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Abstract: Automatic face recognition technology allows verification
and identification of individuals from photographic face images; this
technology has important applications for verification of identity
documents. Such technology has improved dramatically over the
past decade, to the point where face images may be used for
identification in large databases with relatively low error rates. One
key concern for such government applications is the extent to which
recognition performance degrades as the quality of images decreases.
This paper introduces a method to evaluate the impact of variability
in face pose on face recognition accuracy. For each pair of images
of a given pose difference, a genuine distribution was calculated,
while the impostor distribution was calculated from all non-matching
images. Confidence intervals were determined using non-parametric
bootstrapping. Experiments were conducted with volunteers who were
asked to assume specific poses from neutral pose to ±20deg in each of
the roll, pitch, and yaw directions. Data were analyzed to determine
changes in recognition performance, using three leading commercial
face recognition algorithms. Results indicate that roll variations made
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a relatively small effect on performance, while pitch and yaw variations
produce a large and significant increase in error rates. More recent
algorithms show better results at low pose variability, and thus are
relatively more sensitive to pose changes.

Keywords: Automatic Face Recognition; Receiver Operator Curve;
Biometric Sample Quality; Biometric Performance Analysis

Reference

1 Introduction

This paper introduces a method to evaluate the effect of variability in face
pose on the accuracy of face recognition biometric algorithms. Automatic face
recognition (AFR) technology allows verification and identification of individuals
from photographic images; a live image of a person may be compared to previously
acquired photos, or two photos may be compared to determine if they represent the
same person. AFR has seen very active research and development since the early
1990’s(16) and has shown dramatic improvements in accuracy over this period
(1; 13; 12).

AFR is well suited to the requirements of government ID documents such
as passports, visas and driver’s licenses. Such documents are printed with an
image of the holder’s face which is acquired as part of the issuance process. On
presentation of the document, the presenter needs to be verified as the legitimate
holder by comparing against the image acquired at issuance time. While other
biometric features, such as fingerprint and iris images are also commonly stored
on identification documents, AFR has especial value because: 1) historic databases
of face images are already maintained by governments, and 2) face images form
a natural way to perform identity verification with which the general population
is already comfortable. A similar conclusion was reached by the international civil
aviation organization (ICAO) which recommends that face be used as the primary
biometric feature for passport documents(8). Biometric performance of AFR is
generally understood to be poorer than that of biometric features from fingerprint
or iris images (although recent work(12) suggests that is not true for very high
resolution face images). AFR performance (in terms of error rates) is best when
care is taken to acquire high quality images with uniform illumination and pose.
Thus, in order to maintain good biometric performance, it is important to ensure
high quality images are enrolled. Recommendations for photo capture and image
quality are part of the ISO standard for AFR(9). Additionally, several countries
have established standards and guidelines for passport and visa photo capture,
specifically designed to support AFR performance(11). On the other hand, poor
quality images dramatically increase AFR error rates(4). Such biometric image
quality degradation may be classified in terms of character (inherent features),
fidelity (accuracy of features), or utility (predicted biometrics performance)(10).
Degradation due to poor capture or camera settings is classified as low fidelity
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quality: poor lighting, contrast, glare, low resolution or excessive compression.
Variability in the face pose, or due to expression, or changes due to makeup
and facial hair are classified as low character quality. The utility quality may
then be calculated from analysis of test data from quality changes. Variability
in pose changes the geometric relationship between face features; comparison of
images of the same face at different poses will thus affect the biometric matching
due to these perspective differences. We note that one approach that attempts
to address pose variability is 3D AFR, in which special cameras capture range
information in addition to the face images, from which the 3D shape of the face
may be represented(2). However, since such an approach requires special cameras,
it represents a large infrastructure change for identity document issuance, and was
not considered feasible at this time.

The study of biometric image quality and biometric performance has mainly
focused on developing improved face recognition algorithms (5; 6; 7). Furthermore,
literature on biometric performance comparison is mostly between AFR engines
and humans(1; 3). This paper develops a method to track and objectively evaluate
biometric performance in relation to pose variability using photographs captured
for passport and visa documents. The method can be used to compare different
versions AFR and re-evaluate the pose angle constraints in place for face capture.

Many AFR systems are designed for a closed identification, open identification
(watchlist) or verification. In the verification problem a subject submits a
biometric sample or probe, along with a claim of identity. The probe is matched
against the claim’s corresponding enrollment sample. The claim is accepted if it
passes a threshold. The performance of this one-to-one problem is analyzed using
the ROC curve. The ROC curve is generated by comparing a set of probes against
a gallery with the assumption that the ground truth is known. The resulting ROC
curve is independent of the gallery size used because it is a measure of one-to-one
performance.

In the identification problem, no claim is submitted with the probe sample;
the application must determine the identity of the subject. The identification is
defined in two ways: open identification in which a probe does not necessarily
have a genuine match in the gallery or closed identification where every probe
has a corresponding enrollment sample in the gallery of arbitrary size. Typically,
open identification performance is measured using an Alarm curve which is
constructed like an ROC curve except that for each probe there is a single imposter
contribution to the false alarm score distribution.

Hube (17) has shown that Alarm curves for arbitrary size can be estimated
to first order by an ROC curve. Based on this assumption, the method presented
in this paper will be demonstrated using the ROC curve which can be extended
to Alarm curves. Furthermore, the method is applied to a sample set that is
representative of the target population where each sample has a unique biometric
template and each probe has a set of genuine matches in the gallery.

This work was conducted as part of the development of the Canadian
contribution to the ISO face recognition standard(9), in which a need was
identified to specify the acceptable limits for pose variability in photographs
captured for passport and visa documents. In the remainder of this paper, we
describe the method (sec. 2 and sec. 3), photo capture protocol(sec. 4), and the
results obtained(sec. 5).
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2 Face Recognition

The AFR is designed to handle all application modes: verification, identification
and watchlist. However, the method proposed in this paper deals with evaluation
of pose variability in AFR using ROC curves; therefore the AFR is used in
verification application mode. The method is applied on a face image database
of size N. The database contains images of several subjects each with different
pose angles. Each image is analyzed to determine the position and size of the
face followed by locating the center of the eyes. The image is then analyzed to
determine if the quality is sufficient for AFR. If the image passes the quality check,
it is then normalized to create a token image. The token image is then preprocessed
using histogram equalization and intensity normalization. From the preprocessed
token image relevant features are extracted. These extracted features constitute
the biometric template. Using each AFR algorithm, a biometric template TA

i was
generated for algorithm, A and image, i. Based on these templates, the complete
similarity score comparison matrix, SA of size N ×N , was generated where SA

i,j

represents the similarity score generated by algorithm A between TA
i and TA

j .
In order to study the biometric performance of algorithm A for a specified pose
variability, the following procedure was used from SA to generate the genuine and
imposter distributions from which ROC curves could be calculated.

2.1 Impostor Distribution

The impostor distribution, FA, was taken to be function of the AFR algorithm
only, and not the pose variability. FA represents the distribution of all similarity
scores SA

i,j , in which templates TA
i and TA

j are not from the same person. If we
define X for the match scores from the mated pairs with length P ,FA is expressed
as:

FA(t) =
1

P

P∑
p=1

1(Xp ≤ t) (1)

2.2 Genuine Distributions

For each subject s, the template from image with either roll, yaw, and pitch angle θ
was defined as Rs(θ), Ys(θ), Ps(θ), respectively. Therefore, a genuine distribution,
GA

∆, was calculated for each AFR algorithm and pose difference, where ∆ is pose
angle difference. Thus, GA

∆R=10 deg represents the distribution of similarity scores
in which the roll angle differs by 10deg for the algorithm. GA

∆ is calculated from all
similarity scores SA

i,j for which images i and j represent the same person and the
pose angle difference is ∆. For example, for ∆R = 10 deg, the comparison between
images Rs(−10deg) and Rs(0 deg) would be included, as would the comparison
between images Rs(+5deg) and Rs(+15deg). If we define Y for the match scores
from the non-mated pairs with length Q, GA

∆ is expressed as:

GA
∆(t) =

1

Q

Q∑
q=0

1(Yp ≤ t) (2)
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Figure 1 (a) Genuine and Impostor distribution of simulated data. (b) DET (FMR
vs. FNMR) for simulated data (circle) and bootstrapped data (square). Green
line shows the EER line. Thin lines (parallel to the EER) along which the
bootstrapped distribution is calculated. Note that the sampling does not
interpolate between data points. The samples connected with quantization
steps.

3 Statistical Analysis

In order to statistically distinguish variability in ROC curves between different
pose variations, it is necessary to have a measure of the distribution an ROC curve.
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Hence for each algorithm A and pose difference ∆, a curve, ROCA
∆, was calculated

from distributions FA and GA
∆. For similarity score value (τ), a FMR (false match

rate) and FNMR (false non match rate) was calculated as:

FMR(τ) =

∫ ∞

τ

FA(t)dt

FNMR(τ) =

∫ τ−

−∞
GA

∆(t)dt (3)

Where a match score equal or greater than threshold is accepted as true match.
Similar to all other biometric studies, the measure of FMR is more accurate than
the FNMR since there are more negative samples than positive samples. Each
ROC curve was used to study the impact of 5, 10, 15, 20, and 25 degrees roll,
pitch and yaw angle variability on the biometric performance. Additionally, the
change in performance for various algorithms over the years can be quantified.
Several ways to measure this distribution have been proposed(1; 15; 14); we use
an analysis of the pointwise ROC using a linear sweep methodology, based on the
radial sweep method of (14). Given a single pose variation, and distributions, FA

and GA
∆, we calculate re-sampled and bootstrapped ROC curves as illustrated in

Fig. 1. The figure shows a variant of the ROC known as the DET curve which is
better suited to describe the radial sweep method and sampling. The bootstrapped
curve is created by defining new distributions FA∗ and GA∗

∆ , using nonparametric
bootstrapping by sampling each original distribution with replacement. For clarity,
the figure shows single bootstrapped ROC curve and the original ROC curve.
The figure only shows a single bootstrapped ROC curve for illustrations. In real
experiments, we use 1000 bootstrapped curves to determine the confidence interval
for each ROC. The radial sweep method transforms each curve from the (FMR,
FNMR) space to polar coordinates. For any point, (x,y), on a ROC curve, we
calculate an angle, θ and distance r from a center point (cx,cy).

3.1 ROC confidence intervals

The pointwise confidence for each ROC is determined as follows. For each curve
in Fig. 1, we draw diagonal lines parallel to the EER (nine linear are shown).
Along each line, the intersection with each bootstrapped ROC is calculated. Using
these points, we are able to calculate a distribution of intersection points to the
ROC. From this distribution, the 95% confidence interval is determined by finding
the 2.5% and 97.5% percentile distribution point as shown in Fig. 2. These two
points indicate the pointwise confidence interval of the ROC along the current
diagonal line. In order to determine the complete confidence interval, we repeat
this procedure for each diagonal line. The use of diagonal lines is equivalent to a
choice of c = ∞ in the radial sweep approach of (1). Our choice is motivated by
trying to keep the confidence interval detection perpendicular to the ROC itself.
Using this approach, we are able to calculate a 95% confidence interval for each
ROC. These confidence intervals are then plotted in our results to graphically
represent the change in algorithm performance with changes in pose.
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ROC 1

ROC 2

Figure 2 Determining Statistical Significance: The distribution along the sampling
line(Red) is used to calculate the confidence interval of ROC∆1 and ROC∆2 .
From this distribution (insert figure), the 95% confidence interval is
determined by finding the 2.5% and 97.5% percentile distribution point for
the two ROC’s.

3.2 Significance of ROC differences

Finally, we wish to be able to detect, given two ROC curves, ROCA
∆1

, and ROCA
∆2

,
for the same AFR algorithm, A, and different pose angles ∆1 and ∆2, whether:
1) they are different, and 2) the statistical significance (p) of the difference.
We perform this test on the confidence intervals calculated above as follows.
ROC differences are determined by iteratively sampling a random point from the
distributions of ∆1 = ROCA

∆1
, and ∆2 = ROCA

∆2
, on a random choice of diagonal

line, and comparing their magnitude, see Fig. 2. From these values p(∆1 < ∆2)
is calculated from the fraction of sampled of points which meet the criteria. This
p value may be interpreted as follows: if p(∆1 < ∆2) = 0.5, the mean of the
ROC curves cannot be distinguished statistically. We consider the curves to be
statistically distinct at the 5% level, which corresponds to p values of p < 0.025 or
p > 0.975.

4 Photo Capture

Photographic image acquisition was performed by Citizenship and Immigration
Canada (CIC); the photo capture and privacy protocol was reviewed and approved
by a departmental review board, and all participants provided written consent.
The photo acquisition protocol was designed to acquire images of each subject at
accurate pose angle measurements. For each subject, images at different roll, pitch
and yaw angles were captured to provide a total of 38 images. Additional images
were captured with/without glasses, with/without hair partially covering eyes, and
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Figure 3 Photo capture configuration: A subject in front of the photo capture and
pose calibration apparatus. A camera tripod (shown) is placed at 2.0 m from
the subject. For pose measurement, the subject wears a custom cap calibrated
to point vertically. Each pose variation image is based on target lines as
described.

with varied facial hair. However, these additional images were not analyzed as part
of the pose results of this paper. The image capture apparatus is shown in Fig.
3. A subject sits in front of a calibrated board wearing a cap with a vertical wire
indicator (not shown in the figure). The cap was designed from felt pipe-cleaners
to obscure only a small fraction of the head while providing a tight fit. With the
subject sitting in the baseline pose (full frontal with 0deg roll, yaw and pitch) the
wire indicator on the cap was fixed to be vertical. Since we were not studying the
effect of image quality in this protocol, all images were designed to be captured
at high resolution with good quality lighting. The choice to use only the data
captured in this study, in spite of the small size, stems from the need to keep
all other factors that contribute to data variability to a minimum. This approach
guaranties changes observed in the results will be due to change in pose angle and
algorithm. Images were captured with an HP Photosmart 707 camera with an HP
8mm–24mm, 24× zoom lens set to capture 5.1 megapixel images of size 1108×
1034 pixels (Hewlett-Packard Company, CA) The camera was positioned at 2.0 m
from the subject at which position it captured a field of view of 0.65m (vertical)
× 0.6m (horizontal). For the average subject, this gave 190 pixels between the
eyes, which easily meets the ISO recommended best practice of 120 pixels between
the eyes(9). Image acquisition was performed in a single session on the same day.
Angles of roll, yaw and pitch are defined in correspondence with the aeronautical
usage, as rotation about, respectively, the longitudinal axis, vertical axis, and an
axis perpendicular to the longitudinal plane of symmetry. Neutral angles (0 deg)
were defined with the face vertical pointed flat toward the camera.
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4.1 Roll Tests

Images were acquired for roll angles of −20deg to +20deg in increments of 5deg
with neutral yaw and pitch. The 0 deg image corresponds to the baseline (neutral
pose) acquisition. For an accurate capture of pose with each roll angle, a white
flip chart paper with a center perpendicular line identifying the 90deg mark and
lines at 5 deg interval was set as background (Fig. 3). Each subject was required to
wear a cap constructed of wire pipe cleaners pointing straight up. The crown was
centered to make sure it was parallel to the 90deg angle. Subjects were then asked
to roll their head at a five degrees increment. The crown was then removed and
the image taken. Images were captured at 5deg, 10deg, 15deg and 20 deg degrees
head roll both on the right and left side. A white flip chart paper covered this
chart when the photos were taken.

4.2 Yaw Tests

Images were acquired for yaw angles of −20 deg to +20deg in increments of 5deg
with neutral roll and pitch. The 0deg image corresponds to the baseline (neutral
pose) acquisition. A wood dowel was used to measure the yaw angle. Pipe cleaner
indicators were placed at each 5 deg increment on both sides of the center on
a horizontal wood dowel that was attached to the camera tripod. In order to
accurately measure the 5deg increment a protractor and a laser diode pen were
used.

4.3 Pitch Tests

Images were acquired for pitch angles of −20deg to +20deg in increments of 5deg
with neutral roll and yaw. The 0deg image corresponds to the baseline (neutral
pose) acquisition. Another wood dowel was used to measure the head pitch of the
models. Again, pipe cleaners were placed at each 5 deg increment on both side of
the center of the vertical wooden dowel that was attached to the camera tripod.
Again, in order to accurately measure increment a protractor and a laser diode
pen were used.

5 Results

Using the images captured (Sec. 4) biometric comparisons were performed
with three commercially available AFR software algorithms. These algorithms
are widely considered to be amongst the top performers in recent technology
evaluation tests(12). The highest performing AFR algorithms available to us in
each of the years 2006, 2007, and 2008 were used, in order to measure the progress
of AFR technology. For each algorithm, software parameters were set to maximize
comparison accuracy at the expense of template size and processing speed. In total,
22 subjects (11 male and 11 female) agreed to participate the facial recognition
experiment; the average age was 37 years with a range of 25–56. The number of
comparisons used in the the impostor distribution was 6.8× 105. The number of
comparisons used in each genuine distribution varied, with an average of 121± 41.
For each algorithm, we calculated ROC curves and their pointwise 95% confidence
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Table 1 Significance p of ROC differences

2006 Algorithm Pitch Roll Yaw
p(∆5 deg < ∆10 deg) .0000 .1838 .0000
p(∆10 deg < ∆15 deg) .0002 .2995 .0024
p(∆15 deg < ∆20 deg) .1118 .0797 .0008
p(∆20 deg < ∆25 deg) .1740 .3976 .0116
p(∆25 deg < ∆30 deg) .1012 .2705 .0256
2007 Algorithm Pitch Roll Yaw

p(∆5 deg < ∆10 deg) .1975 .2832 .1847
p(∆10 deg < ∆15 deg) .1176 .2164 .0638
p(∆15 deg < ∆20 deg) .0394 .2168 .0000
p(∆20 deg < ∆25 deg) .0560 .2049 .0128
p(∆25 deg < ∆30 deg) .0771 .2280 .1017
2008 Algorithm Pitch Roll Yaw

p(∆5 deg < ∆10 deg) .2205 .2797 .2352
p(∆10 deg < ∆15 deg) .1633 .2349 .1494
p(∆15 deg < ∆20 deg) .1251 .2339 .0025
p(∆20 deg < ∆25 deg) .0179 .2210 .0887
p(∆25 deg < ∆30 deg) .0422 .2158 .0653

intervals. ROC curves for roll, pitch and yaw are shown for the 2006 (Fig. 4),
2007 (Fig. 5) and 2008 (Fig. 6). AFR algorithm. For the roll performance, the
effect of variability is much lower than for the other pose changes. Both pitch
and yaw changes result in significant and much more dramatic decreases in ROC
performance and error rates. The statistical significance of the ROC curves is
shown in Table 1. In each case the significance of the difference between each
ROC curve with the next angle increment is calculated. For example, in the 2006
algorithm the difference in the ROC curves of ∆5 deg and ∆10 deg shows the change
in Roll angle has an 18.38% overlap. Therefore, the null hypothesis that these two
curves are the same can not be ignored. And, the difference in the ROC curves of
∆5 deg and ∆10 deg for Pitch has 0% overlap. Hence, the hypothesis that these ROC
curves are the same does not hold true. Overall, for pose changes of 10 deg or
larger, the biometric error rates become dramatically larger. The 2008 algorithm
does perform better or equal to the 2006 algorithm in all cases, although the
improvement is not dramatic except for improvement in the yaw response below
10deg. This improvement with time is also present in the 2007 algorithm, which
shows some of the improvements seen in the 2008 algorithm.

6 Discussion

In this paper, we have presented a method and an analysis of the consequences of
variability in face pose on error rates in face recognition performance. Experiments
were conducted with volunteers who were asked to assume specific poses from
neutral pose to ±20deg in each of the roll, pitch, and yaw directions. Data
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Figure 4 Receiver operating characteristics (ROC) (thick lines) and 5% confidence
intervals (thin lines) for the 2006 algorithm for pose variation in roll (top),
pitch (middle), and yaw (bottom). For each curve, pose variations of
5,10,15,20,25 and 30deg are shown.
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Figure 5 (thick lines) and 5% confidence intervals (thin lines) for the 2007 algorithm
for pose variation in roll (top), pitch (middle), and yaw (bottom). For each
curve, pose variations of 5,10,15,20,25 and 30deg are shown.
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Figure 6 (thick lines) and 5% confidence intervals (thin lines) for the 2008 algorithm
for pose variation in roll (top), pitch (middle), and yaw (bottom). For each
curve, pose variations of 5,10,15,20,25 and 30deg are shown.
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were analyzed to determine changes in recognition performance, using three
leading commercial face recognition algorithms from 2006, 2007, and 2008. For
each pair of images of a given pose difference, a genuine distribution was
calculated, while the impostor distribution was calculated from all non-matching
images. Confidence intervals were determined using a pointwise non-parametric
bootstrapping technique along lines parallel to the EER. Results indicate that
roll variations have a relatively small effect on performance, while pitch and yaw
variations have a large and significant impact on error rates. In comparing the
changes in performance of the algorithms over the period considered (2006–2008),
we observe a general improvement in error rates, yielding an approximately 10
fold reduction in EER for low pose variations (below 10deg in pitch and yaw).
For larger pose variations (≥ 15 deg), there appears to be no significant change
in algorithm performance over the period. This would appear to suggest that
the relative consequence of pose variability has become more severe as AFR
algorithms have improved in the from 2006 to 2008. Automatic face recognition
technology has important applications for verification of identity documents, and
is part of the requirements for ICAO compliant biometrically enabled travel
documents(8). For such travel documents, it is important to understand the
biometric performance implication of any variability in photo quality. More strict
standards for acceptability of photos can dramatically improve the utility of the
biometric technology; however, such strict standards mean that a larger fraction
of submitted photos must be rejected. This imposes an inconvenience on the
population, which may, in turn, result in political pressure the governments issuing
these documents.

This work was motivated by the Canadian work on photo capture requirements
as part of the ISO standard(9). The key concern was to establish a tolerance
limits for face pose variation for identity documents. These results support the
photo capture best practice recommendations of the standard, which indicate
a maximum of ±5deg variability in pitch and yaw. Such variability potentially
results in a 10 deg difference between two images under comparison; our results
show that differences in pitch and yaw greater than these limits result in a
dramatic and statistically significant decrease of face recognition performance.
Finally, the proposed method can be used to study any quantifiable intra-class
variability such as change in number of minutiae points for fingerprint and
percentage of iris occlusion for iris recognition.
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