamma distribution offers higher segmentation accuracy for most of 100 case studies. 

 

 
Fig. 15. The comparison of the performance of our proposed method when using three different 

exponential distributions. In every three statistical distributions, the openness value (β) was set to a fixed 

value of 0.012. 
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4.5. Evaluating KL divergence metric  
 

           In this sub-section, we compare the suitability of using the KL divergence vs. the 

proposed log-likelihood as the objective function that drives the contour evolution for 

mammography segmentation. The goal here is to evaluate which objective function correlates 

best with the correctness of the segmentation. Ideally, the objective function should increase 

monotonically as the segmentation improves. We selected 10 study cases from our database, and 

for each selected case, we captured 10 segmented images during the iterations. Then, the KL 

divergence between the foreground and background PDFs was calculated and compared to the 

proposed Log Likelihood function for each segmented image. Figure 16 shows the results for the 

study case in Fig. 5. As shown in Figure 16, the KL divergence does not show a monotonic 

increase in as the segmentation improves (the overlap with ground truth increases), whereas the 

proposed Log Likelihood function shows a monotonic increase. The profile of the curves for the 

other 9 study cases was similar to that of Fig. 16 (a) and (b), meaning a monotonic increase for 

the proposed Log Likelihood function and a dominant maximum local peak involved for the KL 

divergence. This suggests that the proposed Log Likelihood function is more robust objective 

function for mammography segmentation. The maximum KL divergence value (dominant 

maximum peak) averaged over the 10 study cases was 22.27 and occurred in an averaged overlap 

value of 57.74. The error bars in Figure 16(a) shows the maximum std of 3.72 occurring at the 

maximum KL divergence value. In Figure 16(b), the changes in the std values over the overlap 

values are not noticeable, a trait absent in the KL divergence plot. Fig. 16(c) shows the values of 

the energy function of the ACWOE for the same study case in Fig. 5. The energy function of the 

ACWOE tends to increase as the segmentation improves, producing higher error bars when 

comparing with the KL divergence (Fig. 16(a)) and the MLACMLS (Fig.16(b)).  
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(a)                                                                          (b) 

 

 
                                                                             (c) 

 
Fig. 16. Comparison of KL-divergence vs. log-likelihhod as the objective function driving the 

segmentation.  (a) The KL divergence values as a function of OV over 10 segmented images. (b) The 

values for the proposed Log Likelihood function as a function of OV for the same segmented images in 
(a)(Note how the Log-likelihood monotonically increases as the segmentation improves, a trait absent in 

the KL-divergence plot). (c) The values for the energy function of the ACWOE as a function of OV for 

the same images in (a) when the best initialization of tiled is set up for all the 10 images.  

 

5. Discussion and conclusions 
 
             We proposed a novel level set active contour model, referred to as MLACMLS, specialized for 

the delineation of lesions in digital mammograms with a focus on spicules, which are the most important 

sign of malignancy for a mass without any biopsy. Our curve evolution approach maximizes a likelihood 

function that favors dividing the image into two maximally homogeneous areas; the foreground and 

background. The Gamma distribution’s estimated parameters for both the foreground and background are 

updated automatically with every iteration, using only integral quantities of the image. Therefore, our 

proposed ML segmentation is able to deal with noisy images without clear edges and with interior and 

exterior regions following the same family of distributions albeit with different and unknown parameters. 

The proposed computer-aided mammography delineation method incorporates the advantages of the level 
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set and region-based active contour model of Chan-Vese (2001). It includes noise robustness capability 

because of taking advantage of integrals of the image under investigation. The method requires the 

specification of a single seed point. The proposed model was evaluated on mammogram images and 

compared quantitatively and qualitatively with the state of the art approaches, ALSSM and SSLS models, 

on real mammographic images. 

 Our results show that MLACMLS is superior to SSLS and to ALSSM in the delineation of 

different types of tumors (with an average accuracy of 86.85% for MLACMLS vs. 57.11% for SSLS and 

74.32% for ALSSM). In our previous publication (Rahmati and Ayatollahi, 2009), we had already applied 

the CSM, a threshold based segmentation method, on the same data base and concluded that the level set 

based algorithm using the Poisson distribution works better than the CSM for mammography 

segmentation. Furthermore, in this work, we show how our proposed level set based segmentation 

algorithm using the Gamma distribution outperforms the one using Poisson distribution, meaning it 

outperforms the CSM as well. Further, in Fig. 8 and Fig. 16 (c), we show how our proposed segmentation 

method outperforms the ACWOE of Chan and Vese (2001). Note that as we are using the DDSM 

database, which does not offer two independent scans from the same patient, we are not able to measure 

the reproducibility. 

 

Our update equation is essentially a form of a gradient ascent (based on Euler-Lagrange equation) 

and the Gradient ascent will eventually converge to a local maxima (aside from saddle points). Our results 

show that the proposed segmentation algorithm converged to a local maximum of the likelihood function 

for all the study cases in our data base (100 images). As fig. 5(c) shows for one study case, the algorithm 

converged to a local maximum after 500 iterations.  Similar convergence results were achieved for all 

other study cases in our data set. The fourth row of Fig. 8 represents the proposed likelihood function 

converging to a local maximum for different initializations.  
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Different imaging systems result in different intensity variations for mammograms. For example, 

fig. 3 in our paper shows an imaging system that produces a big tail in the histogram of the mammogram, 

deviating from being a Gaussian distribution. However, we have a shorter tail in the other mammogram 

shown in Fig. 5(b) produced by a different imaging system than the one in fig. 3. The benefit of using the 

proposed model, compared to that of Paragios's method, is that ours is more capable in adapting to 

different imaging systems having different parameters. The adaptation comes from the incorporation of 

the Gamma distribution, having two tunable parameters (scale factor and shape factor), into the energy 

function. Moreover, the proposed scale factors in equations A5 and A6, in the appendix A, are weighted 

scale factors by the shape factors (ki and ke), enabling the segmentation algorithm to adapt the estimated 

intensity distribution to the specific gray level intensity variations across all 100 tested images. For 

example, the weighted scale factors help the segmentation algorithm to adapt to the intensity changes due 

to different setting for the x-ray imaging system. In the special state of having ki=ke=1, we achieve non-

weighted scale factors, which are equivalent to the proposed scale factors by Ayed et al. (2005).  

             Our experiments showed that adapting the two-parameter Gamma distribution gives better results 

compared to two other possible distributions: the one-parameter Rayleigh distribution and the Poisson 

distribution (section 4.4). We note that the original noise statistics of the mammography image is 

transformed by applying the FCLAHE and the Gamma distribution is considered based on the empirical 

observation following the results of the FCLAHE.  

Moreover, our results showed better correlation between the ML-based objective function and the 

segmentation accuracy, when compared to the KL divergence based objective function (Georgiou et al., 

2007). 
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Appendix A: Optimal PDF parameters estimation 

In this appendix, we present how to estimate the optimal parameters of the PDF with a ML 

approach. The Gamma probability function is defined by: 

                     
 
       

 

      
                                                                                            (A1) 

where k is the shape factor, θ is the scale factor and I(x, y) takes discrete values. Let ki and ke be the shape 

parameter values for the foreground and for the background pixels, respectively. Also θi and θe be the 

scale parameter values for the target and for the background pixels. Therefore the log-likelihood is: 

                                              

                        
      

  
                                                      

                        
      

  
                                                                     

where Ai and Ae are the number of pixels of the foreground and of the background. To obtain the ML 

estimate of the parameters θi and θe, we calculate the first derivative of                    with respect 

to θi:  

  

   
    

      

  
            

    

  
                                                                                     

and to θe:  

 

  

   
    

      

  
            

    

  
                                                                                  

So, the optimal values for these two parameters can be written as: 
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Now, to estimate the parameters ki and ke , we eliminate the estimated parameters in above in function   

by introducing them back in the log-likelihood: 

                                                              
               

    
    

        
                                                  

               

    
                              

 
 

As before, the ML estimate of the parameters ki and ke is obtained by: 

  

   
   

      
                           

 

  
                   

 

  
                                          

  

   
   

      
                           

 

  
                   

 

  
                                       

where      is Digamma function defined as:  

      
    

    
                                                                                         

in which   is the Gamma function. To summarize the above equations for reaching to the estimated 

values for ki and ke, we define two new parameters as Si and Se: 

         
 

  
                   

 

  
                                                                                                  

        
 

  
                   

 

  
                                                                                                

Choi and Wette have shown an equivalent term as (Choi and Wette, 1969): 

             
 

 
 
 

 
 

 

     
  

 

  
                                                                                       

By introducing the above term back in the expressions 
  

   
 and 

  

   
, we obtain the optimal values for ki and 

ke as follows: 

    
 

   
                                                                 

    
 

   
                                                               

By replacing these estimates into the expression  , we achieve: 



   
 
 

41 
 

                       

                                                                –                         

                                     
                                                                                       

      

Simplifying the above, we arrive at: 
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where N is the total number of pixels. All the terms which do not depend on the partition Ωi and Ωe can be 

omitted. Finally we arrive at the expression used in (5): 
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Appendix B: Energy function minimization 

In this appendix, we explain how to minimize the energy function in (9) by deriving the Euler-

Lagrange equations and the related flow. To calculate the first variation of the energy function with 

respect to Φ, which its dependency on x and y has been dropped for clarity, the following equation has to 

solve: 

      
 

 
                 .                                           (B1) 

where ψ is of the same type as Φ. To compute this variation, we consider the regularized version of the 

Heaviside function H and of the Dirac function (δ) as Hε and δε , as follows (Chan and Vese, 2001): 
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The expressions Si and Se (cf. (A11-12)) and their variations in respect to Φ can be written using the 

Heaviside function H as:                                                                
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]                                                           (B6) 

replacing             
,   

 
         , and         

 
          by three constant variables 

named    ,    , and    ; respectively, we can write: 
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where Ci is an auxiliary vector, and:  
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replacing                 
,   

 
             , and         

 
              by three 

constant variables named    ,    , and    ; respectively, we can write: 

 

  
                          

 
           

       
 

                 

     
 ]                

        . (B9)           

where Ce is an auxiliary vector. Thus (B1) is expressed as: 
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where 
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Or equivalently:                                                          
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Substituting     and      from (B7) and (B9) into (B13) and using the linearity property of the integral, 

we have:                  
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where Ψ is the Digamma function and Γ is the Gamma function. Using Green’s theorem, we achieve: 
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By merging, we have: 
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This expression must vanish for all test function ψ. We obtain: 
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and also: 
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Note that with ε approaching zero, Hε and δε in equations of             converge to H and δ. So the 

associated flow, in agreement with (13), can be written as follows: 
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