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Abstract-Magnetic induction tomography (MIT) is a contactless, inexpensive and non-invasive 

technique for imaging the conductivity distribution inside volume conductors. Time-difference 

imaging can be used for the monitoring of patients in critical care. This includes monitoring of 

cerebral strokes and breathing, as well as continuous screening of edema. However, MIT signals are 

much more sensitive to body movements than to the conductivity changes inside of the body. This 

is because small movements during data acquisition can spoil the signals of interest and cause 

significant image artifacts. Thus, it is crucial to accurately estimate and factor body movements into 

image reconstruction.  

Methods: We proposed quantitative methods for identifying and estimating object movements 

from simulated MIT data prior to the image reconstruction step. A simulation was performed based 

on a 16 channel MIT system where a finite-difference based MIT software package was used to 

generate reference data from a homogenous tank without a target, and subsequent measurement of 

moved phantom with a target placed close to edge of the tank. The movement was estimated using 

frequency domain analysis (FFT). 

Results: Results show that movements of 1% of the radius of the tank cause image blurring but the 

artifacts can be minimized by appropriate regularization. Higher amounts of movements totally 

distorted the images which require artifact compensation or acquisition of new measurements. The 

percentage errors for FFT based movement estimation were 23% (1 mm), 0.3% (6.7 mm) and 6% 

(14.4 mm) for a displacement of 1% (1.3 mm), 5% (6.7 mm) and 10% (13.5 mm), respectively, 

where the displacements were chosen relative to the radius of the tank. It was found that the 

accuracy of movement estimation is related to the size of the background in real measurements.  

 

1. INTRODUCTION 

Magnetic Induction Tomography (MIT) is a relatively new, non-invasive technique for imaging the 

distribution of the electrical properties (conductivity, permittivity and permeability) of objects. MIT was 

proposed for numerous medical applications such as monitoring of cerebral stroke, breathing (aeration 

and ventilation of the lung) and continuous screening of edema [1].  

Time-difference imaging can be used for monitoring the progression of the stroke, breathing or 

oedema to be used for continuous screening and monitoring of patients in critical care. However, it is a 

challenging task to do accurate measurements and to post-process the data properly in the emergency 

care unit since it is a highly dynamic scenario [2]. Small movements can spoil the measured data and 

cause significant image artifacts, which prevent the detection of the conductivity changes inside of the 

body. Static imaging may not reflect the dynamics of objects in monitoring applications. Especially, 



artifacts associated with motion of head and functional imaging of lung require keeping track the 

motions and compensating the artifacts. 

 In other tomographic fields such as CT or EIT, various software and hardware based movement 

detection approaches and management strategies can be grouped into two categories. First category 

can be named as the software based (signal/image processing) approach that may include pattern 

recognition, eigenvalue analysis (ICA, PCA), neural networks, edge detection and level set methods. 

Second one is the hardware approach and includes pressure sensitive mattresses, recording of patient 

movement via magnetic or optical sensors. The choice of the techniques is generally dependent on the 

application. For instance, considering a smart-bed application, pressure sensitive mattresses are more 

suitable, but a system based on a video recording or stereo tracking of patient movement is an 

alternative if other techniques are not appropriate. Gürsoy and Scharfetter proposed strategies for 

compensating patient movement in MIT based on a priori information [3]. 

MIT is a low resolution imaging technique that estimation and compensation of motion artifacts in 

MIT are a challenging task as this requires new approaches and measurements needs to be fast 

processed to detect movements [4]. The goal of this paper is to estimate the movements and 

compensate to improve image stability and improve image quality, particularly for the continuous 

monitoring of patients. Based on a preliminary study, a quantitative method were proposed for 

identifying and estimating object movements from simulated MIT data prior to the image reconstruction 

step. The software based movement estimation includes frequency domain analysis (FFT). The 

management strategies include reconstructing images by (i) minimizing movement artifacts for small 

movements; (ii) compensating for the movements if these are accurately estimated, or (iii) taking a new 

MIT measurement if movements are too severe.  

2. METHODOLOGY 

A. Overview 

In this paper, algorithmic methods were proposed for identifying and estimating object movements 

from simulated MIT data prior to the image reconstruction step. In time or frequency domain, the 

measured raw data from each individual sensor is preprocessed or post-processed using those 

concepts in digital signal processing, which include FFT, advanced statistical approaches (ICA) or 

wavelet based approaches.  

B. Phantom 

The homogenous tank (radius of 13.5 cm and height of 20 cm) has the conductivity of 1 Sm-1, and 

the small cubic target has the conductivity of 3 Sm-1. A simulation was performed based on a 16 

channel MIT system. A finite-difference based MIT software package was used to generate (i) 

reference data without a target and movement, and (ii) simulate whole tank movement with a target 

placed close to edge of the tank. 

C. MIT image reconstruction 

A Newton-type algorithm with Tikhonov regularization is applied to solve the inverse problem which 

is written as,  
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where σ  is the change of the conductivity,   is the regularization parameter, I  is the identity 



            

matrix, S sensitivity matrix (Jacobian), and V  is the difference between a reference signal Vr and 

subsequent measured signal Vi. The size of V  is equal to the number of measurements (precisely 

the excitation and detection coil combinations). 

An appropriate selection of   is important in image reconstruction and it can be seen as a 

low-pass filter from a signal processing perspective. There is a trade-off between improving resolution 

and avoidance of noise amplification. More commonly used methods for estimating   are L-curve 

method, generalized cross validation (GCV) and Morozov’s discrepancy principle. 

D. Signal analysis  

Movements cause the changes/distortion in MIT signals, which means both the phase and 

magnitude in frequency domain are correspondingly distorted as well. The strength of the distortion due 

to the movement is proportional to the size of dislocation. Following algorithm is implemented to 

estimate the dislocation of a body: 

i. Find the phase change after the movement (ΔVm) 

ii. Find the FFT for both Vr and ΔVm 

iii. Find the peaks (main index) from ΔVm and use it as an index value due to the movement  

iv. correlate them using the index value in both Vr and ΔVm in frequency domain (magnitude of 

movement / magnitude of normal signal) 

v. Multiply with a certain factor (i.e. *10) which is related to the size of a tank in real measurement. 

3. RESULTS: 

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60

70
-0.2

-0.1

0

0.1

0.2

0.3

0.4

MV 0%

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60
-0.2

-0.1

0

0.1

0.2

0.3

0.4

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60

70

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

MV 1%

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60 -0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60 -1

-0.5

0

0.5

1

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60

70

-1

-0.5

0

0.5

1

MV 5%

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60

70

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

MV 10%

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

xy

xz

 

Fig. 1: Reconstructed images with movements of 1% (1.3 mm), 5% (6.7 mm) and 10% (13.5 mm) relative to the 

radius of the tank. Note: MV stands for movement, row 1 is for xy plane and row 2 is for xz plane. 

The proposed method equally works well on both measured raw signals through preprocessing and 

reconstructed images through post-processing, so only post-possessing results are presented. The 

results in Fig. 1 show that there are certain correlation between the distortion magnitude and the size of 

movement with larger distortion with increasing movement size.  

Fig. 2 shows the effect of regularization (filtering) value and the non-negativity constraint. The row one 

is for the reconstructed images with 1% movement and row two is for 5 % movement, and columns is 

for increased regularization. It can be seen that the increased regularization (filtering) reduced certain 

movement noise (row 2) and a smooth object appeared, but it also get rid of useful information in row 1 

which leads to losing of spatial resolution. 
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Fig. 2: Reconstructed images with varying the regularization (filtering) value and the non-negativity constraint. 

Fig. 3 shows the reconstructed images after eliminating the movement artifact based on a priori 

information. For known amounts of movement, the image artifacts can be suppressed. 
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Fig. 3: Reconstructed images after movement artefact compensation using a priori information. 

Table 1 presents the estimated movement and percentage error for 3 types of movements.  

Table 1: Estimated movement and percentage error (movement in mm). 

Original movement 
 

 
Estimated movement Percentage error (%) 

1.3 (1%)  1 23 

6.75 (5%)  6.73 0.3 

13.5 (10%)  14.4 6 

 

4. DISCUSSIONS and CONCLUSIONS 

In this paper, the effect of body displacement for signal and image quality was investigated, and 

quantitative methods and algorithms were proposed to estimate the displacement to identify and 

compensate imaging artifacts caused by the displacement. An FFT based approach was evaluated for 

the movement estimation due to its simplicity in discriminating signals from noise. Frequency analysis 

provides hints about the motions, since the upper and lower frequency sideband components appear 

as ghosts either side of the primary image. The percentage errors for FFT based movement estimation 

were 23%, 0.3% and 6% for movement of 1% (1.3 mm), 5% (6.7 mm) and 10% (13.5 mm) of the radius 



            

of the tank. Studies also showed that movement less than 2 % blur the image but the artifacts can be 

minimized by regularization approach without artifact compensation or taking new measurements.  

The accuracy of the movement estimation was found to be related with the size of the background 

in the real measurement study. Following management strategies are proposed once movements are 

identified, images are reconstructed by (i) minimizing movement artefacts for small movements; (ii) 

compensating for the movements if these are accurately estimated, or (iii) taking a new MIT 

measurement if movements are too severe.  

For certain applications, multi-frequency measurement and absolute imaging can be used since 

they are not affected by the movement under a criterion that the movement is taken place in two 

separate measurements not during the measurement. Although multi-frequency MIT may offer 

advantages in terms of reducing movement artefacts and provide more useful diagnostic information 

for medical applications, the frequency dependences of MIT received signal is a major limitation. 

Measurement noise and image artifacts caused by the body displacement are a major problem in 

patient monitoring that makes it challenging to acquire accurate measurement and perform 

post-processing properly. The framework could help improve the stability of MIT measurements for a 

long period and produce better reconstructed image quality. The advantages of the software approach 

compared to hardware approach are faster processing and cost-effectiveness as it does not require 

any extra hardware. A further study will be conducted using statistical and wavelet approaches under 

this framework, and further movement will be tested in both simulation and reality to provide dynamic 

compensation.  
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