The importance of shape: thorax models for GREIT
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Abstract: Time difference EIT is useful if the positions of the electrodes are poorly known,
as it allows image reconstruction of reasonable quality even when, as is often the case, EIT
data from the thorax is reconstructed onto a 2D circular model. However, even though
inaccurate models may (and often are) used, there is a significant penalty in terms of recon-
structed image accuracy. We focus on developments of the GREIT EIT image reconstruction
algorithm. This algorithm represents a novel, optimization based approach to linear EIT
reconstruction. So far, results have only been shown for circular thorax geometries, which
precludes meaningful definition of conductivity contrast in the models. In this paper, we de-
velop and validate an implementation of the GREIT algorithm for arbitrary thorax shapes.
The results are validated on EIT data with simultaneous CT reference data. Results show
significant improvements in the anatomical accuracy of reconstructed EIT images, in par-
ticular when physiological lung conductivity contrast is taken into account.

1 Introduction

Electrical Impedance Tomography (EIT) is an attractive method for monitoring patients
during mechanical ventilation, because it can provide a non-invasive continuous image of
pulmonary impedance which indicates the distribution of ventilation. Based on these advan-
tages, there is significant interest in EIT to monitor patients with respiratory compromise.

One limitation is that much clinical and physiological research in lung EIT is done using
older and proprietary algorithms; this is an obstacle to interpretation of EIT images because
the reconstructed images are not well characterized. Many of these EIT imaging algorithms
are based on circular and 2D models of the medium sensitivity and assume homogenous
conductivity distribution. Since thoracic EIT data are typically reconstructed with time
difference (TD-EIT) algorithms the effect of these limitations are less evident, since TD-EIT
is less sensitive to the exact configuration and geometry of the electrodes. However, models
with incorrect shape information do result in significant inaccuracies and artefacts in images.

A recent systematic approach to choice of EIT reconstruction for thoracic TD-EIT is a re-
construction algorithm called GREIT (Graz consensus Reconstruction algorithm for EIT)[I].
One limitation of [I] is that it did not clarify the details of how to implement GREIT for
arbitrary geometry body shapes. Instead, results were shown for a circular model in order
to allow better comparison to the Sheffield backprojection. In this paper we: 1) develop
the formulation of GREIT for arbitrary model geometry, and 2) evaluate the effect of using
accurate thorax geometries and lung conductivity contrasts using EIT data from pigs with
simultaneous CT.

GREIT Framework

The framework for the GREIT algorithm consists of: 1) detailed finite element models of a
representative adult and neonatal thorax; 2) consensus on the performance figures of merit for
EIT image reconstruction; and 3) a systematic approach to optimize a linear reconstruction



matrix to desired performance measures. Consensus figures of merit, in order of importance,
are: a) uniform amplitude response, b) small and uniform position error, ¢) small ringing
artefacts, d) uniform resolution, e) limited shape deformation, and f) high resolution. GREIT
is designed to calculate a linear reconstruction matrix, R which performs well against the
figures of merit, while maintaining small noise amplification and small sensitivity to electrode
and boundary movement.

We represent linear EIT image reconstruction as a matrix, R € R¥*™ which maps
measurements y to a reconstructed image x:

x = Ry (1)

where a frame of TD (or normalized TD) EIT data, y = v — v, € RM is used to reconstruct
an image x € RY. The current EIT data frame is v which is compared to a reference data
frame v, which is typically averaged over times when the conductivity is stable. Images are
represented on N pixel image elements.

The GREIT framework from which the reconstruction matrix, R is calculated, defini-
tion of a forward model, a noise model, and desired performance metrics are illustrated in
fig. [ The forward model allows calculation of EIT measurement data y, from a conduc-
tivity change distribution x;. The model represents the details of the body geometry, the
electrode size and contact impedance, and the reference conductivity around which conduc-
tivity changes occur. The noise model allows calculation of representative noise (electronic
measurement noise and electrode movement artefacts) samples in EIT measurements. Based
on the performance metrics defined above, we create a training set of desired images, Xy,
centred on each target, but with a blurring corresponding to figures of merit, as illustrated

in fig. 1
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Figure 1: Illustration of signals and training data. Rectangles represents a matrix
where column (k) represents a training sample, and the circle represents the corre-
sponding desired image pattern.

Based on the forward model, noise model, and desired performance metrics, the GREIT
reconstruction matrix R which best fits the requirements may be expressed as minimization

of the norm
& =3 |% - Ry, 3y, )
k

where Wy, is a diagonal weighting matrix for each sample.



2 GREIT for arbitrary models

In this section, we elaborate on how GREIT is adapted to work with arbitrary models of
thorax geometry. 1) The boundary shape, lung tissue outline and electrode positions (if
available) are extracted from a CT, CBCT or MRI transverse slice of the thorax (c.f. fig. [2)).
2) A 3D FEM for the forward model is built using Netgen [2] by extruding the extracted
2D outlines of the boundary and (optionally) the lungs. The mesh is refined around the
electrodes. 3) The forward model is built using either homogenous conductivity or a contrast
in the lung region (and others, if available). 4) To calculate the GREIT reconstruction matrix
R, the desired solutions for a set of small (less than 5% diameter of the model) contrasting
targets are calculated using the forward model and taking into account the desired figures
of merit. In contrast to the original formulation in [I], we use uniform, rather than random,
distribution of targets covering the entire image (a minimum of 500 are recommended). 5)
The GREIT reconstruction matrix is calculated according to eq. [2[ with an initial estimate
of the noise weighting W. 6) The final value of W (and the reconstruction matrix R)
that results in the desired noise figure (currently 0.5, after [I]) is found iteratively using the
simplex search method [3].

This procedure can be used with arbitrary stimulation pattern and number of electrodes,
and can produce images beyond the 32-by-32 pixel resolution.

Figure 2: Thorax CT (manually segmented) and the Finite Element Models used.

3 Results

The proposed algorithm was applied to a dataset of EIT and CT data acquired in a 23 kg
anaesthesized swine during conventional mechanical ventilation at the University of Mainz
under local ethical approval. The boundary shape, lung outline and positions of the elec-
trodes were extracted from a CT slice in the electrode plane and used to build two conforming
forward models with a) homogenous conductivity and b) conductivity contrast in the lung
region (fig. [2). A 30 s period of ventilation was taken as reference for the reconstruction of
two single frames of EIT data corresponding to inspiration and expiration in one breathing
cycle with a) the Sheffield backprojection algorithm, b) the original GREIT algorithm using
homogeneous circular model [I] and the new algorithm with ¢) homogenous conductivity
distribution as well as lung-to-background conductivity ratios of d) 0.75, e) 0.50 and f) 0.25
(roughly physiological for soft tissue and lung at expiration [4]). The results are presented
in fig. [3| as the difference between inspiration and expiration.

Comparing the three reconstructions on homogenous models, the results show that using
the correct geometry greatly reduces both the streak and the centre artefacts present in
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Figure 3: Reconstructed TD-EIT images of ventilation (inspiration minus expiration).
A: Sheffield backprojection (circular model); B: GREIT using circular homogeneous
model[I]; C: GREIT using conforming FEM model from CT (fig. [2) with homogeneous
conductivity; and D-F: GREIT using conforming FEM model with lung-to-background

conductivity ratio of 0.75, 0.50 and 0.25, respectively. All images represent the same
measurement data and are normalised to the same range.

backprojection and GREIT, respectively, and leads to more anatomical shape and position
of the lungs (c.f. fig. fC). Images in fig. fF further demonstrate the increasing ability of
the GREIT framework to separate the lungs when provided with more realistic conductivity
distribution.

4 Discussion

Our motivation is to develop reconstruction algorithms that provide anatomically correct,
and thus more readily interpretable, EIT images. The preliminary results presented here
suggest that correct boundary shape and realistic conductivity distribution greatly improve
the image quality and are major steps towards achieving this goal. Further research is
necessary to establish just how well the boundary shape must be matched to obtain good
results and what the effects of changing conductivity distribution are.
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