
Pattern Recognition of Functional

Neuroimage Data of the Human

Sensorimotor System After Stroke

by
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Abstract

This thesis contributes to the study of the regulatory mechanisms of the cerebral circu-
lation and its dysfunction in disease. Novel analytical methods are studied for the char-
acterisation of the neurovascular mechanisms measured by functional magnetic resonance
imaging of humans having suffered ischemic stroke.

Functional neuroimage data are acquired from consenting healthy volunteers and
ischemic stroke patients with motor deficits who participated in an event-related visual
feedback controlled hand motor task. The neuroscience and stroke literature provides
the basis for this research on analytical methods for i) exploratory pattern recognition
of the cerebrovascular responses to sensorimotor tasks, ii) the characterisation of their
space-time structure, and iii) a Bayesian hierarchical model for evaluating their statistical
significance for intersubject comparison. Ultimately, these methods aim to identify and
distinguish between distinct response signals, thereby making them amenable to expert
visual inspection and interpretation.

The results from the trials presented here show that the method is capable of
differentiating between the response characteristics from the healthy and stroke patient
groups. In the months following ischemic stroke, an abnormal increase in the number
of distinct response signals occurs, exhibiting a dispersed spatial pattern and diminished
temporal relationship to the motor task that is either extensively delayed, or abnormally
early and anti-correlated. The most likely explanation is that these widely dispersed
response signals appearing throughout the cerebral cortex of the stroke patients are no
longer coupled to colocalised neural activity. According to this premise, our results suggest
that the regulatory mechanisms of the cerebrovascular system can remain compromised
in the months following ischemic stroke.

In summary, direct evidence is provided here supporting the application of ex-
ploratory pattern recognition and Bayesian hierarchical analysis of neuroimage data ac-
quired during the study of ischemic stroke. Specifically, the aforementioned analytical
methods are shown to be suitable for monitoring the spatiotemporal characteristics of the
neurovascular response to sensorimotor stimuli. Its implementation in longitudinal trials
would provide key information for the evaluation of stroke rehabilitation programmes and
for the assessment of individual patient recovery.
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Chapter 1

Human Neurophysiology at the

System Level

1.1 Introduction

Mankind’s fascination with the brain reaches back amongst the earliest records of civili-

sation, first describing the human nervous system in ancient Egyptian hieroglyphs nearly

four millennia ago (Breasted, 1930). Two of the major turning points in our early under-

standing of the nervous system are mentioned now because they form the core of modern

neuroscience and emphasise the central theme of this thesis—that the advancement of

analytical methods leads to new scientific insights. A detailed historical account of these

events is given by Finger (1994).

The first turning point, dating back to ancient Greece circa 5th century B.C., was

the idea that the mind and intellect resides solely within the brain and not in the heart

as was previously believed. It was first proposed in the scholarly work of Alcmaeon,

resulting from his dissection of the human brain, and was established a century later

during the study of seizures, head injuries, and their treatments recorded in the Hippocratic

corpus, a series of medical treatises written by Hippocrates amongst other anonymous

1
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ancient Greek physicians. The second turning point, taking place in late 19th century

Europe, was the establishment of the neuron doctrine. It began with the improvement

of microscopy, which allowed the investigators to resolve brain tissue at the cellular level.

A cellular theory was consequently proposed by German physiologist Theodor Schwann

in 1839, which proposed that organisms were entirely composed of discrete biological

cells. However, the nerve cells, having a topology unique from those of other organs,

form a complex network, or reticulum, with fine processes branching between the cell

bodies. Thus, despite Schwann’s cellular theory, none could verify whether the nervous

reticulum was actually composed of individual nerve cells whose fine processes were not

fused but merely touched. The compelling evidence in favour of the cell theory came

from a new tissue staining method by Italian physician Camillo Golgi in 1873, which

allowed the staining of individual cells thereby revealing microscopically the termination

of their processes. The scientific work proving the cellular nature of the nervous system

came from Spanish histologist Santiago Ramón y Cajal in 1890. The final link explaining

the communication mechanism between processes of neurons was discovered, and named

“synapse,” by English neurophysiologist Sir Charles Scott Sherrington in 1897. The neuron

doctrine remains today at the foundation of modern neuroscience, upon which we consider

that our behaviour, thoughts, and actions are ultimately manifest from the trafficking of

information signals spanning the reticulum of the one million million (1012) neurons that

make up the human brain (Kandel et al., 2000). These two major turning points of

neuroscience came from advancements in analytical methods, namely in neurosurgery,

microscopy, histology, and biochemistry.

Since the neuron doctrine was established, much neurophysiological research has

continued at the single neuron level and now also at the system level to further understand

how the brain orchestrates its activity to yield a coherent and intelligent human organism.

This chapter will first review general neuroanatomy and physiology, and the steps taken

toward developing a theory of computational neuroscience. Secondly, it will elaborate on
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some of the modern empirical and theoretical methods developed to study brain function.

It will also point out the methods still lacking and, in this regard, state the focus of this

thesis. The variety of topics covered in this chapter may seem broad, yet they ought to be

understood in the context that neuroscience has become a consilience of specialised dis-

ciplines. Therefore, study in one discipline must diligently consider the implications from

results found in the other disciplines so that the theory of neuroscience be an integrative

one, capable of mutually corroborating the phenomena observed.

1.2 General neuroanatomy and physiology

Neurophysiology, the study of brain function, is an anatomically based subject because

the brain possesses a highly consistent and organised topography whose distinguishable

landmarks serve to identify its features as well as the presence of any abnormalities. Such

anatomical consistency led Talairach & Tournoux (1988) to first plot a stereotaxic brain

atlas derived from a single post-mortem female subject. A vastly improved and gener-

alised version derived from over 7000 human samples created through an International

Consortium of Brain Mapping known as the ICBM atlas is the recognised standard today

(Mazziotta et al., 2001). These maps are of crucial importance to neuroimaging studies as

they provide the anatomical basis for the acquired structural and functional image data.

The anatomical structure is also present at the microscopic level, where the arrangement

and diversity of the neurons found throughout the cerebral cortex vary depending on the

region examined. The consistency of this microscopic structure led to the cytoarchitec-

tonic classification of the cortical grey matter, the brain tissue containing the neuronal

cell bodies suspended in a fibrous matrix called neuropil. The most widely used cytoar-

chitechtonic atlases are those of Brodmann (Garey, 1994) and, to a lesser extent, those of

von Economo & Koskinas (2008). Brodmann’s atlas is shown in figure 1.1.

Decades of experience primarily involving clinical cases of patients with brain injury
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Figure 1.1: Brodmann’s cytoarchitectural atlas adapted from (Garey, 1994). Sagit-
tal views of Brodmann’s areas on the lateral (a) and medial (b) surfaces of the cerebral
cortex.



CHAPTER 1. HUMAN NEUROPHYSIOLOGY AT THE SYSTEM LEVEL 5

Figure 1.2: Illustration of the gross human neuroanatomy adapted from Kandel
et al. (2000). The major regions are labelled in bold type, and the lobes of the
cerebrum are labelled in plain type.

and neurological disease as well as non-human primate studies led to the understanding

that the diverse functions of the brain are indeed localised throughout the cortex. The

major regions of the central nervous system (CNS) are now briefly described based on

the work of Barr (1974) to clarify the interconnection of these localised functional areas.

The subcortical tissue, i.e., the white matter, is sparse of neuronal cell bodies and instead

contains the long axonal processes that are predominantly ensheathed by myelin. The

white matter forms the inter-cortical network throughout the brain and communicates to

the peripheral nervous system (PNS) throughout the body via the spinal cord. Figure 1.2

illustrates the major regions of the CNS:

• The spinal cord communicates paired sensory and motor nerves throughout the body.

A transverse section of the cord reveals a central ‘H’ shaped profile of grey matter

surrounded by peripheral white matter that projects the nerve fibres longitudinally

to the body.

• These spinal fibre tracts continue through the medulla, which also contains neuron

cell clusters that send fibres to the cerebellum and others to the pons.

• The pons consists of two parts: the dorsal part is akin to the medulla, and the
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basal part provides extensive connectivity between each cerebral hemisphere and

its contralateral cerebellar hemisphere. These connections are very important for

efficient execution of motor activity.

• The midbrain is much like the brain stem regions described above containing senso-

rimotor pathways and, in addition, the auditory and oculomotor cranial nerves.

• The cerebellum receives data from most of the sensory systems and the cerebral

cortex. It works to influence motor neurons supplying skeletal musculature by reg-

ulating muscle toneus in relation to gait. While it is primarily responsible for such

subconscious movements, it is also known to be involved in the execution of spe-

cialised movement based on individual experience.

• The diencephalon is the central core of the cerebrum anatomically and functionally,

whose largest component is the thalamus, a dense gray matter region that receives

data from all sensory systems (except olfaction) and projects them to the sensory

areas of the cerebral cortex. It also reverberates circuits between cortical areas con-

cerned with higher functions, e.g., voluntary movements and cognition. Other nuclei

of the thalamus are in circuit with the limbic system, and motor pathways linking

cerebellum to corpus striatum and cerebral cortex. It also synthesises hormones and

releases them in the blood stream via the pituitary gland. Finally, the retina and

hence the visual system, is an immediate derivative of the diencephalon.

• The telencephalon consists of the corpus striatum and both cerebral hemispheres.

The corpus striatum wraps around the thalamus and its nuclei project fibres pri-

marily in three directions: i) intra-hemispherically, ii) inter-hemispherically, and iii)

those converging towards the thalamus. It has roles in the limbic system and all sen-

sory systems (again, except olfaction). Each cerebral hemisphere consists of a highly

convoluted cortex whose topography is typically described by the convex folds called

the gyri and the concave grooves called sulci. The hemispheres appear to be virtually
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symmetric at a glance but, in fact, have some typical asymmetries. It is within the

cerebral cortex that the neural activity for the highest functions take place.

The cerebral cortex is special in humans because its evolution away from the ancient paleo-

cortex is unmatched throughout the animal kingdom. In lower vertebrates, the paleocortex

remains the dominant cortical matter, while in mammals, most of it has been replaced

by neocortex. The human cerebral cortex consists of 90% neocortex. To quote Cana-

dian physician and anatomist Murray Barr on the remarkable distinction of our species in

nature (Barr, 1974):

“The unique place of the human species is an endowment conferred by an
expanse of neocortex that is possessed by no other animal.”

1.3 Toward a theory of computational neuroscience

With the knowledge of function localisation and the interconnected nature of the CNS,

one can consider the neuron doctrine as providing the building blocks for information pro-

cessing within a highly distributed computational network. The microscopic complexity

and quantity of neurons, combined with their numerous interconnections and inherent

inaccessibility, make the comprehensive monitoring of the resulting network’s operation

impossible to achieve with the current technology. However, this does not preclude the

possibility of extensive study of the brain post-mortem, albeit, no longer functioning. Nor

does it preclude observing in vivo small subsections in detail, or even the entire system at a

macroscopic scale. These problems of data acquisition serve to provide empirical evidence

to obtain a theoretical understanding of how information is processed in the brain. There

are only limited experimental data on the fundamentals of neural computation taking place

at a system level, and consequently, much of the theoretical research comes from the study

of individual neurons, small populations of in vitro cultured neurons, and mathematical

models (Feng, 2004). Two seminal quantitative results, one at the neuron level and the
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Figure 1.3: Illustration of neurons found in a cortical column of the human neocor-
tex, adapted from Barr (1974). a, Various types of neurons shown to scale with their
axon labelled (layer 3 pyramidal cell shown has diameter 10-50 µm). b, Neuronal
arrangement in a cortical column, consisting of six layers identified by the occupying
cell type (height of a column varies throughout cortex between 1.5-4.5 mm).

other at the network level, are described here because their impact has shaped much of the

current paradigm on brain function. To relate these results to the neuroanatomy, figure

1.3 illustrates the geometry of neurons and how they are organised into stratified columns

that form the neocortex.

The first came from the physiological study by Hodgkin & Huxley (1952) of the

electric current through the surface membrane of the axon. Their study led to a quantita-

tive model of the initiation and propagation of localised ionic currents that travel along the

axon away from the cell body, an all-or-nothing phenomenon called the action potential.

These currents work to depolarise the resting-state transmembrane ionic potential when

its ionic permeability changes, hence allowing the equilibration of the transmembrane con-

centration gradients of K+ and Na+ primarily, as well as other “leakage” currents. The

dynamics and velocity of conduction of the action potential travelling across the mem-
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Figure 1.4: Solution to equation (1.1) plotting the propagated action potential
−V (t), given the transmembrane conductance g and its K+ and Na+ components,
adapted from Hodgkin & Huxley (1952).

brane were derived from this model and expressed by the voltage function V = V (x, t)

satisfying the partial differential equation (Hodgkin & Huxley, 1952)

a

2R2

∂2V

∂x2
= CM

∂V

∂t
+ ḡKn

4(V − VK) + ḡNam
3h(V − VNa) + ḡl(V − Vl). (1.1)

The left hand side represents the current membrane density, and the four terms on the

right hand side represent the membrane’s capacitance, and the ionic conductance of the

K+, Na+, and leakage channels, respectively. Figure 1.4 from Hodgkin & Huxley (1952)

plots versus time the propagated action potential −V and the transmembrane conductance

that satisfies equation (1.1) and agrees with their experimental data. This work revealed

a key mechanism of neuronal communication: sequences of all-or-nothing pulses, which

in turn trigger the diffusion of biochemical neurotransmitters across the synapse to reach

the adjoining neuron.

The second result addresses the question of how a network of communicating neu-

rons could collectively form a system with meaningful output, instead of gibberish. The

problem actually was set in a purely mathematical context, on the algebraic reconstruc-

tion of polynomial functions, posed by an influential mathematician of the 19th and 20th
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centuries David Hilbert. The question essentially was whether one could express any con-

tinuous multivariate function by means of the sum and composition of a finite number of

continuous univariate functions. This question was surprisingly answered in the affirma-

tive by Kolmogorov (1957), showing that any continuous n-dimensional function f can

be represented by exactly (n + 1)(2n+ 1) total copies of two continuous one-dimensional

functions. Formally, the result is known as the Kolmogorov superposition theorem and can

be stated as follows.

Theorem 1 (Lorentz (1976)). Let f : [0, 1]n → R be a continuous function. Then f can
be rewritten as follows. Let ǫ > 0 be a real number, then

f =
2n+1∑

k=1

g(zk) + k, (1.2)

where g : [0, 1] → R is a suitable continuous function (depending on f and ǫ), and for all
k,

zk =

n∑

j=1

λkψ(xj + ǫk). (1.3)

Here λk ∈ R, and ψ is a monotonically increasing Lipschitz real function on [0, 1] that
does not depend on f nor ǫ.

This theorem describes the artificial neural network shown in figure 1.5, called the

“Kolmogorov-Lorentz” network, where the first layer has n(2n+1) nodes, each made from

the one-dimensional function ψ, and the second layer has 2n + 1 nodes, each made from

the one-dimensional function g. This relatively simple feed-forward network is all that is

necessary to replicate any continuous n-dimensional function desired. Consequently, this

result is recognised as of importance in computational neuroscience (Ku̇rková, 1991), since

it shows in theory the power of a distributed computational network: a machine capable of

responding precisely to multivariate inputs by means of very simple computations taking

place in parallel. Much subsequent research has been put into answering the subsequent

question of how to choose the suitable univariate function g. Neural networks under the

umbrella of statistical machine learning has become a fundamental topic of computational

neuroscience and pattern recognition in general (Devroye et al., 1996). A statistical theory
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Figure 1.5: Illustration of the Kolmogorov-Lorentz artificial neural network. The
arbitrary continuous n-dimensional function f is computed by the superposition of
two continuous one-dimensional functions ψ and g as required in theorem 1.

of learning created by Vladimir Vapnik and Alexey Chervonenkis (Vapnik, 1998) now

serves to quantify “how much” a machine like a neural network among others can learn

from a given data set.

It is clear that to begin applying these ideas to the brain at large will require

much effort. The goal is to obtain a solid understanding of the native architecture and

basic instructions required for the execution of operations on data circulating within the

nervous system, and upon which routines are built for data management and information

coding, and furthermore, upon those even more sophisticated programs for adaptation

and learning, etc. Despite the remarkable progress in computational neuroscience over

the past century, and the energetic debates on various coding theories, a comprehensive

theory of this architecture and its implementation throughout the CNS remains largely a

mystery (Feng, 2004). Nonetheless, the excitement from the results and discoveries in this

relatively new field have brought us to the brink where the neuron doctrine can indeed be

considered a realistic and theoretically plausible basis to understand how the brain works.
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1.4 Gathering empirical evidence of brain function

The evidence gathered from experimental data can be classified into two complementary

groups. Histological, biochemical, and genetic studies approach the problem from the

bottom-up, examining the elementary building blocks of cells and their matrix. Psycho-

logical, surgical, and medical imaging studies follow a top-down strategy, examining the

system behaviour in normal and abnormal conditions. Corroboration of the findings from

these disciplines is essential for a sound understanding of neurophysiology and for the

validation of the theories they are based upon. Neuroimaging methods are useful in this

respect and are briefly introduced to demonstrate this point.

Results from histological studies of the tissue density, organisation, and intragyral

connectivity of neurons are being compared with those obtained from human structural

neuroimage data acquired by magnetic resonance imaging (MRI) that estimate cortical

thickness and curvature from T1-weighted scans (Lyttelton et al., 2009), and are beginning

to resolve the gross cytoarchitecture at sub-millimetre resolution (Thomas et al., 2008).

Post-mortem white matter fibre tractography studies are now being compared with diffu-

sion tensor imaging (DTI), an MRI technique to reconstruct the main directions of water

diffusion within each voxel (Tuch et al., 2003). DTI can estimate the average direction of

axonal fibres in voxels of white matter by regularising the diffusion data between voxels

to follow three-dimensional curves (Savadjiev et al., 2006).

The physiological processes taking place at the system level, e.g., the regional elec-

tromagnetic activity from the superposition of neural action potentials, and its associated

regional metabolic activity and regulation of blood flow, are primarily studied with func-

tional neuroimaging methods. This is the case because human physiological studies require

an application of minimally invasive methods in order to generalise the observations to

their respective populations.
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1.4.1 Direct cortical recordings

The regional electromagnetic fields generated by neuron action potentials are best recorded

by electrodes temporarily implanted directly into the cortex during surgery. This most

invasive procedure seldom takes place, since there are fewer clinical centres with the exper-

tise to conduct these studies, and fewer consenting patients who clinically need the suitable

type of neurosurgery. However, much can be learned from these recordings due to their

high quality. Hochberg et al. (2006) demonstrated the control of a prosthetic device, a

computer mouse cursor, using neuronal ensemble recordings from a 4 mm2 electrode array

implanted in the cortex of a tetraplegic patient. Quiroga et al. (2005) identified individ-

ual neurons specifically responsible for the recognition of people or objects from similar

electrode array recordings in an epileptic patient. Of course, planning these specific ex-

periments, namely, deciding where to put the electrodes, depends mostly on functional

neuroimaging studies that measure activity throughout the entire brain during such tasks

of motor control or recognition.

1.4.2 Electromagnetic field recordings

Non-invasive measurements of electromagnetic activity are typically done with electroen-

cephalography (EEG), i.e., recordings from a net of electrodes covering the scalp. The

EEG signal quality is relatively poor due to the electrical insulation properties of the skull

and scalp. Moreover, source localisation from EEG data is a severely ill-posed inverse

problem. Consequently, spatial resolution is limited to the localisation of the average elec-

tric dipole on the superficial part of the cerebral cortex adjacent to the skull. The temporal

resolution, however, is excellent being on the order of one millisecond. Therefore, EEG

can provide useful information about the causality of the responses to brief stimuli from

general cortical centres.

An alternative method is magnetoencephalography (MEG), also non-invasive,

which rather measures the magnetic field induced by regional neural activity using very
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sensitive superconductive sensors that similarly cover the skull. The spatial resolution is

generally better than EEG because the neural activity-induced magnetic fields are not

so much distorted by the scalp and skull. However, MEG also suffers from the severely

ill-posed inverse problem and is also most sensitive to the superficial surface of the cerebral

cortex. The temporal resolution of MEG is comparable to EEG.

1.4.3 Metabolic and vascular imaging

Neural activity requires energy, which is generated by the metabolism of oxygen and glu-

cose supplied by the cerebrovasculature. At the arteriolar level, the brain vessels are

endowed with a mechanism to regulate the cerebral blood flow (CBF) so that cortical

tissue receives a steady blood supply independent of systemic fluctuations in arterial pres-

sure (Kuschinsky, 2000). Secondly, a task-related increase in regional neural activity is

followed by a concomitant regional increase in CBF; a mechanism called functional hy-

peremia or the hemodynamic response (Iadecola & Nedergaard, 2007). Nuclear imaging

methods such as positron emission tomography (PET) and single photon emission com-

puted tomography (SPECT) are capable of measuring the cerebral metabolic rates of

oxygen (CMRO2) and glucose (CMRglu), as well as CBF by monitoring the quantity of

circulating water, oxygen, or glucose molecules labelled with suitable radioactive atomic

isotopes such as 15O, 18F, or 99mTc. Thus, these methods provide an indirect measure of

neural activity that is dependent of this relationship with metabolic and vascular function.

The radiolabelled tracers are considered minimally invasive and are typically introduced

into the system by intravenous injection. Nuclear imaging studies involving normal sub-

jects are acceptible; however, they require proper justification because ionising radiation

levels involved are significant. PET is generally more sensitive than SPECT, having su-

perior spatial resolution and contrast (Knešaurek & Machac, 2006). PET has a spatial

resolution of about 5 mm, whose images are typically reconstructed by applying the fil-

tered back projection algorithm on data representing the trajectory end-points of emitted
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gamma particles. Thus, unlike EEG and MEG, PET imaging is not a severely ill-posed

problem and has a relatively uniform sensitivity so that the deep brain regions can also be

observed. Because PET reconstructs images from an accumulation of emission events over

time, its temporal resolution is not independent of image quality and is relatively poor.

Dynamic PET imaging can have a temporal resolution on the order of tens of seconds.

1.4.4 Blood oxygenation imaging

Nuclear imaging studies investigating the relationship between neural activity, metabolism,

and blood flow have shown that functional hyperemia entails a disproportionate increase of

blood flow and metabolism. Fox & Raichle (1986) first showed that ∆CBF > ∆CMRO2

during neural activation induced by somatosensory stimulation, which is interpreted as

meaning that a large increase in CBF is needed to make small increases in oxygen

metabolism possible (Villringer, 2000). Subsequently, Fox et al. (1988) and Madsen et al.

(1995) showed that ∆CMRglu > ∆CMRO2 during neural activation induced by visual

and cognitive tasks, and the measured lactate production only accounted for a small pro-

portion of the glucose uptake. These findings suggest that oxidative glycolysis is the main

energy source of neural activity, and that the fate of the remaining uptaken glucose is still

open to debate (Villringer, 2000).

The combination of these physiological phenomena and the physical fact that the

hemoglobin molecule is diamagnetic when oxygenated (oxy-Hb) and paramagnetic when

deoxygenated (deoxy-Hb) led to the discovery of a blood oxygenation level dependent

(BOLD) contrast for MRI (Ogawa et al., 1990), and its use in the functional magnetic

resonance imaging (fMRI) of the human brain (Kwong et al., 1992). The BOLD contrast

serves to indirectly measure changes in neural activity based on changes in the regional con-

centrations [oxy-Hb] and [deoxy-Hb]. During functional hyperemia, an increase in [oxy-Hb]

takes place since ∆CBF > ∆CMRO2. Therefore, the local MRI signal intensity increases

within the vicinity of neural activity because fewer paramagnetic deoxy-Hb molecules are
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present to destructively alter the magnetic susceptibility within the microvasculature.

To infer neural activity from these relative changes in the BOLD signal, however,

relies upon assumptions of the hemodynamics described above, whose metabolic and vas-

cular components are not directly measured by the BOLD signal. However, Ito et al.

(2005) verified this expected BOLD response in normal subjects by comparing acquired

BOLD fMRI data with subsequent measurements of CBF, CMRO2, and the oxygen ex-

traction fraction using 15O PET during rest and during a hand motor task. Such validation

studies indeed show that fMRI is a powerful technique for observing the cerebrovascular

response of neural activity in vivo, having several important advantages over other func-

tional neuroimaging methods. Foremost, it is non-invasive and requires no administration

of contrast agent or intervention of any kind. Thus, it poses no additional risk beyond

that of a standard MRI scan, making it suitable for the extensive study of consenting

normal subjects and patients in their natural state. It has the highest spatial resolution of

the functional neuroimaging modalities. For example, a standard scanner operating at 1.5

Tesla magnetic flux density has a resolution on the order of 2 mm and can image the entire

brain in about 2 seconds in a repetitive manner. Image reconstruction is not ill-posed and

is done by inverse Fourier transform of the magnitude and phase components of the MR

radio frequency data. Finally, fMRI has roughly uniform sensitivity throughout the field

of view and can be accompanied by submillimetre resolution structural T1 or T2 scans for

precise anatomical localisation throughout the brain.

1.5 Analytical methods for neuroimage data

This chapter began with a discussion of how our understanding of neurophysiology grew

in consequence of the advancements in the analytical methods used to study the brain.

As the methods began to probe the subtleties of the subject, the investigators increasingly

became aware of its sophistication, leading to new questions and eventually new ideas. The
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material surveyed in this chapter hopefully provided the reader with a basic understanding

of human neurophysiology at the system level as well as various ways it can be studied.

Only with such background can one undertake the problem of analysing neuroimage data.

The success of a neuroimaging experiment depends on the consideration of this

understanding when designing the experiment and analysis methodology as well as during

the interpretation of results. First, one must avoid associating the acquired images with

the absolute truth and rather interpret them as a representation of the subject under

study, prone to error and uninformative of certain properties of the subject (Joyce, 2008).

Secondly, finding ourselves in the ‘information age’ has provided us with vast quantities

of data. Especially in the case of neuroimaging, as our technological progress moves

forward, the complexity of the data begin to approach that of the working human brain.

Indeed, these data sets have become large, multidimensional, and sensitive to many factors

beyond what is tolerable for the analysis by visual inspection. Consequently, we now

move toward the ‘analysis age’, where our dependence on powerful analytical methods

grows substantially. An example of this transition is clear in the work by Quiroga et al.

(2005). The first in vivo single neuron action potential recordings were done in 1963,

and cortical recording studies began to explore language and processing function in 1988.

However, only in 2005 could modern analysis techniques provide the robust identification

of single neuron action potentials from vast amounts of data, making them amenable to

interpretation by human experts (Abbott, 2009).

The three main stages of neuroimage analysis methods are introduced with brief

examples of their implementation. In the following sections, visualise that functional

neuroimage data as a set of time series signals localised throughout regions of the brain

that were recorded in one session during which the subject was exposed to stimuli of some

kind.
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1.5.1 Pattern recognition

Pattern recognition methods have been applied to time series data as an exploratory step

for the identification of regions carrying similar signals or those carrying signals that po-

tentially respond to a stimulus. This is a reasonable objective, since the brain is a heteroge-

neous system with some degree of functional substructure. For example, Mourão-Miranda

et al. (2005) trained the support vector machine algorithm to discriminate between BOLD

fMRI data acquired during resting and active states, and subsequently, applied the ma-

chine to predict a new subject’s state for each given image. Esposito et al. (2005) applied

a supervised clustering algorithm to characterise BOLD fMRI data from multiple subjects

by identifying similar independent components present across all subjects. Rajapakse &

Zhou (2007) applied a dynamic Bayesian network algorithm that analysed the temporal

connectivity between distinct brain regions using BOLD fMRI data.

1.5.2 Parametric modelling

Parametric models of the data sets are also useful in characterising the diversity found

between subjects and groups. The most widely used model is the general linear model

(GLM) as proposed by Friston et al. (1995) and Worsley & Friston (1995) that forms a

statistical parametric map (SPM) of the voxels from functional neuroimage data. The

GLM essentially performs a linear regression of the data onto explanatory variables that

represent the stimuli and the expected hemodynamic response. McIntosh et al. (1996) pro-

posed the application of partial least squares (PLS) to neuroimage data. PLS maximises

the covariance matrix of the data set by grouping the voxels optimally within blocks that

are defined by explanatory variables similar to those in the GLM (McIntosh & Lobaugh,

2004). Recently, de Pasquale et al. (2008) proposed a Bayesian approach to first account

for temporal autocorrelation in BOLD fMRI signals with an autoregressive model, and

second, to represent the model parameters within a joint probability density function.
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1.5.3 Statistical inference

Methods of performing inference on the model’s actual state based on the observed data

have also been approached in various, complementary ways. Both SPM and PLS are read-

ily amenable to classical hypothesis testing based on t and F statistics within an analysis

of variance (ANOVA) design. An alternative approach is the use of computer-intensive

resampling tests, i.e., bootstrap or randomisation techniques described by Efron & Tib-

shirani (1991), which have been applied to both GLM and PLS (McIntosh & Lobaugh,

2004; Wang et al., 2007). A third approach that is emerging is Bayesian inference. All

Bayesian models (e.g., Rajapakse & Zhou (2007); de Pasquale et al. (2008)) are readily

amenable to Bayesian inference by applying Bayes’ rule to their joint probability density

model. Bayesian models have also been implemented within the GLM framework (Penny

et al., 2007).

1.6 Focus and summary of the thesis

This thesis focuses primarily on the development of novel analysis methods for functional

neuroimage data with the objective to further develop our understanding of brain function

at the system level. In particular, the experimental studies undertaken were aimed toward

the characterisation of the sensorimotor system using BOLD fMRI data acquired from

healthy volunteers and ischemic stroke patients.

The motivation for studying stroke is the prevalence of the disease and the ensu-

ing chronic disability that burdens its surviving victims. In North America, stroke is the

leading cause of chronic cognitive and motor impairment; moreover, it is the third leading

cause of death (Murphy & Corbett, 2009). Consequently, rehabilitation therapy attempt-

ing to minimise stroke’s burden-of-disease rely on diagnostic methods to monitor patient

recovery. Therefore, neuroimaging methods play an important role in stroke rehabilitation

research by monitoring the recovery progress. In addition, functional neuroimaging might
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provide enough information to accurately predict a patient’s outcome under a particular

therapy. This predictive power would be most useful for the case-by-case selection of the

optimal rehabilitation therapy. The next chapter will review the impact stroke has on

the sensorimotor system, the conclusions drawn from previous studies, and the questions

posed in this research.

The motivation for developing novel analysis methods stem from the known com-

plexity of the CNS and consequently of the acquired functional neuroimage data. Chapters

3 and 4 are dedicated to the acquisition of BOLD fMRI data. Chapter 3 justifies the experi-

mental design and the MRI parameters chosen. It also describes the subject manipulations

performed with special consideration for stroke patients. Chapter 4 begins by reporting

the results from the preliminary analysis of the data to describe the BOLD signal and

noise characteristics; it concludes with the data simulation method used for quantifying

algorithm performance. Chapters 5-7 are the core of the thesis that develop the functional

neuroimaging analysis methods for i) the objective recognition of substructure in the data

set, ii) the characterisation of the BOLD signal space-time structures identified, and iii) a

Bayesian hierarchical model for evaluating the statistical significance of these structures.

The purpose of this material is to provide a flexible, exploratory analysis method that can

characterise the space-time structure of functional neuroimage data. Chapter 8 applies

the proposed analysis to characterise the space-time structure of BOLD fMRI data from

recovering ischemic stroke patients with motor deficits. This chapter will compare the

characteristics from normal and stroke data to determine their ability to discriminate be-

tween these populations and furthermore to describe the relationship between these data

and the degree of motor impairment.

The material from chapters 4-8 has been subsequently submitted for publication

in peer-reviewed international academic journals dedicated to the advancement of data

analysis and medical imaging methodology.



Chapter 2

The Sensorimotor System

2.1 Introduction

The preceding chapter reviewed the general neurophysiology and its neural, metabolic,

and vascular substrates. It also introduced the neuroimaging methods to study brain

function at a system level. This chapter now details the subsystem investigated in the

remainder of the thesis—the sensorimotor system—beginning with its functional anatomy.

For a correct interpretation of the neuroimage data acquired, which relies on functional

hyperemia, it is also necessary to review the known cellular mechanisms that control the

cerebral microcirculation. Then, the impact that stroke has on this subsystem is described

along with the implications for neuroimaging studies. Finally, a discussion of the presented

evidence is given with an emphasis on the consequent questions addressed in this research.

2.2 Functional anatomy of the sensorimotor system

The sensorimotor system consists of the subcircuits dedicated to somatosensory and motor

function. Although distinct, these subcircuits may be considered as a system because of

their natural interaction in both body sensation and movement.

21
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Figure 2.1: Coronal view of the somatotopic mapping of the human primary motor
cortex adapted from Penfield & Rasmussen (1950).

2.2.1 The sensorimotor cortex

The planning and execution of voluntary movements take place in the primary motor cor-

tex, also called M1, forming Brodmann’s area (BA) 4 (see figure 1.1, page 4). M1 coincides

with the precentral gyrus on the lateral and medial surfaces of the frontal lobes. The giant

pyramidal neurons, or Betz cells, in M1 send their axon toward the peripheral nervous sys-

tem (PNS) via cortico-striate fibres to effectuate skeletal muscle control. The distribution

of these neurons in M1 form a topographic representation of the body, i.e., a somatotopic

mapping, known as the homunculus shown in figure 2.1. To complement M1, the primary

somatosensory cortex receives sensory input from the PNS via thalamo-cortical fibres and

is located immediately posterior to M1 forming BA 3, 1, and 2, coinciding with the post-

central gyrus on the lateral and medial surfaces of the parietal lobes. The somatotopic

mapping also forms a homunculus, not identical to that in M1. These cortical areas are
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collectively referred as the sensorimotor cortex (SMC). The SMC has been extensively

studied in humans, and insightful reviews are given by Kandel et al. (2000) and Reis et al.

(2008).

Anterior to the SMC are the supplementary motor and premotor areas (BA 6) that

are also closely involved in motor control. The precise functions of these areas, however,

remain controversial. The supplementary motor area lies on the posterior end of the su-

perior frontal gyrus that coincides with the dorsomedial part of BA 6. It is thought to

link cognition with action because it receives cortico-cortical inputs anteriorly from frontal

cortex and propagates cortico-cortical outputs posteriorly to M1, which are somatotopi-

cally organised. Evidence suggests that this area “primes” motor programs before they

are executed (e.g., preparing the movements needed for reaching out to grab an object).

This postulate is based on studies demonstrating its activation in self-initiated movements

as opposed to movements performed when commanded. A detailed review of the supple-

mentary motor area is given by Nachev et al. (2008). The premotor area lies directly

inferior to the supplementary motor area, coinciding with the dorsolateral part of BA 6.

Its principal inputs come from the somatosensory area in the posterior parietal cortex (BA

5 & 7) and sends outputs alongside those of M1 but in fewer number toward the motor

circuits of the PNS. Along with experimental evidence relating premotor area activity and

limb motion, it is thought to primarily control the orientation and coordination of move-

ments (Kandel et al., 2000). The posterior parietal cortex then appears to complement the

secondary motor areas both in function and location, being posterior to the SMC on the

dorsomedial surface of the parietal lobe. It is likely involved in the integration of sensory

information as part of a feedback circuit for targeted movements that rely on vision and

spatial perspective.

The connectivity of the motor areas on the frontal cortex suggests an anterior-to-

posterior hierarchical organisation of function. Starting from M1 and proceeding anteriorly

along the dorsomedial line, the substructures encountered within the supplementary mo-
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tor area (see Nachev et al. (2008) for details) and beyond appear to be associated with

functions of increasing level of abstraction but that ultimately depend on basic motor

function. Indeed, Badre et al. (2009) recently provided evidence supporting this hierarchy

by demonstrating a direct correlation between the position of focal frontal lobe lesions

in patients and their performance deficits during motor tasks involving gradually increas-

ing levels of abstraction. Perhaps motor programs are built in an integrative manner as

abstract information from cognitive centres in the prefrontal cortex proceeds posteriorly

toward M1.

2.2.2 The basal ganglia and cerebellum

The term basal ganglia refers to substructures of the corpus striatum that are involved

in motor function, in particular the putamen and the globus pallidus. Together, these

centres receive input from the cortex and send output back to the cerebral cortex via

thalamo-cortical circuits as well as toward the PNS. The main substructures and their

connectivity are illustrated in figure 2.2. The accumulated experimental evidence impli-

cates the basal ganglia in the control of movement extent and speed. Turner et al. (2003),

for example, have demonstrated the modulation of regional CBF in the putamen during

the performance of whole arm motor tasks involving the pursuit of on-screen targets by

joystick manipulation.

The cerebellum has a remarkably distinct cytoarchitecture from the rest of the CNS,

possessing an organisation of neuron types not found elsewhere in the brain. It consists

of two hemispheres that communicate contralaterally to the cerebral hemispheres; e.g.,

the left cerebral hemisphere is primarily connected to the right cerebellar hemisphere. As

described in chapter 1, the cerebellum plays an important role in muscle tone regulation

for posture and in the co-ordination of voluntary movements (Barr, 1974; Kandel et al.,

2000).
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Figure 2.2: The sensorimotor circuits involving the basal ganglia and thalamus.
Transverse (a) and coronal (b) sections adapted from Grey (1977). c, Illustration of
the main interconnections between cortex, basal ganglia, and thalamus; adapted from
Kandel et al. (2000).

2.3 The neurovascular unit

Understanding the cellular mechanisms that regulate the cerebral circulation is a major

goal of neuroscience. Hamel (2006) and Iadecola & Nedergaard (2007) provide dense

reviews of the current body of knowledge on the subject discussed here.

The brain depends on a continuous blood supply to provide the oxygen and glucose

necessary for neuronal activity. Any interruption in this supply causes the deprived neu-

rons to suddenly stop working and die. Consequently, the cerebrovasculature is endowed

with cellular mechanisms that provide a steady blood flow in the presence of daily fluc-

tuations of arterial pressure, called cerebrovascular autoregulation, and those that provide

a regional increase in CBF that matches the regional increases in neuronal activity, i.e.,

functional hyperemia. A good understanding of these mechanisms will help in the inter-

pretation of metabolic and vascular neuroimage data and may also lead to therapeutic
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Figure 2.3: Illustration of the neurovascular unit in the cerebral cortex, adapted
from Hamel (2006).

avenues for cerebrovascular disease.

The current body of evidence indicates that CBF is locally controlled within the

brain’s grey matter by a tripartite neurovascular unit composed of neurons, astrocytes,

and vascular pericytes that constrict or dilate blood vessel diameter at the arteriolar

and capillary levels, collectively called the microvasculature. Figure 2.3 illustrates the

structure of the neurovascular unit. Astrocytes belong to the second class of cells, called

glia, that along with neurons make up the CNS. These cells are abundant throughout

the grey matter and serve to transport chemicals essential for the metabolic processes of

neurons. At the capillary and arteriolar level, the pericytes surround the vessel wall and

provide the mechanical forces for vasoconstriction. These pericytes are in turn surrounded

by astrocytic processes, also called endfeet, and to a lesser extent by the terminals from

neuronal axons.

The spatial organisation of the astrocytes suggests that they are the dominant
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mediators of the microcirculation because their cell bodies are spread out to occupy non-

overlapping spatial domains throughout the grey matter, and their endfeet envelop vir-

tually the entire microvascular surface. Moreover, each astrocyte communicates with its

neighbouring astrocytes and with all neuronal synapses in their domain via adjoining

processes. Therefore, these cells are well positioned to control the local vascular supply

by releasing vasoactive agents directly on the pericytes in response to neuronal or glial

activity.

Interneurons, i.e., small neurons with their axon terminating locally (e.g., stel-

late cell in figure 1.3a, page 8) and axon terminals arriving from subcortical fibres are

also known to interact with the pericytes directly and via glial endfeet (Hamel, 2006).

Kocharyan et al. (2008) have shown in the in vivo rat that the activation of perivascular

neuronal terminals, projected from nearby interneurons or from distal neurons via sub-

cortical fibres, strongly influence microvascular tone. In this view, interneurons behave as

integrators of the neuronal activity level in their region and consequently have the means

to adjust microvascular perfusion accordingly.

There is also recent evidence suggesting that astrocytes may also adjust the mi-

crovascular tone independent of neuronal activity. Gordon et al. (2009) have shown in

the rat brain that astrocytes can control the microvasculature with various signals, some

being independent of neuronal activity, and that they can either constrict or dilate vessels

depending on the oxygen availability. Moreover, some of these control signals are not

related to neuronal activity. An example of this is the spontaneous intrinsic activity from

astrocytes observed in ex vivo tissue slices (Iadecola & Nedergaard, 2007). In light of

this, the astrocyte’s role can no longer be thought as merely a passive mediator for focal

neuronal activity. On the contrary, it is an active agent capable of controlling vascular

tone in response to a number of signals some that may be independent of neuronal activ-

ity. Although these mechanisms are in place, the findings do not necessarily reflect the

reality in vivo, since the experiments required that tissue be removed from its natural
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environment. Until these effects can be observed in vivo, their functional significance in

the normal brain remains inconclusive.

Although the neurovascular unit influences microvessel tone, these arteriolar and

capillary vessels are only responsible for one-third of the vascular resistance in the brain,

while the remaining two-thirds are determined by the pial arteries travelling on the surface

of the brain (Iadecola & Nedergaard, 2007), also shown in figure 2.3. Consequently, the

neurovascular unit can only redistribute CBF to a limited extent. While this may be

sufficient for cerebrovascular autoregulation, it is not for functional hyperemia (Hamel,

2006; Girouard & Iadecola, 2006; Iadecola & Nedergaard, 2007). For example, during

SMC activation, the vasodilation propagates upstream and relaxes the smooth muscle cells

around the appropriate superficial pial artery. The mechanism that allows this retrograde

vasodilation remains unclear but is thought to involve the release of multiple vasoactive

agents from neurons and glia that target the vasculature at different levels to produce a

timely increase in CBF matching the spatial extent of the neuronal activity (Hamel, 2006;

Girouard & Iadecola, 2006).

The consensus is that functional hyperemia involves the interaction of various cells

and signalling mechanisms that act in concert to produce the hemodynamic response.

These results have serious implications on the interpretation of vascular neuroimage data,

such as BOLD or CBF contrasts, since the data may be representative of an aggregate

demand of which only a fraction is born of neuronal activity. This concern applies manifold

in disease due to the abnormal cellular behaviour related to dysfunction or repair. Indeed,

although the BOLD signal is empirically known to be a reliable indicator of neuronal

activity in normal subjects, it has been shown to fail in cases of cerebrovascular disease

(Rossini et al., 2003). Therefore, only when the neurovascular unit is fully understood

and its state can be verified in vivo, can a quantitative model of neuronal activity via

neurovascular coupling be justified.
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Figure 2.4: Inferior view of the brain revealing the large cerebral arteries forming
the circle of Willis, adapted from Grey (1977).

2.4 The effects of ischemic stroke

Ischemic stroke is the result of an interruption of sufficient duration and extent in the blood

supply to the brain (Murphy & Corbett, 2009). Focal ischemia typically occurs from the

occlusion of a large cerebral artery branching from the circle of Willis, shown in figure

2.4. In the acute phase, the hypoperfused cerebral territory receives an inadequate supply

of nutrients and also begins to accumulate toxic metabolic byproducts that lead to the

infarction of the brain tissue (Doyle et al., 2008). Consequently, the functional role of the

infarcted tissue is permanently lost. Thus, if the victim of stroke survives the initial insult,

the chronic effects are often severely disabling and can result in persistent deficits of the

sensory, motor, and cognitive faculties. Fortunately, brain tissue is perfused by multiple

arteries, and so the extent of infarcted tissue is mediated by a redundant collateral supply,

which results in a smaller infarct core surrounded by silent but viable tissue called the

ischemic penumbra (Murphy et al., 2006). The pathophysiology that the neurons, glia, and

vascular cells undergo following stroke depends on the degree of hypoperfusion experienced

in the acute phase. For example, the ischemic core may become infarcted within minutes,
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while the penumbra may eventually die within days by other cellular processes such as

apoptosis and inflammation (Doyle et al., 2008).

Alterations of the cerebral circulation take place after stroke. These patients are

initially in a state of vasoparalysis and later exhibit impairment of cerebrovascular au-

toregulation (Girouard & Iadecola, 2006). In the acute phase, Murphy et al. (2006) were

able to accurately predict the fate of ischemic tissue by comparing the CBF and cerebral

blood volume (CBV) levels between hemispheres of unilaterally occluded patients. They

found that ischemic tissue that avoided infarction exhibited a prominent mismatch be-

tween CBV and CBF: an increased CBV and decreased CBF relative to what is seen in

the non-occluded hemisphere. This is understood as a vasodilatory response to prevent

the further decline of CBF during low perfusion pressure conditions. Altered autoreg-

ulation can also persist during the chronic phase of stroke. Mandell et al. (2008) were

able to demonstrate impaired cerebrovascular reactivity in the affected hemisphere using

an induced hypercapnia stimulus. Here cerebrovascular reactivity is defined in terms of

the end-tidal partial pressure of CO2 (pETCO2) as the ratio ∆CBF/∆pETCO2, with an

impairment being 2 standard deviations (SD) below the control group average.

Investigations measuring increases in neuronal activity and functional hyperemia

were undertaken to determine whether the observed vascular alterations resulted from an

uncoupling of the neurovascular unit or by changes in neuronal activity itself. In chronic

stroke patients with mild neurological impairment, Bundo et al. (2002) studied interhemi-

spheric differences in neuronal activity using MEG and the resting state CBF using PET

during evoked by brief nerve stimulation events. The ischemic hemisphere had a reduced

CBF, and also their MEG data suggested a compensatory change in the neuronal activity

had taken place, yet the neuronal response to the stimulus was present and remained timely

in all patients. It is unfortunate, however, that they were not able to measure CBF during

functional hyperemia because PET cannot temporally resolve CBF during a brief event

stimulus. Rossini et al. (2003) performed a similar study, this time using BOLD to observe
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functional hyperemia and obtained striking results. They demonstrated that in chronic

unilateral stroke patients, neuronal activity can take place without functional hyperemia

in either the ischemic hemisphere or even both hemispheres. All ten patients exhibited the

increased neuronal activity during nerve stimulation in both hemispheres; however, half

of the patients did not undergo functional hyperemia in either the affected hemisphere or

altogether. The authors surmised from global cerebrovascular reactivity data from clinical

transcranial Doppler measurements that functional hyperemia did not take place in these

patients because their microvasculature was already maximally dilated to preserve CBF

as was observed by Murphy et al. (2006), discussed above. Nonetheless, the evidence here

is compelling and demonstrates that the attenuation and even disappearance of functional

hyperemia during neuronal activity can in fact occur after stroke.

Perhaps the most remarkable phenomenon after stroke is the patient’s capacity

to recover from the impairments incurred from infarction. Despite the permanent loss of

neurons in the infarcted territory, the re-emergence of sensory, motor, and cognitive ability

can occur from the reorganisation of existing neuronal networks that learn the required

functional roles (Murphy & Corbett, 2009). Capitalising on this recovery mechanism,

called neuronal plasticity, is of great importance in reducing stroke’s burden-of-disease.

Indeed, a large part of today’s efforts are aimed at understanding how and when plasticity

takes place in the recovering brain, and how these reorganised networks translate into

the recovery of the faculties needed for daily life (Murphy & Corbett, 2009). A pair of

studies by Ward et al. (2003a,b) were the first to thoroughly study functional hyperemia

after stroke using BOLD fMRI in cross-sectional and longitudinal patient groups compared

to age-matched normal subjects. Furthermore, these studies focused on the sensorimo-

tor system and correlated the presence of the expected hemodynamic response with the

degree of recovery using a battery of clinical outcome measures. Their results indicated

that patients with poor recovery exhibit additional recruitment of SMC and motor-related

areas beyond those seen in normal subjects. Notably, the cortical recruitment occurred
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in the supplementary motor and premotor areas as well as in the posterior parietal area.

Additional areas involved the corpus striatum, thalamus, and cerebellum. Furthermore,

throughout the six month post-stroke observational period in all patients, the areas grad-

ually decreased as a function of recovery but independent of initial severity or recovery

rate.

2.5 Imaging stroke recovery with fMRI

The literature review presented above supports the notion that functional neuroimaging is

in a unique and tenable position to monitor the pathophysiology and recovery therefrom

after ischemic stroke. Neuroimaging may perhaps prove indispensable for the validation of

novel rehabilitation or drug therapies that aim to maximise neuronal plasticity by provid-

ing the investigators with spatial and temporally resolved indices of effectivity throughout

the brain. Stroke can take on many pathological forms and degrees of severity (Doyle et al.,

2008); its impact will also depend on the patient’s age and medical history (Murphy &

Corbett, 2009). Hence, these factors must be considered on a case-wise basis to determine

the optimal therapeutic strategy (Murphy & Corbett, 2009). While quite speculative at

present, perhaps functional neuroimaging could play a central role in stroke recovery by

determining the therapeutic strategy to yield the best possible outcome on a case-by-case

basis. It is encouraging at least to see that the longitudinal data from Ward et al. (2003a)

and Murphy et al. (2006) suggest that acute phase imaging may have some predictive

power of final outcome.

The complexity of functional hyperemia foretells the challenges in interpreting the

BOLD signal, especially in patients with cerebrovascular disease. The linear transform

model relating neural activity to the hemodynamic response is a reasonable approximation

in normal subjects and is attractive for its analytical simplicity (Boynton et al., 1996).

However, it has been shown in later studies that, even between normal subjects, non-
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linear variations of the spatial extent and temporal profile of the hemodynamic response

are appreciable (Rajapakse et al., 1998; de Pasquale et al., 2008). Furthermore, it has also

been observed to vary within subjects depending on the stimulus duration and frequency of

occurrence (Vazquez & Noll, 1998). Finally, age-related changes have also been extensively

observed in the normal population (Huettel et al., 2001; D’Esposito et al., 2003). In

cerebrovascular disease, alterations of the hemodynamic response such as temporal delays

or advances (Carusone et al., 2002; Roc et al., 2006), attenuation (Huettel et al., 2001;

Pineiro et al., 2002), negative responses (Röther et al., 2002; Seghier et al., 2004), or even

the absence of a response (Rossini et al., 2003) have been reported in the literature. These

variations are presumably informative of the neurovascular state of the subject and if

possible should be considered. Therefore, it is best to employ analytical methods that are

flexible enough to identify and distinguish between such case-specific response patterns.

Studying stroke recovery presents additional challenges. The magnitude and lo-

cation of the infarcted territory will vary between patients and will introduce specific

stimulus-related effects on the BOLD signal. Hence, some studies only enrol “first-ever”

stroke patients whose stimulus-specific functional anatomy is spared from infarction. In

SMC-related studies, for example, ischemic damage in the subcortical sensorimotor cir-

cuits (e.g., corpus striatum and thalamus) can also complicate cortical activity due to

the disruption of thalamo-cortical and cortio-striate communication. Another challenge

of extensive damage is that the patients acquire atrophic distortions of the cerebral to-

pography, which reduces the precision of anatomical localisation. Head movements can be

more pronounced in patients, and so comfortable restraints may be necessary to maintain

data quality. Finally, the experimental apparatus must be minimally invasive and cannot

compromise the patient’s clinical needs and, finally, the performance of any tasks must

not be strenuous for the patient. These additional challenges must be met, rather than

avoided by curbing the enrolment of impaired patients because their impairment arises,

after all, from the very disease we face.
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2.6 Discussion

The material presented in chapters 1 and 2 provide the subject background necessary

to approach the problem of interpreting functional neuroimage data in the context of

cerebrovascular disease. Furthermore, the reviewed physiology of the sensorimotor system

will be necessary for the validation of results obtain from the experiments undertaken

in this research. In particular, working with the sensorimotor system is advantageous

for several reasons. First, it can be stimulated by simple hand motor tasks that can be

performed by normal subjects and stroke patients. Second, the motor responses can be

simultaneously monitored for comparison with the neuroimage data. Third, it has been

previously studied using various experimental paradigms and analysis methods; these

studies will be useful in validating the results obtained in this research.

In normal subjects, functional hyperemia evoked from a particular stimulus is

known to assume a relatively consistent spatial extent and temporal profile. However,

there is enough evidence showing that these characteristics can change dramatically in

the presence of cerebrovascular disease. Therefore, the nature of these alterations reflects

the underlying pathophysiology. This thesis seeks to answer questions on whether the

BOLD signal evoked from sensorimotor stimulation is informative of this process. Can

we distinguish between normal subjects and stroke patients by looking at the space-time

structure of their BOLD signals? If so, can we specifically characterise the structures

relating to ischemic stroke and, hence, reasonably speculate on the underlying pathophys-

iology? Focusing on the stroke patients, can we relate their BOLD signal characteristics

to the degree of motor impairment? Can we distinguish between different stages of stroke

recovery from the signal characteristics observed in individual patients? If so, how do the

characteristics evolve as recovery progresses? Additionally, neuronal plasticity commonly

takes place after ischemic stroke, and distinct cerebral areas take on functional roles that

were lost to infarction. Evidence suggests that the location of these recruited areas are

not arbitrary but are rather functionally related to the destroyed tissue. Therefore, it is
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natural to ask how the role of recruited tissue might differ from role of the native one, and

whether their hemodynamics are informative of this difference.

It is not tenable to approach these questions with standard analytical neuroimag-

ing methods because they were not designed for pattern recognition but rather to test

hypotheses concerning the presence of a particular response. Neither is the visual exam-

ination of the raw data set reasonable, due to the data’s dimensionality and the subtle

nature of the underlying BOLD signal. Instead, this thesis proposes a novel neuroanalyt-

ical method and aims to show that an exploratory pattern recognition method is capable

of objectively identifying the space-time structural characteristics of the data, thereby

making the isolated responses amenable to expert visual inspection and interpretation.



Chapter 3

Data Acquisition Methods: Part I

Experimental Design and Neuroimaging

3.1 Introduction

The introductory chapters reviewed the academic literature concerning the neurological

systems involved and their evolution after stroke so that the choices motivating the data

acquisition and analysis can be justified. The material in the next two chapters cover the

data acquisition methodology used in this research, whose objectives are i) to systemati-

cally reproduce functional hyperemia in the sensorimotor system, and ii) to simultaneously

observe the nervous system response and the cerebrovascular response.

This chapter first describes the experimental design that was developed in our

laboratory to focus on observing functional hyperemia elicited by a novel visual feedback

controlled hand motor task. Here, the implementation of the stimulus apparatus is given

describing how the stimuli are presented and how the motor responses are recorded. Next,

the neuroimage data acquisition method is detailed, including the pertinent MR scanner

specifications, the MR pulse sequence and protocols used for structural and functional

imaging as well as the data preprocessing steps used to co-register the data sets and

improve BOLD signal quality. Finally, the ethical and procedural considerations for human

36
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subjects are described, with an emphasis on the extra care needed for participating stroke

patients. The chapter ends with a discussion of the benefits and drawbacks of the practical

aspects of our method. The material presented in this chapter was primarily conceived

by my co-supervisor Dr. M. J. Hogan and his collaborators. However, I did participate

throughout my doctoral research in the implementation and refinement of the experimental

apparatus and the stimulus paradigm used in our laboratory.

3.2 Experimental design

In these experiments, we decided to evoke functional hyperemia by requiring the subject

to perform a hand motor task. The rationale follows from the above-mentioned research

objectives and dealing with the environmental constraints imposed by the MR scanner.

First, the hand representation on the SMC is disproportionately large (see figure 2.1, page

22), and consequently, a vascular response will likely be easier to observe with neuroimag-

ing. Moreover, simple hand movements can be performed almost effortlessly in a consistent

manner without requiring the movement of other body parts. This is especially relevant

for systematically reproducing the BOLD signal, since the subject is required to lie supine

and restrain from any head movements at all times. Second, hand movements are the nat-

ural choice for the subject to interact with a sensor to record their responses. Voluntary

movements, such as gripping an object, occur within 500 ms of the cue to respond and

so provide a timely correlate that can by simultaneously measured during neuroimaging.

For this reason, we decided to have the subject hold a palm-sized ball in each hand that

can be squeezed on given cues. Each ball is connected by tubing to a pressure sensor

that monitors the pressure continuously throughout the experiment. Figure 3.1 shows the

hand grip device and the pressure sensor mounting panel. Each hand grip device consists

of a 100 ml silicone evacuator bulb (Bard Inc., Covington, USA) attached to 15 m of

Tygothane tubing with 6.35 mm outer and 4.76 mm inner wall diameters (Saint-Gobain,
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Figure 3.1: Photographs of the hand grip portion of the experimental apparatus.
a, The hand grip device in relation to a Canadian dollar. b, The pressure sensors for
both devices colour-coded (red for right hand; purple for left hand).

Akron, USA). Each sensor is a Deltran I disposable pressure transducer (Utah Medical

Products, Midvale, USA) designed to measure hydraulic pressure, and so the finer tubing

on the mounting panel is flooded with sufficient water using the attached 3 ml syringes.

All interconnections are made with Med-Rx male/female plastic connectors and three-way

junctions (Belan Inc., Oakville, Canada).

Functional hyperemia occurs in the several seconds following an increase in the

action potential firing rate of a subpopulation of neurons. Because the action potential

takes place over of a few milliseconds (see figure 1.4, page 9), it is possible to elicit an ob-

servable hemodynamic response for subsecond stimuli (Rosen et al., 1998). Hence, BOLD

fMRI can resolve individual hemodynamic responses during an imaging session where the

subject is exposed to brief stimuli separated by periods of inactivity. Experiments of

this sort are known as event-related stimulus paradigms. As mentioned in the previous

chapter, functional hyperemia is not an all-or-nothing phenomenon and will vary depend-

ing on stimulus duration and frequency of occurrence (Vazquez & Noll, 1998). Figure

3.2 demonstrates this fact. Consequently, to elicit reproducible BOLD signals between

stimuli, we decided to use a constant stimulus duration of two seconds, followed by a

rest period lasting between 16 and 20 seconds. The exact duration of each rest period

is randomly chosen before each session, so that the stimuli occur irregularly to minimise

subject habituation and planning. A two-second stimulus duration was chosen because it
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Figure 3.2: Plot of the BOLD signal measuring functional hyperemia after one-
second stimuli are presented once, twice, and thrice with one-second interstimulus
rest periods, adapted from Rosen et al. (1998). a, The raw signals show that the
hemodynamic response compounds with additional stimuli. b, Subtracting individual
responses from the compound signal shows that subsequent responses are different
from the original response.

coincides with the optimal fMRI TR value, i.e., the scanning repetition rate. This allows

us to program event-related stimuli that are synchronised with the scanner TR cycle so

that each hemodynamic response can be sampled consistently.

The nature of the stimulus and motor response are based on published methods

used in other laboratories and on our research-specific objectives. We chose to stimulate

the subject to produce a motor response using a visual cue that is displayed on a projection

screen and visible through a small mirror mounted in front of the subject’s eyes while inside

the scanner. The display elements are kept to a minimum appearing on a flat dark blue

background so as to limit the presentation of visual information. The elements visible on

the display at all times are a fixation point in the centre of the display and two horizontal

bars, a yellow one representing the paradigm state, and a light blue one representing the

current grip force exerted by the tested hand. During the resting state, the subject is

trained to relax while looking at the fixation point. At this time, both bars appear near

the bottom of the display. During the two-second event, the yellow bar jumps upward

to 60% of the screen height. The subject is trained to respond by squeezing the ball in

their tested hand so as to raise the light blue bar as quickly and accurately as possible

to reach the yellow bar. Regardless of the hand tested, the signals from both hands are
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Figure 3.3: Display frames seen by the subject during rest (a), when an event begins
(b), and when the subject performs the motor response (c).

always recorded. When the event ends, the yellow bar returns to its original position, and

the subject is trained to relax their grip to allow the light blue bar to fall. The display

during these states is shown in figure 3.3. The force required to reach the target is set to

a fraction of the subject’s maximum voluntary contraction (MVC), which is determined

during training. To minimise ocular movements, the subject is trained to always look at

the fixation point, and the screen is positioned to be in the centre of the subject’s field of

view, subtending a vertical angle of 5 degrees. Moreover, the position of the light blue bar

is constrained so that it can never leave the display. As discussed in chapter 2, it is known

that target tracking motor tasks relying on visual feedback engage the various subcircuits of

the sensorimotor system (see section 2.2.2, page 24). Furthermore, previous studies have

reported results from similar approaches enabling interstudy comparison (Ward et al.,

2003a,b; Turner et al., 2003).

The electronic portion of the apparatus driving the experiment was also imple-

mented in our laboratory using LabView ver. 8.2 software-controlled electronics (National

Instruments, Austin, USA). The electronics modules are shown in figure 3.4. During an

imaging session, the apparatus is synchronised with the MR scanner TR cycle via a trigger

pulse that is emitted by the scanner at the beginning of every image acquisition during

the session. For a predetermined number of images to be acquired, the apparatus then

generates events that always begin with a new image acquisition. The delay between the

reception of a trigger pulse and the display update is kept under 10 ms. Pressure trans-

ducer signals pass through an amplifier (World Precision Instruments, Saratosa, USA)
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Figure 3.4: Photograph of the electronic portion of the experimental apparatus (top
view). The signal inputs, the signal conditioning circuit, the data acquisition board,
and the computer output are labelled.

before reaching our electronics. The signal conditioning circuit was necessary to isolate

all signals from possible spikes in outlet power using a battery-powered voltage follower

circuit, and to extend the trigger pulse from 10 µs to 10 ms to make it compatible with

the remainder of our circuit logic. The data acquisition hardware allows up to a 2 kHz

sampling rate on each motor signal.

The complete experimental apparatus is summarised in figure 3.5, where the right

hand is being tested during this session. The apparatus records the trigger signal, the

event timing, and the motor signals from both hands. The neuroimage data are acquired

by the MR scanner and recorded on optical media via the scanner console.

3.3 Neuroimaging data

All image data are acquired using the Magnetom Symphony MRI scanner operating within

a 1.5 Tesla magnetic flux density (Siemens, Erlangen, Germany). The gradient fields in

this system have slope 30 mT/m and slew rate 125 T/m/s. The radio frequency (RF) head

coil system used consists of 16 circularly polarised phased array elements. The functional
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Figure 3.5: Diagram of the experimental apparatus interacting with the scanner
and the subject (‘A/D’ represents the data acquisition board).

and structural imaging were performed using standard MR pulse sequences available with

the scanner, and so only the pertinent details are given for each protocol.

The BOLD fMRI images were acquired using the Siemens echo-planar imaging

(EPI) pulse sequence with name ‘epfid2d1 64’. This is a 70◦ gradient-echo pulse followed

by the EPI pulse sequence with timing TR = 2000 ms and TE = 30 ms. The interpolated

voxel size is 1.72 × 1.72 × 5.00 mm3 along the read-encode, phase-encode, and slice

select directions, respectively. Each image is formed from 128 × 128 × 26 contiguous

voxels along these same directions. The in-plane orientation, i.e., spanned by the read-

and phase-encoding directions, is set to acquire transversal sections of the brain that are

parallel to the straight line segment formed by the anterior and posterior commissures

(e.g., this plane would be a horizontal line passing through figure 1.2 on page 5). The

field of view covers full transversal sections of the head, from the vertex of the skull down

to just below the midway point of the cerebellum and medulla. Slices are collected in

an interleaved fashion to minimise adjacent slice interference from RF residual excitation.

With these parameters, we can collect 160 consecutive whole brain images. Hence, a single

scan acquires the BOLD signal over 320 s with two-second resolution. The raw data points
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are encoded as unsigned 16-bit integers; thus, one session of raw fMRI data occupies 130

MB of memory.

In order to compare data between sessions and across subjects relative to an

anatomical atlas, we decided to preprocess the raw data using the standardised software

package SPM5 (Wellcome department of cognitive neurology, University College London,

UK). Rigid body realignment is first performed, which helps to reduce minor head mo-

tion artefacts. We verifed that no major movements, i.e., having components greater

than twice the corresponding voxel dimension, were present in the data after realignment.

Second, slice time-interpolation is performed to correct for the systematic interslice acqui-

sition delay so that the entire image can be treated as an instantaneous sampling of the

BOLD signal taken midway through the pulse sequence. Third, each image is spatially

normalised to fit the ICBM atlas using an affine transformation algorithm that estimates

the transformation parameters from the mean realigned image, resulting in a resampled

image of 101 × 122 × 28 voxels. The trilinear interpolation technique used by this software

package minimises the introduction of aliasing artefacts to tolerable levels when applied

to realigned fMRI data Ashburner (2008). Finally, each image is isometrically smoothed

using a Gaussian kernel of 8 mm full width at half its maximum value. While this kernel

reduces the spatial resolution, it considerably improves the BOLD signal strength because

of the multivoxel extent of functional hyperemia and accounts for the preprocessing er-

rors introduced by anatomical differences between subjects. These preprocessing steps

effectively reduce the session data size to 105 MB of memory.

Structural imaging is also performed before the subject is removed from the scanner

using a standard Siemens T2 fluid attenuated inversion recovery (FLAIR) pulse sequence

with name ‘tir2d1 19’ and parameters TR = 9000 ms, TE = 99 ms. The exact orientation

parameters used for the functional imaging are re-used here so that both image types

are co-registered in space. The affine transformation parameters used to normalise the

functional images are applied to the structural image so that an anatomical reference for
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the BOLD data is possible.

3.4 Participation of normal and stroke subjects

The participation of human subjects in biomedical experimentation first requires the ap-

proval of the research institute’s ethics board. Then, each individual must be informed

of the details of their participation and in return give written informed consent of their

willingness to be involved.

Permission to recruit healthy volunteers participating as normal subjects in this

study was granted by the Ottawa Hospital Research Ethics Board (OHREB) as protocol

# 2009395-01H. Appendix A contains copies of the official letter of approval from OHREB

and the completed application form, including the information letter and questionnaire.

Suitable healthy volunteers must be between 20-65 years of age without contraindications

to an MRI examination. Exclusion criteria are pregnancy, inability to perform the task,

diabetes, uncontrolled hypertension, chronic obstructive pulmonary disease, congestive

heart failure, or other potentially significant medical or surgical conditions. The subjects

also must not have a history of neurological disease or drug/alcohol abuse, nor a seizure

in the past year or migraine in the past week. The subjects are informed that they are

free to withdraw from the study at any time.

The stroke patients are recruited under a different OHREB-approved multi-centre

clinical trial (protocol # 2006076-01H) for assessing the feasibility and safety of a drug

treatment to augment stroke recovery. Each patient or their surrogate gave the informed

consent to participate. The participating patients suffered an acute ischemic stroke in-

volving the cerebral cortex resulting in hemiparesis and have no contraindications to an

MRI examination. The patients do not have past or current additional complications,

including those of neurological and cardiovascular nature, deemed significant according to

standard clinical examination scores. Patients also have no ongoing history of drug/alcohol
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abuse. The BOLD fMRI data contribute to formulating the assessment of this treatment.

While data acquisition and analysis were performed, the investigators were blinded to each

patient’s medication records.

The relevant functional neuroimaging procedures undertaken by both subject

groups begins with a motor task training session of 10-20 minutes in duration. First,

the MVC is measured from multiple trials for each hand, whence all subsequent force

targets and responses can be calibrated as a percentile of MVC. The event-related stim-

ulus paradigm training then takes place, appearing exactly as does in the scanner. The

nominal force required to match the event is set to 25% MVC; however, patient-specific

adjustments are possible. After training, the subjects undergo MRI, lying supine with

their heads comfortably supported by movement restricting padding and wearing dispos-

able earplugs underneath noise-dampening headphones. The hand grip devices are placed

in their hands with arms comfortably lying alongside their body. A 5-minute test of the

apparatus is done, which also ensures that the subject can see and respond to the events

properly. The entire scanning procedure involves several BOLD fMRI sessions, testing

both hands, and one T2 FLAIR scan. Normal subjects underwent a total of 4-6 fMRI

scans for both hands, altogether spending 30-40 minutes in the scanner. Stroke patients

underwent a total of 3-4 fMRI scans for both hands, altogether spending 25-30 minutes in

the scanner. While scanning, an emergency signalling device was available to the subject

if they wished to be immediately removed from the scanner. In addition, the subjects

were also monitored by a closed circuit camera during the study to ensure that everything

was fine. A study investigator was present during all the scans; no complications occurred

with any of the subjects during these studies.
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3.5 Discussion

The results in the following chapters will show that this data acquisition method achieves

its goals of inducing functional hyperemia reproducibly while simultaneously recording the

nervous system response. Nonetheless, improvements to the proposed method are desir-

able. For example, the MR scanner is exceedingly loud, and its TR-rhythmic vibrations

remain audible despite the noise-dampening precautions. Also, we are relying on a visual

stimulus to test the sensorimotor system. Although we minimise the portion of the visual

field involved by keeping the room dark and the display simple, the stimulus is nonetheless

visual. Hence, the intersubject variability in vision quality becomes a factor because we

use a projection system rather than MR-compatible display goggles. Generally speaking,

one must remember that the living brain is a complex system whose function ultimately

remains beyond the control of the experimenter. Therefore, in addition to the provoked

response we seek, concurrent functions are also taking place, some being related to the task

and others not. Another limitation is the lack of simultaneous neuronal response locali-

sation. In some paradigms, an alternative would be to sacrifice simultaneity and use two

sessions of functional neuroimaging, e.g., EEG/MEG followed by BOLD fMRI. However,

for the purposes of this study, simultaneity is very important for correctly recognising the

hemodynamic responses that are temporally related with the motor responses. Finally,

this experimental paradigm focuses particularly on the sensorimotor system and, hence,

is less sensitive to impairments in other faculties. Therefore, the observations made in

this study are intrinsically limited to the effects of stroke on the sensorimotor system and

should not be extended further.

Special considerations are necessary when working with stroke patients because

their impairments and clinical needs vary considerably. Therefore, a flexible experimental

protocol is required to enrol a good representation of the population. The scanner room

must be as clear as possible for clinical staff and their equipment. A clinician must be

present at all times in case of an adverse occurrence. On occasion, a nurse is present to
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provide care and assist the patient. Patients may also be using or require MRI-compatible

medical equipment that must be accommodated in the scanner room. Thus, our apparatus

only requires that the patient hold a hand grip device in each hand, and that their line-

of-sight to the display remain clear during the functional imaging sessions.

When patients are required to perform tasks, they must be simple enough so that

the majority can participate. Furthermore, despite the range of impairment, the perceived

difficulty of the task should be constant across the group so as to elicit similar neuronal

responses. Thus, the hand grip task in our method requires little dexterity, since the

motion is gross involving the entire hand and, therefore, is easy to perform. To control

for perceived difficulty, the target force is determined relative to the MVC of the tested

hand, and in cases of severe paresis, exceptional adjustments are possible.

During scanning, patients typically exhibit more head motion than normal subjects.

Despite the use of our head-restraining padding, movements of several millimetres can still

occur. Images with large movements produce prominent artefacts in the neuroimage data

that often lead to their exclusion in analysis. This remains a difficult challenge in MR data

acquisition, since BOLD signal detection is already non-trivial without prominent motion

artefacts. Secondly, patients sometimes perform irregular responses, e.g., hand contrac-

tions without stimulus, or failure to respond during some stimuli, or responses with the

wrong hand, or with both hands. Irregular responses are also a challenge, since they intro-

duce additional variability in the data, yet they are likely relevant to the task and, hence,

should not be ignored. For example, one should not assume that responses performed by

both hands simultaneously will elicit a neuronal activity pattern that necessarily corre-

sponds to the superposition of two separate single-hand responses. Thus, our apparatus

always records the motor signals in both hands in order to detect irregular responses and

analyse them accordingly. In our analyses, we analysed neuroimage data acquired during

two-handed movements by performing three analyses with different motor references: two

using the left and right hand signals, and one using a superposition of both hand signals.



Chapter 4

Data Acquisition Methods: Part II

Preliminary Analysis and Data Simulation

4.1 Introduction

Given the acquired data described in the previous chapter, we face the problem of detecting

the effect of functional hyperemia in BOLD fMRI data. Section 4.2 provides a preliminary

analysis of our image acquisition method with the objective of modelling the noise in our

data as a random process. The noise model can then be characterised by its mean and

autocovariance functions, which are used to estimate the correlation between voxels in

space and time.

This approach is used to model both scanner and physiological noise process. For

scanner noise, data are acquired from a cylindrical plastic tank containing saline water,

referred to as a “phantom.” For physiological noise, we acquired null fMRI data from nor-

mal subjects; i.e., they underwent the experimental protocol of section 3.2 except without

stimuli. All data were acquired using the same functional neuroimaging protocol from sec-

tion 3.3, with the exception that the phantom data did not undergo spatial normalisation.

These functions serve two purposes: i) to select the RF coil settings that minimise the

intervoxel correlations while retaining good image contrast, and ii) to help reproduce the

48
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instrumental and physiological noise process in data simulation.

Secondly, section 4.3 characterises the functional hyperemia signal by its temporal

profile following the stimulus event. To do this, we shall survey the signal characteristics

observed in normal subjects and patients with CVD that have been reported in the liter-

ature. These temporal characteristics will be useful for the interpretation of the signals

detected in our neuroimage data and, combined with the noise properties, will allow us to

generate physiologically reasonable simulations.

Two simulation methods are designed based on these results in section 4.4. The first

method generates synthetic data to test the signal detection performance under various

signal-to-noise ratio (SNR) conditions and the capability to distinguish between multiple

signals. The noise process is reproduced from the phantom data. The second uses a block

resampling method for correlated data as per ? to generate samples from the pool of null

fMRI sessions. The functional hyperemia signals are then added to these simulations.

These simulations will be used as the performance benchmark to analyse and com-

pare the signal detection algorithms used in the following chapters. Finally, the analysis

and simulation methods used here are discussed in relation to those found in the literature.

4.2 Mean and autocorrelation function estimation

The noise data are modelled as a real-valued random process, where each voxel measure-

ment w is a realisation of the random variable w. Then, the time sequence of measurements

in a voxel w[t] for t = 0, . . . , T − 1 is formed by the realisation of a sequence of random

variables wt called a random (or stochastic) process. Similarly, to model an image formed

by a set of X voxels, the time index can be substituted by the voxel coordinates written as

the multivariate x ∈ R
3. Hence, w[x] is one noise image realised by the random process wx.

Finally, a sequence of images is represented by the generalisation w[n] realised from wn,

where n = [x, t]. This indexing notation is used throughout the thesis to unambiguously
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refer to time sequences, images, or image sequences.

The mean and autocorrelation functions, respectively written as µ[n] and φ[n,m],

are useful to study the correlation structure of wn. They are defined as

µ[n] = E{wn} =

∫ ∞

−∞

w pn(w) dw (4.1)

φ[n,m] = E{wnwm}

=

∫ ∞

−∞

∫ ∞

−∞

wv pnm(w, v) dw dv, (4.2)

where the expectation operator E{·} averages over the ensemble of realisations of wn,

equivalently represented in these equations by the probability density function pn(·) of wn

and the joint density function pnm(·, ·) of the ordered pair (wn,wm) (Papoulis, 1984). The

correlation coefficient r[n,m] quantifying the dependence between variables wn and wm is

obtained by calculating the autocorrelation between the mean-centred random processes

wn−µ[n] and wm−µ[m], called the autocovariance function (Oppenheim & Schafer, 1999)

γ[n,m] = E{(wn − µ[n])(wm − µ[m])}

= E{wnwm} − µ[n]µ[m]

= φ[n,m] − µ[n]µ[m]. (4.3)

Indeed, by applying equation (4.3) to the definition of the correlation coefficient, we obtain

r[n,m] =
E{(wn − µ[n])(wm − µ[m])}

σ[n]σ[m]

=
γ[n,m]

√

E{|wn − µ[n]|2}E{|wm − µ[m]|2}

=
γ[n,m]

√

γ[n, n]γ[m,m]
, (4.4)

where σ[n] =
√

E{|wn − µ[n]|2} is the standard deviation (SD) of wn.

When a large ensemble of realisations {w[n]} is not available, and the densities



CHAPTER 4. DATA ACQUISITION II: PRELIMINARY ANALYSIS 51

pn(·) and pnm(·, ·) are unknown, it is often acceptible to estimate equations (4.1)-(4.3) by

assuming that wn is an ergodic random process. When this property holds, the expectation

E{wn} obtained by the ensemble average of {w[n]} can instead be calculated by averaging

the indexed measurements from a single realisation w[n]. Hence, the estimate of the mean

in equation (4.1) is simply the average of our finite data set w[n], written as

µ̂[n] = 〈w[n]〉 =
1

N

N−1∑

n=0

w[n]. (4.5)

The notation 〈·〉 represents the index average and replaces the ensemble average E{·} in

ergodic estimates. Of course, this equation can only be valid if µ[n] = µ is a constant

function over n. Because we are also interested in the statistics along t and x, we can

also estimate the marginal means η̂[x] and η̂[t] along the space and time dimensions,

respectively. For example, η̂[t] averages over space yielding the time series

η̂[t] = 〈w[n]〉x

=
1

X

X−1∑

x=0

w[x, t], (4.6)

where it is understood that the summation applies to all three spatial dimensions.

Ergodicity implies that the autocorrelation function φ[n,m] takes on the same

values when ‖n−m‖ = τ is constant (Papoulis, 1984). Hence, the autocorrelation reduces

to a one-parameter function φ[τ ], invariant to the absolute coordinates n andm. A random

process satisfying the properties µ[n] = µ and φ[n,m] → φ[τ ] for all n is called wide-sense

stationary (WSS). Hence, for a WSS random process wn, it follows from µ[n] = µ, that

φ[τ ] → 0 as τ → ∞. The ergodic estimate of φ[τ ] for a finite N is

φ̂[τ ] = 〈w[n]w[n+ τ ]〉

=
1

N

N−1∑

n=0

w[n]w[n+ τ ], (4.7)
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where w[n] = 0 for n < 0 and n ≥ N (Oppenheim & Schafer, 1999). From the last line

of this equation, we see that φ̂[τ ] is a function of size 2N − 1 that is symmetric about the

origin, hence φ̂[−τ ] = φ̂[τ ]. Consequently, this estimate is equal to the linear convolution of

w[n] with itself, which is efficiently computed using the discrete Fourier transform (DFT)

of w[n], defined as (Oppenheim & Schafer, 1999)

W [k] = F
{
w[n]

}
=

N−1∑

n=0

w[n]e−i2πkn/N . (4.8)

It is also worthwhile to recall that the DFT implementations are most efficient when
√
N is

an integer, and so the original set can be zero-padded to smallest square integer satisfying

Q > 2N . This can be shown by beginning with the DFT of φ̂[τ ] for τ = 0, . . . , Q− 1

Φ̂[k] = F
{
φ̂[τ ]

}
=

Q−1
∑

τ=0

φ̂[τ ]e−i2πkτ/Q, (4.9)

and replacing φ̂[τ ] with the convolution form in equation (4.7). This yields

Φ̂[k] =

Q−1
∑

τ=0

(

1

Q

Q−1
∑

n=0

w[n]w[n+ τ ]

)

e−i2πkτ/Q

=
1

Q

Q−1
∑

n=0

w[n]

(
Q−1
∑

τ=0

w[n+ τ ]e−i2πkτ/Q

)

. (4.10)

The term in brackets equals the DFT of w[τ ] shifted by n, namely W [k]ei2πkτ/Q, which

can be conveniently rewritten by replacing k with −k. By making these substitutions and

regrouping terms, the result is obtained

Φ̂[k] =
1

Q

Q−1
∑

n=0

w[n]
(
W [−k]e−i2πkn/Q

)

=
1

Q
W [−k]

Q−1
∑

n=0

w[n]e−i2πkn/Q

=
1

Q
W [−k]W [k]. (4.11)
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By using equation (4.11), the autocorrelation estimate can be recovered with the inverse

DFT. Finally, applying the symmetry property of φ̂[τ ], the forms for φ̂[τ ] and γ̂[τ ] reduce

to

φ̂[τ ] =
1

Q2

Q−1
∑

k=0

W 2[k]ei2πkτ/Q, (4.12)

γ̂[τ ] =
1

Q2

Q−1
∑

k=0

W 2[k]ei2πkτ/Q − µ̂2. (4.13)

The validity of the ergodic and WSS assumptions can only be determined by the

physical interpretation of the system and by the examination of the data. In fact, the

noise on the MR signal is primarily due to electronic sources (known as Johnson noise) and

from the dielectric and inductive coupling with the body. For these reasons, it is typically

considered ergodic and stationary (Cardenas-Blanco et al., 2008). The empirical results

from our data support these interpretations. Using data from six phantom imaging sessions

taken on separate days, the estimates µ̂[n], η̂[x], and η̂[t] were calculated from equations

(4.5) and (4.6) to verify the ergodicity of wn. While there was considerable intersession

variability between the mean intensity of the image µ̂[n] = 1688±223 au (arbitrary units;

mean ± SD shown), each function w[n] was flat with variance σ̂2[n] = 2.2 ± 0.3 au2.

In fact, our data did not deviate from the mean by more than 0.25% in any direction.

The autocovariance estimate γ̂[τ ] was calculated from equations (4.12) and (4.13) using

five non-overlapping rectangular subsets of w[n] of size N = XT = 163 × 16: sampled

half-way through the session and located i) in the image centre, then further along ii) the

read-encode axis x, iii) the phase-encode axis y, iv) the slice-select axis z, and v) back in

the centre but later in time. The γ̂[τ ] function is normalised and plotted along the four

axes in figure 4.1. Indeed, the estimate smoothly tends to zero as τ gets large and remains

relatively constant throughout the data set with correlation coefficients r[n,m] for adjacent

and subsequent voxel measurements being r[x, x+1] = 0.82±0.008, r[y, y+1] = 0.80±0.02,

r[z, z + 1] = 0.64 ± 0.03, and r[t, t+ 1] = 0.21 ± 0.08 (mean ± SD shown).
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Figure 4.1: The autocovariance function estimate γ̂[τ ] plotted along the read-encode
x-axis (a), the phase-encode y-axis (b), the slice-select z-axis (c), and the time axis
(d). The phantom data were acquired in the CP (PN on) RF coil setting.

These results clearly show that our fMRI data are quite correlated. We ensured that

these were the smallest correlations possible by comparing results with other applicable RF

coil settings available on the scanner. The correlation analysis was done for the available

RF coil settings labelled ‘Circular Polarisation’ (CP), ‘Dual’, and ‘Triple’, where each can

be preceded by a ‘Prescan Normalisation’ (PN) pulse, resulting in six possible settings.

Furthermore, the SNR was compared between settings defined by SNR = 20 log10(µ̂/σ̂) in

decibels. The results are summarised in figure 4.2, showing that the CP setting with PN

is optimal, yielding the lowest correlations with a competitive SNR of 19.4 dB. Therefore,

all scans performed on human subjects were done with the CP (PN on) RF coil setting.

4.3 Physiological BOLD signal characterisation

The terms “BOLD signal” or “BOLD response” are used henceforth to refer to the tran-

sient fluctuation in the fMRI data caused by functional hyperemia. As described in section

1.4.4, the normal BOLD signal is an increase in the MR signal intensity due to the dispro-

portional increase ∆CBF > ∆CMRO2 causing a reduction in concentration of paramag-

netic deoxy-Hb. The temporal characteristics of the BOLD signal, such as its amplitude

and duration, will depend on both the stimulus and the physics of MRI, in particular,

the magnetic flux density and RF pulse sequence. Consequently, the characterisation pre-

sented here is focused on our data acquisition approach: event-related stimuli during fMRI



CHAPTER 4. DATA ACQUISITION II: PRELIMINARY ANALYSIS 55

Figure 4.2: Comparison of the six possible MRI RF coil settings. a, The SNR is
shown in dB. b, Plot of the six η̂[t] signals shown as percent change from the mean; the
heavy black curve corresponds to CP (PN on). c, The adjacent intervoxel correlation
coefficients along the read-encode x, phase-encode y, slice-select z, and time t axes.
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at 1.5 T using gradient echo-EPI acquisition.

The paramagnetic effect of [deoxy-Hb] causes only a minor change in the MR

physics of the cerebrovasculature. More specifically, within a voxel, it marginally increases

the MR transverse relaxation rate of the average proton magnetisation that is dominated

by the T∗
2 decay term (Buxton et al., 2004). For this reason, the BOLD signal represents

less than 5% of the voxel average intensity (e.g., see figure 3.2, page 39). The BOLD

signal in the SMC evoked by event-related stimuli is on the order of a 1% change from the

average intensity, which is written henceforth as 1%∆. When comparing this amplitude

to the background noise, various SNR definitions are used throughout the literature. We

selected the most common from twelve relevant articles being

SNRBOLD = 20 log10

(
A

σ

)

, (4.14)

that is, the BOLD signal amplitude divided by the noise standard deviation. With this

definition, the typical range for BOLD SNR is [−12, 6.0] dB corresponding to the A/σ ratio

of [0.25, 2.0]. Therefore, a reasonable estimate of SMC event-related BOLD signal quality

in 1.5 T MRI is a 1%∆ signal corrupted by noise with σ ≈ 0.25%∆. A review of how the

BOLD SNR depreciates in the elderly and CVD populations is given by D’Esposito et al.

(2003). In particular, Huettel et al. (2001) show in a study of age-related hemodynamics

that the BOLD SNR in the elderly can be 50% of that in young participants. Pineiro et al.

(2002) show that patients with major arterial stenoses can have BOLD SNR reductions

on the order of 30% of that in normal subjects.

The normal BOLD signal can be divided into three post-stimulus phases: i) a delay

before the response onset, ii) a positive peak width, and iii) a negative undershoot period

after the response. In CVD patients, the duration and polarity of these phases change.

Figure 4.3a plots three BOLD signals normalised to unit extrema whose characteristics are

based on those described in the literature. Signal 1 represents a typical BOLD response

in normal subjects. The selected values for the onset delay (1.3 s), time-to-peak (5 s),
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Figure 4.3: Simulated fMRI data. a, Modelled BOLD responses from normal sub-
jects (signal 1) and CVD patients (signals 2,3). b, Event-related paradigm with
interstimulus period randomly varying between 16-20 s (grey area indicates simulated
BOLD response duration).

peak width (8.3 s), and undershoot duration (11 s) are the average of reported values

from Friston et al. (1998), Huettel et al. (2001), and Buxton et al. (2004). Signal 2 is a

delayed response that has been observed in the presence of CVD. Studies by Carusone

et al. (2002) and Roc et al. (2006) have an average onset delay of 3.8 s, and Roc et al.

(2006) describe an early trough before onset. This trough is also referred to as the “initial

dip” in the literature, which is attributed to an initial stage where an increase in CMRO2

has not yet been met by a concomitant increase in CBF (Röther et al., 2002; Buxton

et al., 2004; Burke & Bührle, 2006). Signal 3 is an advanced, negative peak response from

CVD patients described by Röther et al. (2002) and Roc et al. (2006) where the time-to-

peak was advanced by 2 s. These two cases represent unusual conditions where the CVD

patients participated with a completely occluded internal carotid artery thereby severely

disrupting functional hyperemia.
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4.4 Data simulations

The BOLD signal and noise properties were used to design two simulations for algorithm

performance analysis.

The first simulation exclusively tests the detection accuracy of the three BOLD

signals shown in figure 4.3 under SNR conditions ranging from [−12, 6.0] dB. Here, the

signal locations are not in an anatomical arrangement. Instead, the signals are added to

a central block of the image volume with µ[n] = 1600 au, each confined to one of three

rectangular regions whose SNR decreases linearly moving upwards along the y axis. The

remainder of the image volume consists of a low intensity background without the BOLD

signal and with noise generated by an independent Gaussian process convolved with γ̂[τ ]

from phantom data. The purpose of this simulation is to provide a benchmark description

of the algorithm’s capability to detect, and distinguish between, the three signals as a

function of SNR.

The second simulation uses a computer-intensive bootstrap method called block

resampling, described by ?, in order to approximate the spatial and temporal properties of

null fMRI data. The purpose of this approach is in large part a first attempt at generating

anatomically realistic simulations without a BOLD response that estimate the correlation

structure of real resting data. Upon these, one can then add a precisely controlled BOLD

response signal with known location with SNR. The main advantage of bootstrap simula-

tion is that a large number of sessions can be generated, hence, allowing an assessment of

the algorithm’s variability in performance across realistic noise realisations.

The block resampling approach goes as follows. Let {w(j)[n]} for j = 1, . . . , J

be an ensemble of J null fMRI sessions. Each session will be partitioned into k blocks

of size b of type Bi = (w(j)[i], · · · , w(j)[i + b − 1]) so that each session has the form

w[n] = (B1, Bb+1, . . . , BN−b+1) for n = 0, . . . , N−1. The bootstrap session w∗
b [n] is defined

piecewise by its contiguous sub-blocks of type B∗
i each being drawn with replacement from

the pool of J × k session sub-blocks. In this simulation, the anatomy is preserved in the
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simplest fashion: by not resampling along the spatial directions. Thus, each image is kept

intact, and so the ensemble and bootstrap session can be written as time series {w(j)[t]}

and w∗
b [t] for t = 1, . . . , T .

It is important to choose a suitable block size. If b is chosen too small, then w∗
b [t]

will have an underestimated autocovariance function; i.e., γ̂∗[τ ] ≪ γ̂[τ ] for τ > 0. On the

other hand, if b is chosen too large, then w∗
b [t] will be biased toward the few sessions that

were sampled rather than uniformly representing all J sessions. It was natural to use a

criterion for choosing b that is based on the autocovariance along the t-axis γ̂t[τ ]. Hence,

we estimated γ̂t[τ ] and set b equal to the central peak width delimited by (and excluding)

the first zero-crossing or local minimum on each side of τ = 0. In order to estimate the

function γt[τ ] with good precision, we must choose T as large as possible to reduce the

variance of γ̂t[τ ]. The fact that the estimate is consistent, i.e., the variance of γ̂[τ ] vanishes

as N becomes large, is difficult to show because the calculation var{φ̂[τ ]} is non-trivial

(Oppenheim & Schafer, 1999). However, for a WSS process wn, we can see that the random

variable φτ = 1/N
∑N−1

n=0 wnwn+τ has expectation E{φτ} = 1/N
∑

n E{wnwn+τ} = φ[τ ],

which converges on the order of O(1/N). Thus, the square of φτ should shrink faster with

order O(1/N2) and if unbiased will also converge to φ[τ ], which implies that var{φτ} will

vanish in the limit N → ∞. This approach is summarised as the following algorithm.

Algorithm 1 (Time series bootstrap simulation). Given an ensemble of time series
data sets {w(j)[t]} for j = 1, . . . , J each of length T (zero-padded to the smallest power of
two greater than T ), do the following to generate a time series bootstrap simulation.

1. Calculate the autocovariance function estimate γ̂t[τ ] using equation (4.13) from each
data set in the ensemble, and set the block size b = 2 argτ=τb

〈γ̂t[τ ]〉 − 1, where τb is
the first zero-crossing or first local minimum, whichever is closest to the origin.

2. If necessary, truncate each data set to length T = kb, where k ∈ N is as large as
possible.

3. Partition each data set from the ensemble into k blocks of size b of type
B

(j)
i = (w(j)[i], · · · , w(j)[i + b − 1]) so that each session has the form w(j)[t] =

(B
(j)
1 , B

(j)
b+1, · · · , B

(j)
T−b+1) for t = 0, . . . , T − 1.

4. Construct a time series bootstrap data set w∗
b [t] by randomly drawing with replace-



CHAPTER 4. DATA ACQUISITION II: PRELIMINARY ANALYSIS 60

Figure 4.4: Typical autocovariance function estimates γ̂t[τ ] computed from single
voxel time series of length T = 150 shown from head phantom (a), null fMRI data
(b), and b = 9 block resampling simulations from null fMRI data (c). The empirical
correlation coefficient r̂[1] is shown along with the peak width shaded in grey.

ment k blocks from the ensemble of J × k blocks {B(j)
i }, for j = 1, . . . , J and

i = 1, b+ 1, . . . , T − b+ 1.

We chose T = 150 by discarding the first ten images to avoid the presence of

magnetisation stabilisation effects that cause a rapid drop in signal intensity in the several

first images, e.g., as seen in figure 4.2b. For these calculations, we acquired J = 3

consecutive sessions from a normal subject so that no repositioning took place between

sessions. Five voxels, with fixed coordinates within the brain tissue but beyond 30 mm

from each other, were selected to calculate γ̂t[τ ] in for each session. The peak widths

measured have median 9 and range [7, 13], and so we chose b = 9. This leads to k = 17

blocks per session and each bootstrap simulation is generated from random draws with

replacement from the pool of J×k = 51 blocks. Our original attempt included session data

acquired on different dates but were not amenable to the bootstrap simulation proposed

because at the time of acquisition, the exact positioning of the subject within the scanner’s

field of view was not controlled and so block-related displacement artefacts corrupted the

simulated data.
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For comparison, figure 4.4 plots typical autocovariance estimates, for 0 ≤ τ < 75

with their peak width shaded and r̂[1] correlation coefficient indicated, for the phantom,

null fMRI, and simulated data. As expected, the phantom data are less correlated with

narrower peak width than the null fMRI data. Secondly, the null data and simulation

data are similar, possessing wide peaks and slowly oscillating sideband, in contrast to the

narrow peak and jagged sideband in the phantom data. One consistent bias is that the

simulated data tend to have slightly lower r̂[1] values than the null fMRI data. Perhaps,

this is due to the disruption of spatial correlations and “second-order effects,” i.e., those

depending on higher-order interactions, such as in the ordered triple (wn,wm,wp) between

blocks.

4.5 Discussion

These preliminary analyses sought to characterise the underlying noise processes from

our empirical phantom and null fMRI data. The autocorrelation estimates performed

here show that GE-EPI voxel data are indeed correlated in space and time. It is also

clear from these results that there are instrumental and physiological sources introducing

temporal correlation in the data. In addition, high spatial correlations are introduced by

anatomically normalising and spatially smoothing the fMRI data. The presence of these

correlations has been studied and reported by many authors (e.g., see discussions in Zarahn

et al. (1997); Purdon & Weisskoff (1998)) and remains a major obstacle in neuroimaging

analysis. This difficulty arises essentially in the calculation of statistical significance on

dependent data sets.

For example, classical statistics such as the student’s t or Fisher’s F upon which hy-

pothesis testing using linear regression and analysis of variance (ANOVA) assume that in-

dividual measurements are independent and identically distributed (i.i.d.). Hence, BOLD

signal detection on a voxel-wise basis leads to an increased false-positive rate (or equiva-



CHAPTER 4. DATA ACQUISITION II: PRELIMINARY ANALYSIS 62

lently, an increased type I error rate, or false rejection of the null-hypothesis). Therefore,

extraneous mechanisms must be introduced to account for the departure from the i.i.d. as-

sumption to achieve the nominal false-positive rate. Furthermore, resampling statistical

methods such as the bootstrap are also intended for i.i.d. data. Here too, the depen-

dency between measurements complicates the efficient and consistent estimation of even

the simplest statistics such as the standard error (Politis, 2003).

Zarahn et al. (1997) performed an empirical analysis on phantom and null fMRI

data to demonstrate that the data are temporally correlated, and hence have a non-flat

power spectrum density (PSD). They showed that the data PSD followed a 1/f magni-

tude that was not consequent to first-order motion, instrumental, or preprocessing effects.

Purdon & Weisskoff (1998) pointed out that this is more conventionally understood as

1/ω2 PSD characteristic, which corresponds to a linear time-invariant (LTI) system, with

a rational transfer function. Our data supports these observations, since there is a clear

increase in temporal autocorrelation in null fMRI data compared to phantom data as seen

in figure 4.4. In addition to temporal autocorrelation, Zarahn et al. (1997) go on to demon-

strate the presence of a “global signal” in the sense that voxel time sequences w[x1, t] and

w[x2, t] also tend to be strongly correlated for most coordinates x1, x2 ∈ R
3. The global

signal also introduces a bias in hypothesis-test statistics or correlation estimates. Hence,

signal detection methods must account for its effect. Consequently, we defer the global

signal phenomenon to the signal detection chapters later in the thesis.

Recent efforts have applied autoregressive (AR) models to dependent data (in-

cluding fMRI) such as to model the order of dependence in data and also to produce

i.i.d. samples from the data. An effective AR model for fMRI data is very appealing

for it would reduce the signal detection problem to well-established classical or bootstrap

statistical analysis. These methods are not wide spread in fMRI analysis; however, some

worthwhile examples of AR models for fMRI data have been published (Harrison et al.,

2003; de Pasquale et al., 2008). Although this subject is not dealt with further in this
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thesis, it is an emerging topic in the literature which should be considered in future work.

Besides the mathematical issues arising from the analysis of correlated data sets, a

surprising number of articles investigating novel neuroimage analysis methods are tested on

oversimplified simulations that do not reproduce the reported features of real fMRI data,

such as noise autocorrelation, BOLD signal characteristics, SNR levels, preprocessing,

and artefacts. While the objective of the article may be to propose a formidable analysis

method (and not detailed simulations), unrealistic simulations make it difficult to gauge

the algorithm’s performance on real data often lacking ground truth or a “gold standard.”

To address these problems, we propose a bootstrap simulation algorithm based

on real neuroimage data that preserves the observed correlation structure. However, the

effectiveness of this method depends on the precision of subject positioning within the

scanner so that displacement artefacts do appear in the intersession resampled blocks. At

the time of acquisition, we did not control for this effect with sufficient precision and were

only able to produce bootstrap samples using single subjects where the subject remained

in the scanner between consecutive sessions.

An autocorrelation analysis of the BOLD fMRI data was performed in this chapter

in order to determine the degree of voxel dependence introduced in our acquisition method.

This autocorrelation estimate was then used to simulate additive noise on physiologically

reasonable hemodynamic response functions. These simulations are important for the

performance assessment of the analysis methods developed throughout the thesis.



Chapter 5

Analysis Methods: Part I

Functional Image Pattern Recognition

5.1 Introduction

The next three chapters put forward a strategy for analysing BOLD fMRI data based on

the neurovascular properties discussed in chapter 2, and on the scanner and physiological

effects that were demonstrated in chapter 3. This chapter develops and applies an estab-

lished unsupervised pattern recognition algorithm called “fuzzy k-means,” first described

by Dunn (1973), to partition the neuroimage data from one session into k clusters of voxel

time sequences that are optimally separated according to a least squares objective func-

tion. It will be made clear in the discussion section of this chapter why this particular

algorithm is suitable for functional neuroimage data analysis. The theoretical material

presented in sections 5.2 and 5.3 is the consolidation of my studies synthesising the origi-

nal work by Dunn (1973) and Bezdek (1981). I have taken their theories and applied them

for the pattern recognition of our functional neuroimage data. In section 5.4, I discuss the

idea of partition entropy described by Bezdek (1981) in a probabilistic setting and propose

a novel approach to estimate this quantity using null and simulated neuroimage data. In

section 5.5, I describe the algorithm implementations used throughout this thesis: a com-

64
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bination of software I wrote independently and software written by Jarmasz & Somorjai

(2002), which I modified for this research.

Pattern recognition is especially relevant in BOLD fMRI, since the spatial extent of

functional hyperemia is on the order of millimetres and lasting several seconds (Malonek

& Grinvald, 1996); therefore, it can be sufficiently sampled in space and time. Secondly,

functional hyperemia is known to vary considerably in healthy, and more so, in diseased

populations (D’Esposito et al., 2003). Since distinct regions from larger functional cir-

cuits interact (sections 1.2 and 2.2), multiple responding regions should be expected and

distinguished. Recently for example, Zhou & Rajapakse (2008) have applied the fuzzy

k-means algorithm to fMRI data to detect and distinguish between different response sig-

nals. However, this algorithm is heuristic in nature, and despite much ongoing effort, it

has not yet been directly linked to a probabilistic framework (Bezdek, 1981; Bezdek &

Pal, 1992; Bouguessa et al., 2006; Hathaway et al., 2006). For this reason, in the following

two chapters, the heuristically obtained clusters will be modelled parametrically and then

submitted to a Bayesian statistical model to determine each cluster’s significance.

5.2 Fuzzy set theory and partitions

The following definition is applicable in the context of identifying signals within large data

sets like those in functional neuroimaging.

Definition 1 (Bezdek (1981)). Pattern recognition is a search for structure in the data.

Here, the data are represented by one neuroimaging session w[n], where we are particularly

interested in each voxel time sequence. Thus, we consider our data as being a set of

time sequences w[t] indexed by voxel x ∈ X. The structure we seek should explain the

relationship between the time sequences of a voxel x and those of other voxels, such that X

may be partitioned into subsets of voxels that are related to each other. Hence, the search

is the analytical method for obtaining this partition. For now, we will simply associate
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each sequence w[t] with a data point x in an abstract space X.

The fuzzy k-means algorithm will partition the data indexed by X into k “fuzzy

sets,” which are a generalisation of the ordinary mathematical concept of a set. Here, the

notion of membership imprecision is directly integrated into this fuzzy set theory developed

by Zadeh (1965). For example, if we partition X into k subsets X1, · · · , Xk, then in the

ordinary sense, each x ∈ X must belong to exactly one subset Xi. The fuzzy partition, on

the other hand, generalises the concept of membership such that x can belong to multiple

fuzzy sets with a varying degree of membership. Therefore, the ordinary partition becomes

a special case of the fuzzy partition.

Establishing a one-to-one correspondence between a set and a corresponding mem-

bership function is the simplest way to rigourously derive the fuzzy set and its generalised

subset and equality relations, as well as its intersection, union, and complement operators.

Furthermore, this approach will also prove that fuzzy set theory is consistent in the sense

that the power set P(X) (i.e., the class of all fuzzy subsets of X) is closed under the above

mentioned operations. We begin with ordinary sets where the cardinality |X| is always

considered to be finite.

Definition 2. Let Xi ⊆ X. Then the membership function of Xi is the mapping
ui : X −→ {0, 1} defined for all x ∈ X by the rule

ui(x) =

{
1, x ∈ Xi

0, otherwise.
(5.1)

These membership functions form a one-to-one correspondence between P(X) and the

class of all membership functions because for any A ∈ P(X) there is always a unique

function uA and vice versa. To see this, let P(F ) denote the class of all membership

functions for subsets of X. Then, note that the set operations on A,B ∈ P(X) are

equivalent to the usual relations and operations on real functions uA, uB ∈ P(F ) for all
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x ∈ X.

A ⊆ B ⇔ uA(x) ≤ uB(x) (5.2)

A = B ⇔ uA(x) = uB(x) (5.3)

Ā = {x ∈ X|x /∈ A} ⇔ ūA(x) = 1 − uA(x) (5.4)

A ∩B ⇔ min{uA(x), uB(x)} (5.5)

A ∪B ⇔ max{uA(x), uB(x)} (5.6)

Also, the empty set ∅ is equivalent to the zero function 0 : X −→ 0, and the universe set

X is equivalent to the one function 1 : X −→ 1, for all x ∈ X. Therefore, P(X) and P(F )

along with their respective relations and operations are said to be isomorphic algebras

(P(X),⊆,=, ,̄∩,∪) ↔ (P(F ),≤,=, ,̄min,max). (5.7)

and can be used interchangeably.

The class of all partitions (of all sizes k = 1, . . . , |X|) of X form a proper subset

of P(X). Then, more specifically let Υ(k,X) be the class of all k-partitions on X, where

every partition P ∈ Υ(k,X) has the form P = {X1, · · · , Xk} ⊂ P(X) whose elements are

of special importance in representing the structure of X.

Definition 3. Let P ∈ Υ(k,X) be a k-partition for a data set X and an integer 0 < k ≤
|X|. Then, the elements Xi ∈ P are called clusters and have the following properties for
all i = 1, . . . , k

Xi 6= ∅, (5.8)

Xi ∩Xj = ∅, i 6= j, (5.9)

k⋃

i=1

Xi = X. (5.10)

Equivalently, P can also be defined by the set of membership functions {u1, · · · , uk} ∈

P(F ) satisfying the conditions

(a) for all i = 1, . . . , k, there exists some x ∈ X such that ui(x) 6= 0, and
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(b) for all x ∈ X,
∑k

i=1 ui(x) = 1.

Therefore, Υ(k,X) can also be written as the k-variate membership mapping

Υ(k,X) =
{
{u1, . . . , uk} : X −→ {0, 1}k

∣
∣ ui satisfies (a) and (b) for i = 1, . . . , k

}
.

(5.11)

This functional representation of Υ(k,X) is the best way to generalise ordinary parti-

tions. Now, a fuzzy subset of X can be formally defined by a simple modification of the

membership function in definition 2.

Definition 4. A fuzzy subset Xi of X is defined by the membership function ui : X −→
[0, 1], which maps each x ∈ X to a real number yi in the unit interval by the rule

ui(x) =







1, if x entirely belongs to Xi

0 < yi < 1 if x partially belongs to Xi

0, otherwise.
(5.12)

Unlike definition 2, this function has a continuous range on the unit interval and, hence,

can describe points having only partial membership to the fuzzy set. The set of all fuzzy

membership functions on X from definition 4, can be written as

Υf (k,X) =
{
{u1, . . . , uk} : X −→ Yf ⊂ [0, 1]k

}
, (5.13)

where Yf is the diagonal plane cutting through the hypercube [0, 1]k given by

Yf =

{

y ∈ [0, 1]k
∣
∣
∣
∣
0 ≤ yi ≤ 1, for all i = 1, . . . , k;

∑k
i=1 yi = 1

}

. (5.14)

There are two important observations to make on Υf(k,X). First, Υf(k,X) ⊃ Υ(k,X).

This follows immediately from the fact that [0, 1] ⊃ {0, 1}. Consequently, each ordinary

partition is embedded in the class of fuzzy partitions. Second, Υf(k,X) contains degen-

erate partitions, since condition (a) is not applied in equations (5.13) and (5.14). For

example, partitions may contain empty clusters, i.e., with membership function ui = 0,

exist in Υf(k,X). Therefore, degenerate k-partitions can replicate (k− 1)-partitions, and
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in general Υf(k,X) ⊃ · · · ⊃ Υf(1, X). However, this slightly more general definition will

prove convenient when deriving the fuzzy k-means algorithm in the next section.

Having described the class of partitions available to analyse X, how do we identify

the partition that best represents the structure ofX? To answer this optimisation question,

we require the notion of distance between data points x, y ∈ X. Hence, the data indexed

by X must belong to a metric space (V, d) where X ⊂ V, such that we can measure the

distance between data points by some metric d(x, y) ∈ R. Now with a measure of distance,

we can form clusters with data points that are closer to each other than to any other point

outside the cluster. Moreover, we can also require that the clusters are as far apart from

each other as possible. Formally, ordinary partitions P ∈ Υ(k,X) possessing the property

described here are called compact well-separated (CWS) and are quantified according to

Dunn (1973) by the ratio of the smallest intercluster distance and the largest intracluster

distance

β(k, P ) =

min
1≤q≤k

min
1≤r≤k

r 6=k

dist(Xq, convXr)

max
1≤p≤k

diam(Xp)
, (5.15)

where dist(A,B) = infx∈A, y∈B d(x, y), diam(A) = supx,y∈A d(x, y), and convA is the con-

vex hull of points containing A. Finding β̄(k) = maxP∈Υ(k,X) β(k, P ) will quantify the

separability of the data set X relative to d. Furthermore, Dunn (1973) showed that (X, d)

has a CWS k-partition if and only if β̄(k) > 1, and the partition P ′ with β(k, P ′) = β̄(k)

is optimal.

Having defined structure in X as the optimal k-partition, the final question is

how do we search for it? Even for small data sets, the partition class Υ(k,X) is immense,

making exhaustive search practically impossible. For example, Duda & Hart (1972) showed

that for |X| = n and some integer 1 ≤ k ≤ n, the cardinality of Υ(k,X) is exactly

|Υ(k,X)| =
1

k!

k∑

i=1

(
k

i

)

(−1)k−iin. (5.16)
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Hence, consider this problem for a small data set of size |X| = 32. In addition, suppose

it is known a priori that there are k = 3 underlying clusters in X. Then equation (5.16)

indicates that there are over 308 trillion possible 3-partitions in Υ(3, X). A futuristic

supercomputer capable of calculating β(3, P ) per nanosecond given P , would need about

3.5 days to scan all of Υ(3, X). The amount of time required grows factorially as |X|

grows as well as when k grows from 1 to |X|/2. For example, to scan instead Υ(4, X) on

the same computer would require about 24 years!

5.3 Fuzzy k-means on time sequence data

Heuristic algorithms searching for partitions in Υ(k,X) that maximise β(k, P ) have been

studied. In particular, Ball & Hall (1967) developed the (ordinary) k-means, or ISODATA,

algorithm that will find the optimal P ′ ∈ Υ(k,X) provided β̄(k) ≫ 1 is known a priori.

This will not do for our problem for two key reasons. First, we do not know a priori the

value of β̄(k) for any k. Consequently, we do not know what value of k to use. Second,

given k, this algorithm will always converge to some partition in Υ(k,X) regardless of

whether the data are CWS or not.

The fuzzy k-means algorithm bypasses these limitations and provides additional

advantages. By searching instead within the fuzzy partition class Υf(k,X) ⊃ Υ(k,X),

the algorithm can still converge to the optimal ordinary partitions for CWS data and, in

addition, converge to fuzzy partitions when the data are in fact non-CWS. Secondly, by

extending this optimisation problem into a smooth space (requiring that the membership

functions be smooth), the algorithm can be derived using calculus. Moreover, for each

cluster, the optimal function ui quantifies the imprecision of each x ∈ Xi. Therefore, we

can obtain the degree of structure in the data by only examining the set of membership

functions. Finally, we can compare optimal k-partitions based on their imprecision for

various values of k. Given the set of membership functions U = {u1, · · · , uk}, we can
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compute the corresponding set of average data points called centroids V = {v1, · · · , vk},

where vi = 〈ui(x) x〉 ∈ V for i = 1, . . . , k.

The following theorem is the central result validating the algorithm’s convergence

to the optimal partition. I have developed a proof based on Dunn (1973) to demonstrate

the machinery of the algorithm and to explicitly derive the necessary iterative steps for

implementation.

Theorem 2 (Dunn (1973)). If the membership functions U ′ ∈ Υf(k,X) ⊂ V and centroids
V ′ ∈ V minimise the least squares distance objective function

J(U, V,X) =

k∑

i=1

∑

x∈X

u2
i (x)d

2(x, vi), (5.17)

then they satisfy the three following conditions for all i = 1, . . . , k.

1. For each fixed x ∈ X, let I = {1 ≤ i ≤ k | v′i = x} be the index set of clusters where
x is an exclusive member. Let Ī = {1 ≤ i ≤ k | v′i 6= x} be the complement set of I.
Then, there are two possible cases.

A: I = ∅. Then, x has membership values given by

u′i(x) =
1/d2(x, v′i)

k∑

j=1

1/d2(x, v′j)

. (5.18)

B: I 6= ∅. Then, some j ∈ Ī implies that u′j(x) = 0, and in particular

∑

i∈I
i6=j

u′i(x) = 1. (5.19)

2. The partition U ′ always consists of non-empty fuzzy sets. That is, there exists an
x ∈ X such that u′i(x) 6= 0.

3. The clusters satisfy

v′i =

∑

x∈X

u′2i (x)x

∑

x∈X

u′2i (x)
. (5.20)

Proof. It is sufficient to show that each condition must be true if U ′ and V ′ solve equation
(5.17).
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Condition 1 : The solutions U ′ and V ′ must satisfy

k∑

i=1

∑

x∈X

u′2i (x)d2(x, v′i) ≤
k∑

i=1

∑

x∈X

u2
i (x)d

2(x, vi) (5.21)

for all U ∈ Υf(k,X) and V ∈ V. This statement is also true for each x ∈ X because of

the condition
∑k

i=1 yi = 1 imposed on the range of the mapping U : X −→ Yf in equation
(5.14). To see this for each x ∈ X, arrange the distances d(x, vi) over i in increasing
order, and correspondingly, set the numbers y′i = u′i(x) to be monotonically decreasing.
Therefore, U ′ and V ′ must also satisfy

k∑

i=1

u′2i (x)d2(x, v′i) ≤
k∑

i=1

u2
i (x)d

2(x, vi) (5.22)

= min
y∈Yf

k∑

i=1

y2
i d

2(x, vi)

for all x ∈ X.
For the case I = ∅, x has fuzzy membership in several clusters. The argument y′ ∈ Yf

that minimises equation (5.17) can be calculated by the method of Lagrange multipliers,
since equation (5.17) is quadratic in U with a non-negative minimum, and the range Yf

is smooth. Furthermore, the possibility that y′ is an end point of Yf must be avoided.
Hence, consider instead the extended range without bounds

Ȳf =

{

y ∈ R
k

∣
∣
∣
∣

k∑

i=1

yi = 1

}

⊃ Yf . (5.23)

Then, the objective is to minimise the function

f(y) =
k∑

i=1

y2
i d

2(x, v′i) (5.24)

subject to the constraint

g(y) =
k∑

i=1

yi − 1 = 0, y ∈ R
k. (5.25)

According to Lagrange’s method, since the gradient ∇g(y) 6= 0 for all y ∈ R
k, then

there exists a number λ′ ∈ R such that the ordered pair (y′, λ′) is a critical point of the
Lagrangian function

L(y, λ) = f(y) + λg(y). (5.26)
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Thus, we calculate the partial derivatives for each i = 1, . . . , k

∂L

∂λ
= yi − 1 = 0 (5.27)

∂L

∂yi

= 2yid
2(x, v′i) + λ = 0, (5.28)

and by substitution, the solutions are obtained

λ′ =
−1

k∑

j=1

1/2d2(x, v′j)

(5.29)

y′i = −λ′/2d2(x, v′i) (5.30)

=
1/d2(x, v′i)

k∑

j=1

1/d2(x, v′j)

.

From this last equation for y′i, note that I = ∅ implies that 0 < y′i < 1 for all i = 1, . . . , k.
Therefore, we are guaranteed that the solutions y′ lie in Yf and not on the extension
Ȳf − Yf . Moreover, they are unique solutions of the membership functions u′i(x) = y′i for
all x ∈ X.
For the case I 6= ∅, x belongs exclusively to some cluster Xj, j ∈ I, and it must be that
u′i(x) = 0 for all i ∈ Ī. Consequently, the minimum attained in equation (5.17) must be
zero. Otherwise, if for some i ∈ Ī we have yi 6= 0, then a contradiction arises because
u′2i (x)d2(x, v′i) > 0 is sub-optimal. Therefore, condition 1 must be true if U ′ satisfies
equation (5.21), that is, u′i(x) = 0 for all i ∈ Ī.

Condition 2 : Suppose, on the contrary, that this condition is false, such that for some
cluster j we have u′j(x) = 0 for all x ∈ X. Then in addition to V ′ a distinct set V ′′

also satisfies (5.21), where the jth centroid is forced to equal an unclaimed point x̂ ∈ X
outside of Xj . Such a point must always exist if this condition is false because k ≤ |X|
and u′j(x) = 0 for all x ∈ X imply that Xj = ∅. But this contradicts the premise that
condition 2 is false, since by condition 1 it must be that v′′j = x̂ if and only if u′j(x̂) = 1.
Therefore, condition 2 must also hold if U ′ and V ′ satisfy the theorem.

Condition 3 : To verify the final condition, which gives the form of the centroid functions,
we calculate the directional derivative of the objective function at its minimum, which
must be flat in all directions, and solve for V ′. Consider the objective function for V with
U fixed f(V ) = J(U, V,X). Then, if U ′ and V ′ satisfy equation (5.21) the directional
derivative DQ f(V ) must also vanish for all vectors Q ∈ V, provided that the metric is

inner-product induced, that is, of the form d(x, y) =
√

(x− y) · (x− y). To see this, the
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fixed objective can be written as

f(V ′) =
k∑

i=1

∑

x∈X

u′2i (x)d2(x, v′i) (5.31)

=

k∑

i=1

∑

x∈X

u′2i (x)
(
(x− v′i) · (x− v′i)

)
.

Evaluating its directional derivative at V ′ yields, by definition,

DQf(V ′) =
d

dh
f(V ′ + hQ)

∣
∣
∣
∣
h=0

. (5.32)

Let ξ = x− vi − hqi be the ith component of V ′ + hQ. Then, by the chain rule we get

d

dh
f(V ′ + hQ)

∣
∣
∣
∣
h=0

=
df

dξ

dξ

dh

∣
∣
∣
∣
h=0

(5.33)

=

(
d

dξ

k∑

i=1

∑

x∈X

u′2i (x)
(
ξ · ξ

)
)(

d

dh
(x− v′i − hqi)

)∣
∣
∣
∣
h=0

(5.34)

=

(

2

k∑

i=1

∑

x∈X

u′2i (x)
(
ξ · 1

)
)(

− qi

)∣
∣
∣
∣
h=0

(5.35)

= −2

k∑

i=1

∑

x∈X

u′2i (x)
(
(x− v′i) · qi

)
. (5.36)

This equation must vanish for all Q ∈ V. Hence, from the last line we have

k∑

i=1

∑

x∈X

u′2i (x)
(
(x− v′i) · qi

)
= 0, (5.37)

which can only vanish over the outer sum if each component is zero. That is, it must be
that ∑

x∈X

u′2i (x)
(
(x− v′i) · qi

)
= 0 (5.38)

for all Q ∈ V. Continuing in this reductive fashion, we obtain

∑

x∈X

u′2i (x) (x− v′i) = 0 for all i = 1, . . . , k (5.39)

⇒
∑

x∈X

u′2i (x)v′i =
∑

x∈X

u′2i (x)x. (5.40)

Solving for v′i in this last equation shows that condition 3 must also be true, therefore,
completing the proof. QED
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This theorem and its proof show explicitly how to obtain from a data set X ⊂ V

its k-partition of maximally compacted clusters that are maximally separated from each

other. Specifically, the solution that minimises the objective J(U, V,X) also maximises

β̄(k), hence produces clusters that are CWS or as close to it as possible. The theorem gives

the form of the optimal functions for U and V in equations (5.18) and (5.20), respectively.

The proof indicates the mathematical requirements that guarantee the solution exists and

is unique, namely, that the membership functions U be smooth and that the metric d be

inner-product induced from the space V. From these results, the algorithm to find the

CWS optimal solution is as follows.

Algorithm 2 (Fuzzy k-means (Dunn, 1973)). Given a finite data set X within a metric
space (V, d) of dimension D, an integer 1 ≤ k ≤ |X|, and a real number ǫ > 0, do the
following to obtain a CWS optimal k-partition of X.

1. Choose an initial non-degenerate partition U0 ∈ Υf(k,X).

2. Compute the initial centroids V0 ∈ V according to

vi =

∑

x∈X

u2
i (x)x

∑

x∈X

u2
i (x)

, for i = 1, . . . , k. (5.41)

3. Compute a new partition U ∈ Υf (k,X) according to the rule: for each x ∈ X, let
I = {i | vi = x}. If I = ∅, then

ui(x) =
1/d2(x, vi)

k∑

j=1

1/d2(x, vj)

, for i = 1, . . . , k. (5.42)

If I 6= ∅, let j = min(I) and for each i = 1, . . . , k

ui(x) =

{
1 i = j,
0 otherwise.

(5.43)

4. Compute the new centroids V using U as in step 2, and compute the maximum norm
defect

δ = max
1≤i≤k

max
1≤j≤D

|v0i,j − vi,j| (5.44)

where vi,j is the jth component of vector vi relative an arbitrary basis for V.
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5. If δ < ǫ, then stop. Otherwise, let U0 = U , V0 = V , and repeat the algorithm starting
from step 3.

Now equipped with the machinery to search for structure in our data, we return to

the applied problem. Our data set X is the set of voxel time sequences w[t] acquired in one

neuroimaging session. Therefore, each voxel x can be uniquely put into correspondence

with a vector in V whose components are given by w[x, t] for t = 0, . . . , T−1. Therefore, it

is reasonable to choose the Euclidean space V = R
T to represent our data. The structure

we seek must describe the temporal relationship between different voxels by producing

voxel clusters whose members are maximally correlated. While the obvious choice for

a metric is the Euclidean distance d(x, y) = ‖x − y‖2 =
√
∑T−1

t=0 (w[x, t] − w[y, t])2, we

choose instead a metric that is sensitive to signal phase and invariant to signal amplitude

so that we may obtain clusters whose voxels are correlated regardless of their amplitudes.

Golay et al. (1998) proposed a pseudo-metric exactly for this purpose called the hyperbolic

correlation distance, which they show is superior to Euclidean distance and to Pearson’s

correlation coefficient for clustering BOLD fMRI data. Their pseudo-metric is based on

Pearson’s correlation

r(x, y) =
1

(T − 1)σ̂[x]σ̂[y]

T−1∑

t=0

(w[x, t] − η̂[x])(w[y, t] − η̂[y]), (5.45)

such that the value r(x, y) is uniquely mapped onto the non-negative real numbers ac-

cording to the hyperbolic distance

d(x, y) =

√

1 − r(x, y)

1 + r(x, y)
, where −1 < r(x, y) ≤ 1. (5.46)

This function has several interesting properties. First, it is not inner-product induced

and, therefore, the validity of theorem 2 is not necessarily guaranteed. However, Golay

et al. (1998) prove that the fuzzy k-means algorithm does in fact converge properly using

the hyperbolic correlation distance. Second, d(x, y) is directly proportional to the angle
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θ between of the mean-centred vectors w[x, t] − η̂[x] and w[y, t] − η̂[y], since the cosine

rule (x · y) = 2‖x‖‖y‖ cos(θ) leads immediately to the fact that r(x, y) = cos(θ)/(T − 1).

Finally, Golay et al. (1998) show that if the random process wt is i.i.d., then d(x, y) is equal

to the Z-score that tests if the samples x and y are statistically different. Of course, we

know from chapter 4 that wt is not i.i.d. and, therefore, do not make statistical inference

at this stage.

5.4 Partition entropy minimisation

As mentioned in the previous section, the solution U is all that is necessary to examine

the degree of structure present in X. Consider, for example, a uniformly distributed

data set. Then for any value of k, the solution U always consists of k identical constant-

valued functions of the form ui(x) = 1/k. Hence, a point x belongs to all clusters equally

and U does not yield novel information. On the other hand, suppose X is CWS and

bi-modally distributed. Then the choice of k will influence U considerably. If k = 2,

then the solution U will converge to two Heaviside membership functions, each centred on

one mode and taking on values 0 or 1 depending on x. Here, there is a clear distinction

on the membership, and U is unambiguous to which cluster each point x belongs. In

Shannon’s notion of information entropy, the latter example has low entropy while the

former has high entropy. Suppose in the latter example we erroneously choose k = 3, then

U is forced to split the two modes into three clusters, invariably introducing imprecision

in the membership of some points. Bezdek (1981) applies Shannon’s measure to U in

order to choose the number k that leads to the most informative partition by minimising

its entropy. It is reasonable to apply information entropy to U because this system of

functions has the same properties of a set of probability mass functions. In particular, for

all x ∈ X, we have
∑k

i=1 ui(x) = 1 and ui(x) ≥ 0.

Definition 5. The partition entropy of a given partition U ∈ Υf(k,X) in bits of infor-
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Figure 5.1: Relation between data and their partition entropy. Obtaining a probabil-
ity distribution ofH requires knowledge of the composition of functions Jmin◦H(wn).

mation is given by

H(U) = − 1

|X|
∑

x∈X

k∑

i=1

ui(x) log2

(
ui(x)

)
, (5.47)

where ui(x) log2

(
ui(x)

)
= 0 for ui(x) = 0.

Interpreting this definition as a statistic leads to the following question that remains an

open problem in the literature: what is the probability distribution of H given a random

process wn? Knowing the distribution of H allows the formulation of hypothesis-driven

tests to distinguish structured processes (k > 1) from uniform ones (k = 1). Unfortu-

nately, calculating the distribution of H even with a complete probabilistic description of

wn is still difficult because the fuzzy k-means algorithm does not have a closed analytic

form. Consequently, the mapping from w[n] ∈ R
N to U ∈ Υf is not accessible. Figure 5.1

illustrates how the chain of transformations beginning from the probability space underly-

ing the random process wn, through the clustering algorithm, represented by the symbol

Jmin, and the partition space Υf lead to the entropy measure H taking values on the real

line. The statistical question we seek will give us the probability of acquiring data w[n]

with a partition entropy that falls in an arbitrary interval [a, b] ∈ R. By definition, the

random process wn is a one-to-one function that maps an event from the probability space

(X ,B, ν) to a subset B ⊂ R
N , such that the probability of acquiring a data set w[n] ∈ B

is modelled by the measure of its inverse mapping, that is, Pr{wn ∈ B} = ν
(
w−1

n (B)
)
.
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Formally, the probability required is expressed as Pr{Jmin ◦ H(wn) ∈ [a, b]}. However,

the partition entropy function is many-to-one and, hence, does not have an inverse H−1.

The fuzzy k-means algorithm does not have an analytic form; hence, its inverse Jmin
−1

is unknown. Nonetheless, H and Jmin are deterministic functions, and so by estimating

Pr{wn ∈ B}, we can obtain a lower bound for the probability Pr{Jmin ◦H(wn) ∈ [a, b]}.

Based on this rationale, it may be possible to estimate the distribution of H under the

implementation of fuzzy k-means in algorithm 2 using the bootstrap simulation procedure

described in algorithm 1 (page 60) of the acquired null fMRI data. That is, one could com-

pute a histogram distribution for H using an ensemble of bootstrap samples {w(j∗)
b [t]}, for

j∗ = 1, . . . , J∗. From these simulated H values, we could obtain a lower bound estimate

of the 95% confidence interval generated by simulations of uniformly distributed data and

bootstrap null fMRI data in R
N .

5.5 Implementation and results

Two separate implementations of the fuzzy k-means algorithm were used in this research.

The first implementation was written in Matlab 2009a platform (The MathWorks, Natick,

USA) explicitly for this thesis and ongoing research in the current laboratory. While

this implementation provides us with direct control over the entire process, it is severely

limited in processing speed and data size. For example, for one neuroimaging session

as described here, our computational limit is k = 40 completing analysis in roughly 12

hours on a Microsoft Windows XP Professional operating system (Microsoft, Redmond,

USA), running on a Dell XPS workstation (Dell, Round Rock, USA) equipped with a

Intel Core 2 Duo 2.66 GHz CPU (Intel, Santa Clara, USA) and 3 GB of memory. This

Matlab implementation serves as testing software to study the algorithm and perform

the partition entropy calculations described in this chapter, but it is not suitable for

the large scale processing of the numerous neuroimage data sets acquired and simulated
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Figure 5.2: Comparison of partition entropy estimates between a null fMRI session
and an event-related fMRI session.

during this research. We attempted to perform the bootstrap-based estimate for H , but

unfortunately the computational resources required was too great for our workstation.

Essentially, during the processing a single data set, our machine would run out of memory

and unexpectedly quit. Thus, in order to perform a computationally-intensive estimate

over hundreds of bootstrap samples on our machine, we would require hundreds of days and

an operator to handle the rather unpredictable failures caused by memory consumption.

Instead, we were able to produce a partition entropy comparison between real fMRI data

sets acquired during a null task and the event-related motor task in a normal subject for

k ranging between 5 and 30 in steps of 5. This is shown in figure 5.2. Although a modest

result at best, this single graph took over two days of computation with memory failure

handling on our workstation. As a preliminary result, it demonstrates that the active data

set has marginally lower entropy for all k tested. As expected in both cases, the entropy

gradually declines as k increases, which illustrates the requirement of a normalisation step

relative to a uniformly distributed data set, so that the optimal k might be identified.

To address this limitation, a second implementation was used that is based on the

C++ source code from the EvIdent software package (National Research Council, Win-
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nipeg, Canada) designed for analysing BOLD fMRI data by Jarmasz & Somorjai (2002).

We modified the code and rebuilt the application using the C++ Microsoft Visual Studio

2005 platform (Microsoft, Redmond, USA) to provide us with binary data files for the

cluster membership U and centroid V data. This particular implementation was chosen

due to its availability, processing speed, and its cluster merging feature, which heuristically

determines the optimal value for k according to the memberships U between each iteration

of the algorithm by merging clusters with similar membership functions (Jarmasz & So-

morjai, 1998). Our version of this program runs with parameters set to execute algorithm

2 as shown with a randomly selected initial partition of 40 clusters and tolerance ǫ = 0.01.

In this implementation, cluster Xk is a “rejection cluster” that contains voxels whose time

sequences are uncorrelated amongst themselves and all other k − 1 clusters. This C++

implementation was used to analyse all neuroimage data sets and converged to a stable

k-partition for each session in a few seconds on the workstation described above. The num-

ber of clusters obtained in these data sets was between 16 and 36. Finally, the algorithm

converged before reaching a maximum allowed number of 35 iterations in all data sets.

Figure 5.3 illustrates the distribution of voxels throughout a k-partition obtained with this

algorithm from a normal subject performing the event-related paradigm. In this case, 24

clusters are identified, and voxels are rendered in green in the cluster possessing its highest

membership value. The surface rendered in grey illustrates the position of the voxels form-

ing the boundary of the brain. The orientation of each image has the subject obliquely

facing towards the bottom-left side of the viewer. The eyes are rendered only to clarify the

orientation, however, were not included in the analysis. The observations made here are

representative of the clustering results throughout all subjects. First, the union of all k

clusters form the entire cerebral region analysed. Second, clusters 1 to k−1 are sparse and

possess a large contiguous region as well as sporadically distributed voxels. Third, many

clusters have an interhemispheric symmetry (e.g., i = 21, 22, 23). This is a physiologically

plausible phenomenon, given that the cerebral vasculature and macroscopic anatomy (c.f.
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Figure 5.3: Illustration of a k-partition obtained from a normal subject performing
the event-related visual feedback controlled motor paradigm. Member voxels (green)
appear in the cluster with maximum membership. The brain surface is rendered
(grey) for intercluster comparison.
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figure 2.4, page 29), as well as the cortical cytoarchitecture (c.f. figure 1.1, page 4, and

Garey (1994)) also exhibit interhemispheric symmetry to some extent. Finally, the last

cluster (i = 24) contains the remainder of voxels with uncorrelated time sequences. This

cluster is large and contains the majority of the subcortical cerebral volume. Unlike the

other clusters, these voxels do not exhibit prominent MR signal fluctuations beyond the

noise level determined by the average signal standard deviation.

5.6 Discussion

This chapter describes the theory, application, and implementation of the pattern recog-

nition algorithm used for functional neuroimage analysis in this research. The reason

for selecting fuzzy k-means algorithm for this problem is primarily based on its ability

to identify and distinguish time sequence patterns in BOLD fMRI data without assum-

ing specific patterns a priori. It accomplishes this by clustering the data into maximally

separated clusters with the unique advantage of quantifying how close a data set is to

being CWS based on the membership functions. In the case of CWS data, the algorithm

produces membership functions identical to those of the ordinary k-means, i.e., assuming

only 0 or 1 values. Although the algorithm is iterative, Dunn (1973) also shows that it

possess the descent property of always moving U closer to the optimal solution U ′ with

additional iterations. This distinction between the ordinary and fuzzy variants of k-means

justifies why the latter type is most suitable. This justification follows from the fact that

functional neuroimage data do not form a set of independent measurements but rather

highly correlated ones, foremost because they represent the operation of a complex system

with many interacting parts. Consequently, it is reasonable, and cautious, to expect an

appreciable degree of similarity between clusters instead of expecting these data to be

CWS. Therefore, fuzzy k-means was chosen because it produces the maximally compact

and separated partition where the presence of the CWS property can be known directly
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from the partition membership functions.

The principal caveat of this algorithm is the difficulty in linking the parameters

k and U with a probability framework so that k and membership value ui(x) can be

based on thresholds of statistical significance (Bezdek & Pal, 1992; Duda et al., 2001).

Even if this were possible, the probability density space for the partition space is high-

dimensional and would likely require heuristics to find the density extremum. A good

example of this is a recent Bayesian model for hierarchically clustering time series data

from gene expression microarrays (Ramoni et al., 2002). The authors correctly account for

temporal autocorrelation with an autoregressive model yet still have to resort to heuristics

to find the joint posterior density maximum corresponding to the partition with highest

probability of being correct. Since the proposition of the fuzzy k-means algorithm in 1973,

a Bayesian model for the partition space remains an open problem most likely because

of the difficulty in pushing a probability measure forward into the partition and entropy

spaces. To address this issue, we attempted to estimate from below the partition entropy

versus k in uniform, null fMRI, and event-related fMRI data sets of equal size. However,

we found the computational requirements overwhelming for our workstation and, hence,

can only recommend the exploration of this topic for future work. At the very least, the

failure to explore this issue caused by a lack of computational power demonstrates the

challenges ahead in analytical methods for large and complex data sets.

A practical disadvantage of this algorithm is the difficulty in applying it to on-line

problems, since it requires the entire data set X and, consequently, the computational

requirements are usually quite high for realistic data sets. A final potential issue revolves

around the hyperbolic correlation distance as the pseudo-metric for the algorithm, which

is invariant to signal amplitude. Although this distance is shown by Golay et al. (1998)

to be more suitable for fMRI data than the Euclidean and standard correlation distances,

it is possible that the relevant physiological or pathological states may alter only the

magnitude of the measured signal and would therefore go undetected. Evidence of such a
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state would require the use of complimentary metrics or preprocessing techniques.

In conclusion, the obtained clusters from this heuristic exploratory method are

useful in identifying and distinguishing patterns of correlated time sequences within BOLD

fMRI data without providing pattern templates a priori. This is especially important in

stroke, where pathological changes in functional hyperemia are known to occur. In the

next two chapters, the space-time structure of these clusters are parameterised and a

Bayesian statistical model is applied in order to determine which clusters are responding

to the event-related paradigm.



Chapter 6

Analysis Methods: Part II

Space-Time Structure of the BOLD Signal

6.1 Introduction

The previous chapter used an exploratory pattern recognition method to partition the

BOLD fMRI data acquired during one session into clusters having correlated time se-

quences. Due to the inherent physiological variability in these data, this partition was

produced without preconception of the spatial and temporal structure of the clusters.

Consequently, the obtained clusters are not necessarily all due to the stimulus response

signal of interest but may also represent other underlying processes. Therefore, a set of

cluster selection criteria is necessary to objectively determine the salience of each cluster

to the experimental paradigm.

To address this requirement, a novel method is proposed for the automated in-

terpretation of clusters identified by exploratory pattern recognition techniques, such as

those identified by fuzzy k-means discussed in the previous chapter. The selection cri-

teria are formulated using 1) the spatial contiguity of the each voxel cluster, and 2) the

temporal cross-correlation between the cluster time sequence and the motor response to

an event-related paradigm. The spatial contiguity and temporal cross-correlation para-
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metrically model the space-time structure of each cluster, and the selection criteria are

based on the determination of thresholds for each parameter value. The proposed method

is demonstrated using BOLD fMRI data acquired from normal subjects performing the

event-related visual feedback controlled motor paradigm described in chapter 3. To verify

that the clusters are consistent with the expected normal BOLD response signal (c.f. signal

1 in figure 4.3a, page 57), a comparison is made with the activation maps generated from

the established model-based GLM-t test available in the SPM software package (Friston

et al., 1995).

Based on the expected sensorimotor system behaviour as well as on the observed

t-map results testing for the normal BOLD response, the results shown here suggest that

these criteria are suitable to distinguish responding clusters appearing in sensorimotor-

related anatomical areas from other clusters with no apparent relation to the paradigm.

Moreover, the identified clusters each identify anatomically separate regions rather than

combinations thereof. This observation suggests that the proposed method is sensitive to

the discrepancies occurring between distinctly responding regions. The material from this

chapter was used in the preparation of a peer-reviewed article now published (Gómez-

Laberge et al., 2008).

6.2 Space characterisation: voxel cluster contiguity

The cerebrovasculature perfuses contiguous volumes of tissue via common networks of

arterioles (Hamel, 2006). Furthermore, their regulation of CBF is locally undertaken by

the constriction and dilation of the cerebral microvasculature. Therefore, neural activity

is known to occur in contiguous regions of tissue (Malonek & Grinvald, 1996; Kuschinsky,

2000; Iadecola & Nedergaard, 2007). Consequently, the BOLD signal is also expected to

emerge as a contiguous spatial distribution of voxels in BOLD fMRI data. Based on this

evidence, this spatial criterion seeks clusters containing sets of contiguous voxels.
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The data acquired within the scanner w[n] = w[x, t] are a discrete sampling of the

volume field of view over time. Spatially, each sample point can be considered as the

volume integral of the MR signal within the enclosing voxel dimensions. Temporally, the

centroids are calculated as in equation (5.41) of algorithm 2 (page 76) and, therefore, are

membership-weighted linear combinations of the member voxel time sequences. Hence, the

clusters reveal how the member voxels are distributed in space as a function of temporal

correlation with the centroid. Therefore, for each cluster Xi, we can define a spatial

function that produces the voxel time sequence correlation between each member voxel x

and the centroid vi[t]

Ri[x] =







r(x, vi) for x ∈ Xi,

0 otherwise.
(6.1)

where r(x, vi) is the Pearson correlation given by equation (5.45) (page 76). Given Ri[x] for

i = 1, . . . , k, contiguous clusters can be potentially distinguished from sporadic clusters.

This requires that the term contiguity be quantitatively defined. To this end, the

following terminology is proposed. Two voxels who share the same face are said to be

adjacent, and one unbroken sequence of adjacent voxels is defined as a group. Then, all

|Xi| voxels of a cluster can be counted group-wise by the series

|Xi| = 1g1 + 2g2 + · · ·+MgM , (6.2)

where gj is the number of groups of j adjacent voxels, and the largest group hasM adjacent

voxels. We consider a group to be contiguous if it contains a number of voxels equal to

or greater than some constant m > 1. Thus, by setting gj = 0 for j < m, we obtain a

fraction of |Xi| voxels belonging to contiguous groups

0 ≤ 1

|Xi|

M∑

j=m

jgj ≤ 1. (6.3)

Finally, to penalise clusters with a large number of groups, say Gi, the series is also
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Figure 6.1: Contiguity for a collection of two-dimensional clusters. In each case,
the total number of member voxels (black) is |Xi| = 14, and the smallest group size
is set to m = 3.

normalised by the product Gi|Xi| instead of simply by |Xi|. With these notions, we define

the contiguity of a voxel cluster as follows.

Definition 6. Given a cluster Xi, its correlation map Ri[x], a correlation threshold 0 <
rc < 1, and an integer m > 1, the contiguity of the voxels x ∈ Xi with Ri[x] ≥ rc is given
by the series

c =
1

Gi|Xi|

M∑

j=m

jgj, (6.4)

where Gi is the total number of groups, and the largest group contains M adjacent voxels.

While it is not unusual to expect multiple distinct regions interacting during the execution

of a task, we expect this number be small in relation to k, compared to a large number of

small sporadic regions that are poorly correlated and likely grouped together by chance.

This expectation is reasonable according to the objective of identifying distinct anatomical

regions per cluster that independently regulate their vascular supply. The properties of

contiguity are demonstrated with the following example. Figure 6.1 illustrates the conti-

guity values obtained from definition 6 with m = 3 for a fictional set of two-dimensional

clusters. For example, the middle cluster has two contiguous groups: one with three

voxels, the other with nine voxels. Thus, the contiguity according to the definition is

c = (1 × 3 + 1 × 9)/(2 × 14) = 0.43. The total number of voxels in each cluster was

chosen to be the same: |Xi| = 14. Notice that the contiguity is bounded between [0,1]

and increases with fewer, larger groups. Furthermore, note that the measure is indepen-

dent of voxel size, as long as m is scaled by the volume ratio between sizes. Finally, the

contiguity is also invariant to cluster geometry so that spherical, planar, or linear clusters
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are considered equally.

Before applying the contiguity definition to the set of voxels in each cluster, it is

important to consider the nature of cluster membership in terms of correlation. Recall

that in algorithm 2 (page 76), the centroid vi from equation (5.41) is a weighted average

of the member voxel time sequences, where similar voxel sequences are assigned large

membership coefficients ui(x) calculated using equation (5.42).

In neuroimage data, when comparing the cluster centroid with its member voxel

time sequences, almost all of the entire range of positive correlation values is typically

observed. However, a lower limit must exist where minx∈Xi
Rk[x] > 0, since by definition

no member voxel can be uncorrelated to the centroid. Therefore, for each cluster, we

obtain a bounded function of the contiguity over the domain of correlation coefficients

written as c(rc), where the parameter 0 ≤ rc ≤ 1 is a lower limit threshold that only

includes voxels with Rk[x] ≥ rc in the contiguity calculation. Figure 6.2 illustrates the

function c(rc) and the corresponding behaviour of the cluster when rc takes on several

values. These images are shown in the radiological convention: as though viewing the

transverse section from the subject’s feet. Hence, the right hemisphere appears on the left

side of the image and vice versa. Notice, in particular, how low contiguity thresholds lead

to the admission of spurious voxels that are poorly correlated.

The choice of parameter values for rc and m should be based on the properties of

the cerebrovasculature that are known in general and are also observed in the data. In

particular, the size of a contiguous voxel group determined by m should be chosen based

on the relationship between the voxel size and the known extent of functional hyperemia

and spatial smoothing performed during data preprocessing. The threshold rc can be

determined based on the behaviour of the function c(rc) and even, perhaps, on a statistical

hypothesis test that would have to account for the known dependence between adjacent

voxel correlation values that was demonstrated by the autocorrelation estimates γ̂[τ ] from

chapter 4. As a first step to demonstrate the performance of this criterion on neuroimage



CHAPTER 6. ANALYSIS II: SPACE-TIME STRUCTURE OF BOLD SIGNAL 91

Figure 6.2: Illustration of the effect of rc threshold values on the contiguity function
for a typical voxel cluster with colour bar indicating r(x, vi) on a transverse anatomical
overlay shown in radiological convention. Voxels forming a contiguous cluster Xi

are shown according to the colourmap scale that quantifies r(x, vi) for contiguity
thresholds rc of 0.6 (a, blue square), 0.7 (b, green square), and 0.8 (c, red square).
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data, we set the threshold limit rc equal to the median of the values taken by the contiguity

function for each cluster.

6.3 Time characterisation: causal cross-correlation

The hand grip response recorded by the experimental apparatus in the visual feedback

controlled motor task is an indicator of the temporal relation between the event-related

stimuli and the nervous system response. Hence, a comparison is possible between the

temporal behaviour of each cluster centroid and the motor response by calculating the

cross-correlation function of their time sequences. The centroid time sequence vi[t], of

length T , for each cluster can be compared to the motor response time sequence m[t], sub-

sampled to match vi[t], according to the following definition for a causal cross-correlation

function.

Definition 7. Given a cluster centroid time sequence vi[t], a simultaneously recorded mo-
tor response time sequence m[t], subsampled such that t = 0, . . . , T − 1 correspond to the
same time points for both sequences, and a known minimum interstimulus duration ∆ > 1
measured in time sample units, the causal cross-correlation function is the sequence of
length ∆ given by

vi ⋆ m[d] =

T−1∑

t=0

ṽi[t+ d]m[t], d = 0, . . . ,∆ − 1, (6.5)

where ṽi[t] = vi[t mod T ] is the periodic extension of vi, and d is the delay of the BOLD
signal following the motor response.

The magnitude of vi ⋆ m[d] is meaningful because it is related to the correlation

r(ṽi[t+d], m[t]) by the formula vi⋆m[d] = (T−1)svsmr(ṽi[t+d], m[t]), where sv and sm are

the sample standard deviations of the sequences vi[t] and m[t], respectively. This formula

follows immediately from the definition of r(x, y) given in equation (5.45) (page 76). The

delay d is also important because it models the phase shifts in vi[t] due to the expected

delay in functional hyperemia. Time advances d < 0 are excluded from this model be-

cause the stimuli are presented following a randomised interstimulus duration to minimise
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Figure 6.3: Plot of a cluster centroid BOLD response signal (black), the corre-
sponding motor response signal (red), and the event-related stimuli (grey) acquired
throughout a neuroimage session from a normal subject.

anticipation of the events. Furthermore, delays larger than the minimum interstimulus

duration d > ∆ are also excluded to avoid the incorrect association of a BOLD response

with motor responses that precede the latest motor response during an sequence of events.

Figure 6.3 illustrates the typical relationship between the event-related stimuli, the motor

response, and the BOLD response through the course of one neuroimaging session in a nor-

mal subject. The maximum value of vi ⋆m[d] corresponds to a correlation of r = 0.44 with

a delay of d = 1, which corresponds to 2 seconds because the MR protocol used TR = 2

s. The delay is reasonable when looking at the time difference between corresponding

peaks in the vi[t] and m[t] signals as well as when comparing with the expected normal

response plotted in figure 4.3a (page 57). However, limitations of this approach are also

apparent in this example. First, note that the response delay between signals is longer in

the early events than in the later events. This effect is not captured by definition 7, since

it considers the entire session rather than each event separately. Secondly, the quality of

the BOLD signal is relatively poor compared to the motor signal because it is subject to

prominent artefacts caused by scanner noise, minor systemic fluctuations in blood flow,

and minor head movements. Thus, the cross-correlation magnitude is influenced by the

intensity of these artefactual effects and can lead to a misrepresentation of the average

response throughout the session.

This latter point leads to the question of selecting clusters based on the magnitude
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of vi ⋆ m[d], or based on the degree of correlation each cluster has to the motor response

signal. As shown previously in chapter 4, clusters with negatively correlated centroids

have been observed in previous BOLD fMRI studies (Goutte et al., 1999; Röther et al.,

2002; Roc et al., 2006). Hence, we equally consider clusters with negatively correlated

centroids as responsive to the paradigm by selecting clusters with
∣
∣r(ṽi[t+ d], m[t])

∣
∣ ≥ rm,

where 0 < rm < 1 is the correlation threshold between the delayed BOLD and motor

sequences that maximise vi ⋆ m[d]. While arbitrary thresholds can be set for individual

sessions, the variability between subjects, e.g., each having their own degree intercluster

dependence, makes this approach unrealistic in general. It seems reasonable for each ses-

sion, however, that clusters with the highest causal cross-correlations are the most likely

regions representing a BOLD response signal. Consequently, in the next chapter, we in-

clude all the cluster parameters from a single session together in a session-wide probability

model to determine the appropriate threshold values for cluster selection. To demonstrate

the performance of this criterion at present, the results shown here are obtained with an

arbitrary threshold rm = 0.30 (whose value is in fact justified in the next chapter) for

neuroimage data acquired from normal subjects.

6.4 Results

The proposed criteria are applied to neuroimage data to characterise the space-time struc-

ture of brain regions that respond to the event-related paradigm. Indeed, the cluster used

to generate figures 6.2 and 6.3 is obtained from a normal subject performing the motor

task with their right hand, and it is clear that the response is colocalised with the left M1

motor area and exhibits a centroid time sequence that is causally related to the motor

response signal.

Figure 6.4 applies these criteria to a different normal subject performing the same

motor task with their right hand. The resulting clusters obtained from the proposed
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Figure 6.4: Illustration of the space-time characteristics of the clusters from a normal
subject performing the event-related visual feedback controlled motor paradigm. The
membership maps (bottom four rows) are displayed in transcranial, sagittal, and
coronal projections seen from the superior, right, and posterior views, respectively.
The voxels identified by each cluster have been circled in their corresponding colour on
the GLM-t map (top row) testing for the normal hemodynamic response at p < 0.001.
The contiguity threshold value is marked by a � symbol on the contiguity functions.
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method are compared with the GLM-t map. The most prominent observation between

these methods is that the four clusters shown match the GLM-t map when they are

superimposed over each other. This is highlighted by colour-coding each cluster with

their corresponding regions in the GLM-t map. It is clear that each of these clusters

are correlated to the motor signal; however, their centroid time sequences plotted are

dissimilar and preferably should not be mixed.

Clusters 20 and 21 are within the right cerebellum and the left M1 motor area,

respectively. As discussed in chapter 2, these functional areas are well known to be involved

in our event-related paradigm. Clusters 9 and 13, are more likely to be venous signals

generated by the accumulation of blood draining through the transverse and superior

sagittal sinuses, respectively. Indications of this are based on the colocalisation of clusters

9 and 13 with these prominent venous sinuses, the heightened intensity of their BOLD

signals compared to the M1 response in cluster 21, and their matching delay and similar

time sequences.

Two other interesting observations can be made from this result. First, the ampli-

tude of the BOLD signal in each cluster seems related to the location of the contiguity

function peak value. Indeed, the maximum contiguity threshold rc max that produces a

non-zero c(rc max) is proportionally related to the SNR of the cluster. To see this, notice

that in the noiseless case SNR→ ∞, the voxels are perfectly correlated with the centroid

time sequence, which implies that rc max → 1. As noise is introduced, the correlations

must fall and consequently rc max must follow. Second, the suspected venous clusters 9

and 13 have a relatively lower contiguity and motor response correlation than clusters 20

and 21. This shows that selecting the threshold rm arbitrarily can easily lead to incorrect

cluster selection. This observation motivates the development of an objective method for

threshold selection presented in the final chapter on the analysis methods in this thesis.
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6.5 Discussion

This chapter proposes a method for the systematic selection of voxel maps identifying

potentially activated cerebral territories obtained from the cluster analysis of BOLD fMRI

data. Selection criteria were proposed for the automated interpretation and selection of

the clusters whose voxels are significantly responsive to the motor response during event-

related stimuli and occupy contiguous regions in the brain.

Cluster contiguity reveals interesting properties of the spatial structure of the data.

The functions c(r) shown in figures 6.2 and 6.4 have the typical shape seen in the majority

of the selected clusters we have observed in these studies. That is, for high thresholds,

these strongly correlated member voxels are concentrated in one region and hence have a

high contiguity. As the threshold is relaxed, weakly correlated members are increasingly

admitted and are more so sparsely distributed as Ri[x] becomes small. Therefore, spurious

clusters can be distinguished from compact ones by comparing their contiguity functions.

We also observed how the value rc max may be useful in estimating SNR throughout clus-

ters. However, while this may be helpful in signal analysis, we must give caution that

calculating the SNR value correctly from rc max in these data is non-trivial because of

the intervoxel dependence introduced into the r(x, vi) data due to the spatial correlations

noted in chapter 4.

In an earlier study by Goutte et al. (1999), the causal cross-correlation between

centroids and an artificial stimulus signal was recommended as a pre-processing stage.

There, the correlation values and corresponding phase delays served as an alternative to

neuroimage data in an ordinary k-means clustering to reduce the algorithm’s sensitivity to

the fixed number of clusters and to mitigate scanner noise. Although this may be highly

relevant for k-means clustering, this method was not used here for two reasons. First,

it is critical in our research to relate the cerebrovascular and nervous system responses

because of their known uncoupling in stroke. Therefore, we instead correlate the centroids

to the motor response. Second, we are not using the original k-means clustering which is
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more sensitive to the choice of initial parameters and instead account for noise using the

established preprocessing techniques that have so far proven effective for our analyses.

The results shown in this chapter demonstrate how the expected M1 motor region

is identified in normal subjects that performed the event-related motor task with their

right hand. While, these voxels are also identified by the GLM-t testing for the normal

hemodynamic response, the major difference observed is that the proposed method distin-

guishes between responses while the GLM-t merges them together. In conclusion, these

results provide evidence that pattern recognition methods can potentially expose relevant

spatial and temporal characteristics of these regions by not mixing identified response

signals across separate regions. Such information may be useful in studying functional

hyperemia behaviour perturbed by cerebrovascular disease in distinct regions of the brain.



Chapter 7

Analysis Methods: Part III

Bayesian Hierarchical Model

7.1 Introduction

The analytical research undertaken in the preparation of this thesis is concluded in this

chapter. The final stage of analysis is a probabilistic framework that models the struc-

ture identified in functional neuroimage data. The central motivation for probabilistic

neuroimage analysis revolves around the fact that these data are primarily used for ex-

ploratory scientific research with the aim of understanding the substrates of the functional

organisation of the brain. Generally speaking, we rely on a probability model to infer the

true functional state of the subject from the empirical observations that are made from

our data. This statement, however, precludes the selection of a suitable model; a task

that first requires the careful examination and characterisation of the observed data as

was performed in the previous chapters. Indeed, when studying complex systems and data

acquired therefrom, the research to determine a suitable probability model is substantial

and, in fact, is a study on the nature of the system itself.

Building on the results from the structural characterisation of the data clusters

identified with exploratory pattern recognition, a Bayesian hierarchical probability model

99
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is proposed to determine the statistical significance of each cluster with respect to the

global structure observed throughout the entire data set. It is important to mention that

the model presented here is general and does not depend on the specific clustering and

parameterisation methods used in this thesis. This modular approach is desirable for two

reasons. First, it circumvents the difficulty discussed in chapter 5 of directly integrating

statistical methods into the exploratory pattern recognition algorithm, and, second, it

allows for the independent innovation and comparison of exploratory pattern recognition

and parameterisation algorithms.

This chapter begins by empirically justifying the choice of a Bayesian hierarchical

model with a demonstration of the hierarchical organisation of the data and the Gaussian

distribution of its temporal correlation structure. Next, the probability theory of the

model is developed and is applied to functional neuroimage data. The implementation

a Markov chain Monte Carlo (MCMC) technique used to fit the model to the data is

described and includes a technique to verify its convergence. The method is validated

using simulated BOLD fMRI data and by comparing results with the activation maps

generated from a model-based GLM-t test. The specificity of the method is examined

using null fMRI data. The results suggest that the proposed method provides an objective

framework to identify, and estimate the significance of, distinct BOLD response signals in

event-related fMRI. The chapter ends with a discussion of the advantages and limitations

of the model. The material presented in this chapter is a novel application of Bayesian

data analysis for the exploratory pattern recognition of neuroimage data and is currently

being used in the preparation of an article to be submitted for peer-reviewed publication.

However, the idea of applying a Bayesian hierarchical model to BOLD fMRI data as a

means to infer cluster significance by stimulus-related correlation has been recently (and

independently) recommended by Lindquist & Gelman (2009) as an alternative to avoid the

multiple comparison framework used in standard statistical analyses. We also recognised

this advantage prior to their publication as well as other important advantages described
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Figure 7.1: Overview of the fMRI analysis stages. The acquired neuroimage data are
partitioned by an exploratory pattern recognition algorithm into a set of k clusters.
The set of clusters is then parameterised by k features. The features are then used in
a Bayesian model to determine the salience of each cluster.

here.

7.2 Empirical inspection of clustered data

An overview of the processing stages involved in the analysis of the neuroimage data is

given in figure 7.1. Essentially, following cluster analysis and space-time characterisation,

the clustered data are parameterised by a feature vector yi for i = 1, . . . , k, which can

be used as observations within a probability model. For the cluster centroid vi[t] and

motor response m[t] time sequences of length T , we consider the correlation coefficient

yi = r(ṽi[t+ d], m[t]) obtained by the delay d that maximises the causal cross-correlation

function vi ⋆ m[d] from definition 7 (page 92).

To study the empirical distribution of y, we consider two questions. At the voxel

level, how is the temporal correlation r(x,m) between each voxel x ∈ X and the motor

response m distributed? At the cluster level, how is the correlation r(x, vi) between

each member voxel x ∈ Xi and the cluster centroid vi distributed? Histograms of these



CHAPTER 7. ANALYSIS III: BAYESIAN HIERARCHICAL MODEL 102

Figure 7.2: Histograms demonstrating the hierarchical and Gaussian form of cluster
voxel correlations. a, Guassian-shaped distribution of r(x,m) correlations for ten
null fMRI sessions shows how the global signal can be biased in either direction. b,
frequency-normalised distribution (colour bar indicates relative frequency) of member
voxel correlations (plotted along the ordinate) around their cluster (index along the
abscissa) centroid correlation r(vi,m) within one fMRI session. These histograms
demonstrate how motor response correlations are hierarchically distributed and global
and cluster levels.

correlations were computed to answer these questions. Figure 7.2a shows the empirical

distribution of r(x,m) for ten null fMRI sessions, and figure 7.2b shows the superposition

of the distributions r(x, vi) for i = 1, . . . , k from one session. These plots reveal several

phenomena. First, at the voxel level, each session produces a Gaussian-shaped distribution

of r(x,m) correlations that are not always centred at zero but rather can have a positive or

negative bias. Indeed, this bias has been demonstrated in previous fMRI and PET studies

(Zarahn et al., 1997; Murphy et al., 2009) resulting in a stimulus-correlated average signal

η̂[t] = 〈w[x, t]〉x referred to as the global signal. Hence, the global signal can be modelled

by a Gaussian random variable with mean and variance conditioned by the empirical

distribution of r(x,m). Therefore, each voxel correlation r(x,m) can be modelled as a

realisation from this random variable. Second, at the cluster level, each session exhibits

a hierarchical organisation of correlations r(x, vi) for i = 1, . . . , k, where each cluster

produces a Gaussian-shaped distribution centred at r(vi, m). In conjunction with the

bias from the global signal, the voxel correlations are also influenced by the clusters.

Consequently, each cluster can be modelled by a Gaussian random variable whose mean
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and variance are conditioned by the empirical distributions of yi and r(x, vi).

7.3 Bayesian hierarchical model

Based on these observations, it is reasonable to explain the correlation data using a model

that hierarchically represents the variability in each cluster as well as the global variability,

that is, over all clusters combined. For example, in addition to the expected BOLD signal

appearing in a subset of localised voxels, other factors such as unrelated physiological and

MR scanner effects also cause fluctuations in the data. These can be due to general varia-

tions in blood circulation, electronic noise, magnetic field inhomogeneities, or movement,

which can affect some or all voxels in the data. Moreover, the intersubject variability

shown in figure 7.2a calls to attention the impact that a biased global signal may have on

determining cluster significance based on correlation thresholding.

A Bayesian model can account for the bias introduced by the global signal by con-

ditioning the model parameters based on the empirical observations y and their variance.

Therefore, we propose a Bayesian hierarchical model to represent the correlative effects of

the global signal and of each cluster by model parameters whose values are conditioned on

the neuroimage data. The formulation of this model follows the approach of Gelman et al.

(2004). The structure of the model parameters is illustrated in figure 7.3. From bottom

to top, each of k clusters inputs a vector yi whose elements are empirical measures (e.g.,

the correlation r(vi, m)) from each cluster. The objective is to determine whether voxels

forming cluster i are significantly affected by an underlying response or rather exhibit an

unrelated signal. The underlying effect of each cluster is modelled as the parameter βi

(the true value that yi is measuring). The apex of the structure is the hyperparameter α

that models the global signal throughout the data set. The hyperparameter α controls

this effect by modelling the influence of the global signal on each cluster via βi. The fol-

lowing subsections provide the model formulae and explain how the relationship between
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Figure 7.3: Bayesian hierarchical model parameters (adapted from Gelman et al.

(2004)) used in the final stage of the analysis. The model parameters (α, β) are fit to
the data y, such that each cluster feature yi is drawn from an underlying signal βi.
In turn, all underlying signals β are drawn from a global signal α.

the global signal and each cluster is essential in determining cluster significance.

7.3.1 Joint probability distribution

The model parameters α, βi are Gaussian random variables. The parameter βi is dis-

tributed with variance σ2
i , estimated directly from the r(x, vi) data in cluster i. The hy-

perparameter α has variance τ 2; these are also random variables, however, less is known

about their empirical distributions. Once the mean and variance are described, simulated

realisations of the model parameters {α, β, τ} given the data {y, σ} are obtained from the

joint posterior distribution

p(β, α, τ |y, σ) ∝ p(α, τ) p(β|α, τ) p(y, σ|β, α, τ), (7.1)

where the distributions p(·) are multivariate functions of the vectors y = (y1, · · · , yk)
⊤,

σ = (σ1, · · · , σk)
⊤, β = (β1, · · · , βk)

⊤, and the scalars α and τ . Thus, the form of the

distribution p(β, α, τ |y, σ) encapsulates the probabilistic structure of the entire model.

This distribution is shaped by the functions on the right-hand side of equation (7.1).
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7.3.2 The likelihood, population, and prior distributions

The cluster centroid is the sample average of its member voxel time series. Thus, appealing

to the central limit theorem, the distribution of the centroid correlation values approaches

normality for clusters of many voxels. This approximation is already good for clusters

containing over twenty voxels. Hence, given parameter realisations, the likelihood of each

data point can be modelled as a Gaussian distribution

yi, σi|βi, α, τ ∼ N(βi, σ
2
i ). (7.2)

In exploratory models, two convenient assumptions exchangeability and Bayesian

conjugacy can be made when little is known about the nature of the data. Exchangeability

allows us to model the multivariate distributions in equation (7.1) as simple products of

their components. Thus, the joint likelihood takes the form

p(y, σ|β) =

k∏

i=1

p(yi, σi|βi). (7.3)

Bayesian conjugacy is a type of symmetry in equation (7.1), such that the prior and

population distributions have the conjugate parametric form of the likelihood. This implies

that the posterior distribution also has the conjugate form of the likelihood. In the case of a

Gaussian distributed likelihood as in equation (7.2), conjugacy implies that the population,

prior, and posterior densities also be of Gaussian form.

Thus, under the assumption of exchangeability, the joint population distribution

takes the product form

p(β|α, τ) =

k∏

i=1

p(βi|α, τ), (7.4)

where each cluster has a Gaussian random variable describing its population

βi|α, τ ∼ N(α, τ 2). (7.5)
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Finally, since nothing is known about α and τ a priori, a noninformative dis-

tribution for the joint prior p(α, τ) is appropriate. Indeed, if we assume the uniform

distributions p(α|τ) ∝ 1 and p(τ) ∝ 1, then, the joint prior is also uniform

p(α, τ) = p(α|τ)p(τ) ∝ 1. (7.6)

7.4 Gibbs sampling of the posterior density

Only in simple cases can p(β, α, τ |y, σ) be computed with Bayes’ rule analytically, as in

equation (7.1). Here, we consider a more general approach that is immediately applicable

to hierarchical models that are not necessarily Gaussian. The approach simulates posterior

density realisations of the model parameters using the MCMC technique known as the

Gibbs sampler. This requires factoring equation (7.1) into the alternate form

p(β, α, τ |y, σ) = p(β|α, τ, y, σ) p(α, τ |y, σ)

= p(β|α, τ, y, σ) p(α|τ, y, σ) p(τ |y, σ) (7.7)

so that realisations can be simulated from each term starting with the rightmost density

to give τ , then α, and finally β. These MCMC simulations begin with rough estimates of

the parameters based on the data, and with each iteration the Markov chain is guaranteed

to approach the true distribution of the parameters.

Gelman et al. (2004) describe a method for simulating batch realisations of k +

2 variables {β1, · · · , βk, α, τ} for each iteration, hence, yielding one simulated point of

the joint posterior distribution p(β, α, τ |y, σ). To simulate realisations, we require the

conditional density functions on the right-hand side of equation (7.7). Starting with the

conditional posterior distribution of τ 2, we have the following result.

Lemma 1 (Raiffa & Schlaifer (1961); Gelman et al. (2004)). Let (yi, σ
2
i ) for i = 1, . . . , k

be an exchangeable data set described by a conjugate Bayesian hierarchical model with
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non-informative hyperparameters α and τ , and a set of Gaussian parameters βi|α, τ ∼
N(α, τ 2) corresponding to each data point. Then the Gibbs sampler estimate of the con-
ditional posterior distribution of the variance τ 2 follows a scaled inverse-χ2 distribution,
written as

τ 2|βi, α, y ∼ Inv−χ2(k − 1, τ̂ 2), (7.8)

where τ̂ 2 is the unbiased variance estimate based on the realisations α and βi given by

τ̂ 2 =
1

k − 1

K∑

i=1

(βi − α)2. (7.9)

Proof.

For a generic random variable θ > 0, the scaled inverse-χ2 distribution is written as
θ ∼ Inv−χ2(ν, s2) and has the exponential form

p(θ|ν, s2) =
(ν/2)ν/2

Γ(ν/2)
sνθ−(ν/2+1)eνs2/(2θ), (7.10)

with two parameters: the degrees of freedom ν > 0 and the scale s > 0. We can establish
that the random variable τ 2|βi, α, y is scaled inverse-χ2 by using the conjugate prior density
and letting θ = τ 2. From equation (7.2), the likelihood βi|α, τ 2 is

p(βi|α, τ 2) ∝ (τ 2)−(k−1)/2 exp

(

− (k − 1)τ̂ 2

2τ 2

)

, (7.11)

where the unbiased average is written as

τ̂ 2 =
1

k − 1

k∑

i=1

(βi − α)2. (7.12)

Recall that τ has a noninformative prior density p(τ) ∝ 1; therefore, p(β|α, τ 2) has k − 1
degrees of freedom rather than k. The conjugate prior of equation (7.11) has the form
τ 2 ∼ Inv−χ2(ν, s2); thus, we write it as

p(τ 2) ∝ sν(τ 2)−(ν/2+1)e−νs2/2τ2

. (7.13)

Computing the product p(τ 2) p(β|α, τ 2) gives the posterior density

p(τ 2|β, α) ∝
[(

s2

τ 2

)ν/2+1

eνs2/2τ2

] [

(τ 2)−(K−1)/2e−(K−1)τ̂2/2τ2

]

∝ (τ 2)−(ν+K−1)/2+1e−(νs2+(K−1)τ̂2)/2τ2

. (7.14)

From this expression, one can recognise that

τ 2|β, α ∼ Inv−χ2(ν +K − 1, [νs2 + (K − 1)τ̂ 2]/[ν +K − 1]). (7.15)
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Finally, notice that the noninformative prior p(τ) ∝ 1 implies that ν = 0, and when substi-
tuted back into equation (7.15) establishes equation (7.8). QED

Moving on to the second term from the right in equation (7.7), we seek the condi-

tional posterior distribution of α. It is not hard to see that this distribution is simply the

sample average and sample variance of the βi terms

α|β, τ ∼ N

(
1

k

k∑

i=1

βi,
τ 2

k

)

. (7.16)

Finally, the conditional posterior distribution of βi is obtained based on the ex-

changeability assumption, since the multivariate density functions for equations (7.7) and

(7.2) have product forms. Thus, computing the product p(β|α, τ)p(y, σ|β, α, τ) using

equations (7.3) and (7.4) yields the following result.

Lemma 2 (Gelman et al. (2004)). Let (yi, σ
2
i ) for i = 1, . . . , k be an exchangeable data set

described by a conjugate Bayesian hierarchical model with noninformative hyperparameters
α and τ , and a set of Gaussian parameters βi|α, τ ∼ N(α, τ 2) corresponding to each data
point. Then the Gibbs sampler estimate of the conditional posterior distribution of each
βi is the Gaussian random variable

βi|α, τ, yi, σi ∼ N
(
β̂i, Vβi

)
(7.17)

whose mean and variance parameters are based on hyperparameter realisations

β̂i =
yi/σ

2
i + α/τ 2

1/σ2
i + 1/τ 2

, (7.18)

Vβi
=

1

1/σ2
i + 1/τ 2

. (7.19)

Proof.

The conditional posterior distribution of each realisation β is

p(β|α, τ, y, σ) = p(β|α, τ) p(y, σ|β, α, τ)
= p(β|α, τ) p(y, σ|β), (7.20)
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where

p(β|α, τ) =
1

τ
√

2π
e−(β−α)2/2τ2

, (7.21)

p(y, σ|β) =
1

σ
√

2π
e−(y−β)2/2σ2

. (7.22)

Thus, the product gives

p(β|α, τ, y, σ) =
1

2πστ
exp

[

− 1

2

(
(β − α)2

τ 2
+

(y − β)2

σ2
︸ ︷︷ ︸

T

)]

. (7.23)

The term T is quadratic in β

T =

(
1

σ2
+

1

τ 2

){

β2 − 2

( y
σ2 + α

τ2

1
σ2 + 1

τ2

)

β +

(
y2

σ2 + α2

τ2

1
σ2 + 1

τ2

)}

. (7.24)

By completing the square and absorbing the third term into the normalising factor for the
distribution, one recognises the Gaussian form with mean and variance as claimed

β̂ =
y
σ2 + α

τ2

1
σ2 + 1

τ2

, (7.25)

V =
1

1
σ2 + 1

τ2

. (7.26)

QED

In summary, given the data (y, σ2), equations (7.8), (7.16), and (7.17) yield a batch

realisation for the respective conditional posterior random variables τ , α, and β from each

iteration of the Gibbs sampler. As noted, these are MCMC simulations that ultimately

estimate realisations by iteratively converging toward the true joint posterior distribution

p(β, α, τ |y, σ). Therefore, to ensure that the estimates are sufficiently close to the target

distribution and, thus, can be treated as true realisations, we will require a means to

check for convergence. The following simulation algorithm encapsulates the entire Gibbs

sampler with convergence verification.

Algorithm 3 (Gibbs sampler (Gelman et al., 2004)). Let (yi, σ
2
i ) for i = 1, . . . , k be a

data set described by a Bayesian hierarchical model with random variables τ , α, and β.
Choose two positive integers, such as, G = 10 the number of Gibbs samplers running in
parallel, and 2N = 2, 000 the number of realisations from each sampler, and one small
number, such as ǫ = 0.001. Then a total of GN = 10, 000 batch realisations are obtained
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by the doing the following for each of the G samplers:

1. Set the initial values for each βi = yi and compute the initial value for α = 〈βi〉.

2. Simulate a realisation of τ using equation (7.8)

τ 2|βi, α, y ∼ Inv−χ2(k − 1, τ̂ 2), (7.27)

which can be implemented by first making random draws from a χ2 random variable
with k − 1 degrees of freedom, X = χ2

k−1, and then setting τ 2 = (k − 1)τ̂ 2/X.

3. Simulate a realisation of α using equation (7.16)

α|β, τ ∼ N

(
1

k

k∑

i=1

βi,
τ 2

k

)

(7.28)

with the latest realisations of τ and β.

4. Simulate a realisation for each βi using equation (7.17)

βi|α, τ, yi, σi ∼ N
(
β̂i, Vβi

)
(7.29)

with the latest realisations of α and τ .

5. Store the batch of latest realisations {τ, α, β1, · · · , βk}.

6. Repeat steps 2-5 until 2N batches are obtained.

7. Discard the first N batches from each Gibbs sampler (considered “burn in” samples).

8. Compute the potential scale reduction given by

R̂ =

√

1

W

(
N − 1

N
W +

1

N
B

)

, (7.30)

where W and B are the within-sampler and between-sampler variance of the remain-
ing GN realisations.

9. If the inequality |R̂| < 1 + ǫ is satisfied, then these GN realisations are convergent
and represent realisations from the true joint posterior distribution of the Bayesian
hierarchical model.

Now equipped with a convergent MCMC sampling of the joint probability distri-

bution, we can calculate the significance of each cluster with respect to the global signal

by computing Bayes’ error between the distributions of the hyperparameter α and the

cluster parameters βi, for each i = 1, . . . , k. Bayes’ error is the probability that a sample
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is incorrectly classified as being drawn from a particular distribution and represents the

optimal error rate in sample classification between the two distributions. Geometrically, it

is the overlapping area between the tails of both distributions. Therefore, a cluster feature

yi is significant with probability of error p when the Bayes’ error between the distributions

of the global signal α and the cluster parameter βi is less than p. We illustrate as a

summary graph the area overlap between each βi and α by generating a corresponding

set of boxplots arranged horizontally whose box and whiskers extend vertically and show

(by convention) the 5% and 95% quantiles of each distribution. When the boxplot of a

given βi does not overlap with the boxplot of α, then that cluster has a distribution of cor-

relation values that are significantly different from the rest of the data set and potentially

represent a stimulus-response cluster with probability of error p < 0.05.

7.5 Results

Summary results from the proposed method are shown in figure 7.4. The joint posterior

density p(β, α, τ |y, σ) is illustrated in 7.4a by a set of box plots representing the MCMC

distributions of the parameters α, β1, . . . , βk arranged horizontally, much like the corre-

lation histogram of figure 7.2b. The inter-quartile range (IQR) of the voxel-paradigm

correlations are shown by the box height; the whiskers extend another 1.5 IQR beyond

the box. A low Bayes’ error corresponds to a cluster whose box plot does not overlap with

that of α shown in grey. Boxes marked with an asterisk have p < 0.05. The figure shows

that the simulated data are partitioned into 24 clusters, where β corresponding to clusters

3, 4, and 5 are significantly different from α. The three response-signals seem to be well

distinguished by the voxel maps in figure 7.4b. The averaged voxel time series are shown

in figure 7.4c. The correlations and response delay pairs (ri, di) for clusters 3, 4, and 5,

are (0.78, 8), (0.78, 6), (−0.87, 4), respectively. The correlations are higher than typically

seen in fMRI due to the inclusion of signal voxels with SNR > 1, but the delays (in sec-
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onds) match those seen in figure 4.3a (page 57). The stability of the proposed method

was verified by three repeated analyses on three simulated data sets. In all cases the same

three clusters were identified from a range of [24, 30] clusters whose correlation coefficient

estimate differed on average by 3.8 × 10−4 within a data set, and by 0.034 between data

sets.

Results using the GLM-t testing for the normal hemodynamic response at p < 0.001

are computed for comparison. Two, one-tailed tests are done to detect a significant increase

or decrease in voxel intensity, referred to as “activation” or “deactivation”, respectively.

Summary results from the GLM-t method are shown in figure 7.5. Using the paradigm

that generated the data shown in figure 4.3b (page 57), only signal 2 is identified as an

activation as shown in figure 7.5a. The deactivation finds no signal voxels. Signals 1 and

3, however, are identified by advancing the paradigm by 4 seconds (p[n] → p[n + 2]) as

suggested by the time-to-peak of the simulated signals in figure 4.3a. The significance

threshold for the GLM-t is p < 0.001. This value was chosen ad hoc to approximate the

significance threshold of the proposed method so that the voxel maps in figures 7.4 and

7.5 may be visually compared. Indeed, the structure of the t-maps shown are similar to

the r-maps in figure 7.4 from the proposed method, as expected according to Golay et al.

(1998). Thus, similar results between methods are observed as their respective significance

thresholds, indicated by the white bar across the grey scales, increase proportionately.

Both methods have comparable sensitivity. This can be seen by recording the SNR of the

weakest signal voxel correctly identified in each of the 24 image slices. The weakest signal

voxel correctly identified by the proposed method has median SNR = 0.51 and worst case

SNR = 0.78; similarly, the GLM-t method has median SNR = 0.56 and worst case SNR

= 0.83.

The only major difference seen between the methods is related to specificity, namely,

the ability to distinguish between the three response signals. In general, the proposed

method seems capable of distinguishing various signals automatically, while the GLM-
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Figure 7.4: Simulation results from the proposed method. a, Box plots of paradigm-
cluster correlation values from the entire data set α and each cluster βi (i = 1, . . . , k).
The * symbol denotes clusters that are significantly different from α with p < 0.05.
b, Significant voxel-cluster correlation maps for clusters 3-5 (membership threshold
indicated by white bar on scale). c, Averaged voxel time series (events indicated by
vertical grey bars).

Figure 7.5: Simulation results from the GLM-t method. a, Significant voxel-
paradigm t-maps obtained from the correct paradigm. b, Significant voxel-paradigm
t-maps obtained from the paradigm advanced by 4 seconds (t-threshold indicated by
white bar on scale). c, Averaged voxel time series (events indicated by vertical grey
bars).
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t requires informed adjustments of the paradigm to achieve similar results. Even with

the necessary adjustments, the GLM-t method does not discern signals 1 and 2 as well

as the proposed method. In this simulation, the proposed method seldom misclassifies

these signal voxels. The worst case misclassification by the proposed method occurred

in a voxel with SNR = 0.78. The strongest signal voxels misclassified by the GLM-t

method, however, occur at higher signal strengths in voxels with a median SNR = 0.56,

and worst case SNR = 2.00. This difference is apparent when comparing the SNR level of

the confounded voxels in cluster 3 of figure 7.4b with those of figure 7.5a. Both methods,

however, identified signal 3 with perfect specificity.

Finally, we applied the proposed method to a set of ten null fMRI data sessions

to determine if clusters could be falsely selected. To do this, we applied the event-related

stimulus sequence shown in figure 4.3b (page 57) to these data, and the Bayesian model

concluded that none of the clusters were related to the stimulus. For example, the largest

stimulus-related centroid correlation observed in these clusters had a coefficient of 0.18,

which led to a probability of being significantly different from the global signal of correla-

tion α = 0.06 ± 0.14 (mean ± SD) with corresponding Bayes’ error p = 0.21.

7.6 Discussion

The application of exploratory algorithms to fMRI data has been hindered by the difficulty

in determining the statistical significance of the analysis results. However, the benefit of

using such algorithms to study the complex regulatory mechanisms of the cerebrovascu-

lature and its interaction with the nervous system may be unprecedented. This chapter

proposes an exploratory method for event-related fMRI, which uses the Bayesian hierar-

chical model as a statistical framework to infer the significance of each identified region.

Our simulation results show comparable behaviour between the exploratory method and

the GLM-t over a wide range of physiologically plausible SNR levels. These results also
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demonstrate that the proposed method can discriminate between distinct response signals

without a priori knowledge of their dynamics.

The proposed method offers three advantages in analysing event-related data over

methods based on hypothesis test statistics. First, the fuzzy k-means algorithm used is

independent of the stimulus paradigm and, therefore, is not biased by the unequal sample

sizes between stimulus-response and rest measurements inherent in event-related designs.

The reliability of hypothesis test statistics, on the other hand, is considerably affected

by unequal sample sizes, especially when samples exhibit variance heterogeneity (Howell,

1992). Indeed, the GLM performs best with blocked designs (Worsley & Friston, 1995)

and otherwise may require a correction strategy.

Second, the Bayesian hierarchical model accounts for the effect of the global signal

that has been shown by Zarahn et al. (1997) to bias statistical inference. While correction

strategies have been proposed for model-based methods (Zarahn et al., 1997; Desjardins

et al., 2001; Macey et al., 2004), this has not been addressed in exploratory methods to

our knowledge.

Finally, although only response signals that have been reported in the literature

were used in our simulation study, the proposed method is not signal dependent and may

be used to discover arbitrary response signals. This is important in event-related fMRI

as short stimuli (under 4 seconds) may evoke considerably nonlinear responses (Boynton

et al., 1996; Vazquez & Noll, 1998), which are more difficult to model a priori.

We have previously described, in the preceding chapter, selection criteria that are

informative of the temporal and spatial structure of voxel clusters from fMRI data. There,

we used the arbitrary threshold |rm| < 0.30 for cluster selection. To justify this choice, the

aggregate correlation coefficient for the significant and insignificant clusters in our fMRI

results were computed, yielding r̄accept = 0.41 ± 0.17 (n = 22) and r̄reject = 0.15 ± 0.08

(n = 239), respectively. Therefore, our data suggest that the decision boundary may

indeed lie near |rm| = 0.30. However, care is required when considerable global signal
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correlation is present in individual subjects. A recent article by Murphy et al. (2009)

investigates the effect of the global signal and correction strategies in detail.

In conclusion, the reproducibility and comparability of results from the proposed

exploratory method have been demonstrated on simulated data and on human null fMRI

data. The results suggest that the proposed method is a suitable approach to separately

identify distinct, physiologically plausible BOLD responses within event-related fMRI ses-

sions.



Chapter 8

Imaging Motor Deficits After Stroke:

Space-Time Structure of the BOLD Signal

8.1 Introduction

Understanding the regulatory mechanisms of cerebral blood flow and its dysfunction in

disease is a central topic in the neurological scientific literature. Ample evidence now

exists indicating that factors related to age, disease, and medication can alter cerebrovas-

cular regulation (Attwell & Iadecola, 2002; D’Esposito et al., 2003; Burke & Bührle, 2006;

Girouard & Iadecola, 2006; Kocharyan et al., 2008). As a consequence, these factors,

many of which may not be readily apparent, will also significantly affect the BOLD signal.

The recurring message from these studies is that an analysis inferring neuronal activity

from an a priori model of the BOLD response signal can be easily misinterpreted in the

presence of these confounding factors. Therefore, fMRI may be better suited as an ex-

ploratory technique used to identify and discriminate between differing BOLD responses

throughout the brain.

The analytical methods developed throughout the thesis are now applied to neu-

roimage data acquired during the event-related visual feedback controlled motor task from

normal and ischemic stroke populations. First, the normal and stroke participants are enu-

117
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merated and described. Second, the results obtained from each stage and component of

the analysis are given, including the motor responses, neuroimage data, pattern recogni-

tion, cluster significance within the Bayesian model, and their space-time characterisation.

Finally, the identified brain regions responding to the event-related paradigm from each

group are presented in aggregate, compared, and interpreted. Interesting individual cases

that demonstrate the differences between groups are also shown. The chapter ends with a

discussion on the quality of the data, the performance of the method, and the conclusions

drawn from the results and based on the current body of knowledge in the literature. The

data and results shown here are currently being used in the preparation of an article to

be submitted for peer-reviewed publication.

8.2 Description of participants

A summary of the human subjects participating in this study is given here. The full details

of the neuroimage and subject participation protocols are given in sections 3.3 and 3.4.

8.2.1 Normal subjects

The group of participants representing the normal subject population were admitted if i)

they were between the ages of 20 and 65 during the study, ii) they gave informed consent

in accordance with the OHREB, and iii) they did not fit any of the following exclusion

criteria:

1. Contraindication to MRI as per The Ottawa Hospital criteria

2. Pregnancy

3. Inability to perform the required task

4. Diabetes, uncontrolled hypertension, chronic obstructive pulmonary disease, conges-
tive heart failure, or other significant concurrent medical or surgical disease

5. Prior symptomatic neurological disease resulting in deficit, cognitive changes, or
impairment of function
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Table 8.1: Participants in the normal group. Subject 2 declared that he is taking
medication to control his hypertension.

Subject code Gender Age Medication

Normal 1 male 38 none
Normal 2 male 57 atorvastatin, irbesartan
Normal 3 male 37 none
Normal 4 female 27 none
Normal 5 female 33 none
Normal 6 male 52 none
Normal 7 male 29 none

6. Seizure in past 12 months

7. Migraine in past week

8. History of alcohol or drug abuse

9. Inability to tolerate MRI (claustrophobia, anxiety)

Seven normal subjects of 39± 11 years of age (mean, SD) were enrolled as a sample from

the “normal” population. During the 4 hours prior to their participation, the subjects

did not consume any caffeinated products, any tobacco products, and did not perform

physical exercise. During the 12 hours prior to their participation, they did not consume

any alcoholic beverages. No issues were identified during the sessions and after asking the

subjects whether they experienced any difficulties or abnormalities during their participa-

tion. Their details are given in table 8.1. In order to match the quantity of data from the

stroke patients, two neuroimage sessions were selected from each subject, yielding a total

of 14 sessions forming the normal group data set.

8.2.2 Stroke patients

Four stroke patients of 73 ± 10 years of age were enrolled as a sample from the unilateral

ischemic stroke population with motor deficits that are part of an ongoing multi-centre

clinical trial. Their inclusion/exclusion criteria pertinent to this study can be summarised
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Table 8.2: Participants in the ischemic stroke group.

Subject Gender Age Ischemic Infarct Visit
code hemisphere description 3 weeks 3 months

Patient 1 female 80 right subcortical frontal lobe no yes
in MCA territory

Patient 2 male 61 left cortical lesions in pre- yes yes
and post-central gyrii

Patient 3 male 83 right entire frontal lobe yes yes
(grey & white matter),
superior temporal gyrus
in MCA territory, insula,
external capsule,
corpus striatum

Patient 4 male 67 right superior temporal gyrus yes yes
in MCA territory, insula,
external capsule,
corpus striatum

as follows. Each patient or their surrogate gave the informed consent to participate, in

accordance with the OHREB. These patients have had recently suffered an acute ischemic

stroke involving the cerebral cortex that resulted in hemiparesis. This is their first stroke,

and they do not have past or current additional complications, including those of neuro-

logical and cardiovascular nature. They do not have an ongoing history of drug/alcohol

abuse. When it was possible, the patients were invited to participate at two nominal time

points: 3 weeks, and 3 months post-stroke. These visits are referred to henceforth as “3

weeks” and “3 months,” respectively. While the data acquisition and analysis were per-

formed, the investigators were blinded to the patient’s medication records. Their details

are given in table 8.2.

Two neuroimage sessions per patient visit were selected testing the ipsilesional

hand, and the contralesional hand, yielding a total of 14 sessions forming the stroke group.

Figure 8.1 summarises the cerebral infarct of the stroke patients and plots their motor

responses acquired during the neuroimage sessions, along with a comparison obtained
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Figure 8.1: Summary showing the structural MRI (radiological convention) and
motor responses from the stroke patients in comparison to a normal subject. The
motor response signals from both hands are superimposed over each event occurring
between the vertical grey lines shown. These data for each subject were acquired
during two neuroimage sessions testing the right hand (top graph) and left hand
(bottom graph).
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from a normal subject. The structural MRI are shown in radiological convention. These

data reveal several outstanding features about our stroke patients and emphasises the

variability of impairment resulting from stroke. The ischemic regions vary considerably

across this group, including white matter infarct in the right middle cerebral artery (MCA)

territory in patient 1, small focal lesions on the left SMC in patient 2, extensive damage

throughout the right frontal lobe and right corpus striatum in patient 3, and extensive

damage in the right insular and right striatal regions in patient 4.

Correspondingly, the severity and nature of the impairments also vary substantially,

and introduce challenges in data management and analysis as well as in the interpretation

of the results. In particular, patients 1 and 3 were unable to remain still during the

sessions and inadvertently made large, sudden head movements being on the order of

several millimetres (despite comfortable head restraints). These movements caused major

artefacts in the neuroimage data and required that sections containing such artefacts be

removed during analysis. Patient 3 also showed a complication of motor and cognitive

deficits that resulted in a form of motor agnosia. That is, the patient believed that he

was responding well to the stimuli when, in fact, he did not respond to most stimuli

and very weakly to few stimuli. Patient 2 was able to perform the task well with both

hands, however, would often inadvertently perform mirror movements with the hand that

was not being tested. The striatal infarct in Patient 4 resulted in complete plegia in his

contralesional hand. Because we could not acquire a motor signal from that hand, we

had to make special adjustments to the paradigm to allow the patient to participate in

the study. Notably, we asked that the patient imagine moving his hand during events in

hopes of observing the presence of a volition-related SMC response.
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8.3 Results

8.3.1 Motor response data

The motor response signals provide us with an observable that is directly related to the

nervous system response to the event-related stimuli. Hence, to probe the neurovascular

relationship in this paradigm, we used them in the space-time characterisation of the

identified BOLD signal patterns. In addition to using the motor signals directly in our

analytical method, we provide a qualitative description of them here by comparing the

contraction grip strength, timing, and accuracy to the event stimuli in both hands during

each session.

All normal subjects performed the task similarly and with perfect event response

accuracy. That is, they responded to every event in a consistent and timely manner using

tested hand. Furthermore, they never squeezed the hand grip device between events,

and the non-tested hand always remained still throughout the session. Hence, no mirror

movements or stimulus unrelated movements of any kind were observed. The normal

responses shown in figure 8.1 are characteristic of the group. The dominant hand produced

very consistent responses, except during the first event where a slow time-to-target, which

is is visible in figure 8.1. For example, the usual delay after the event onset and offset is

roughly 500±50 ms. The time-to-target is roughly 250 ms and remains quite steady for the

event duration. While there is a noticeable difference in the precision in the non-dominant

hand, it still retains similar timing characteristics.

The results from each stroke patient is considerably different from the normal group

as well as from the other patients in the stroke group. Table 8.3 summarises the main

characteristics that were qualitatively observed in the motor response data used in the

analysis. In general, the event response accuracy of the stroke patients was good and, if

possible, improved in both hands during their second visit. Excluding the sessions testing

the plegic hand of patient 4, the average accuracy across the group in the visit at 3 weeks
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Table 8.3: Summary of stroke group motor responses. The response strength is
qualitatively described by = when it was close to the target strength of 25% MVC,
and by ⇑ or ⇓ when it was much greater than or less than the target, respectively. The
number of events varies between sessions due to truncations †The number of events
is small here because the experimental apparatus malfunctioned in the second half
of these sessions. ‡Patient 4 did not respond when testing his contralesional hand
because it is plegic.

Subject Visit Testing ipsilesional hand Testing contralesional hand
code Accuracy Strength Extraneous Mirror Accuracy Strength Extraneous Mirror

(m of n) (=,⇑,⇓) (n) (n) (m of n) (=,⇑,↓) (n) (n)

Patient 1 3 months 14 of 14 = 0 0 9 of 9 ⇓ 0 0
Patient 2 3 weeks 16 of 16 ⇑ 4 3 15 of 15 ⇑ 7 9
Patient 2 3 months 16 of 16 ⇑ 4 14 16 of 16 ⇑ 4 7
Patient 3 3 weeks 10 of 12 ⇓ 0 0 4 of 9 ⇓ 3 0
†Patient 3 3 months 7 of 8 ⇑ 1 0 5 of 5 = 1 0
‡Patient 4 3 weeks 14 of 14 ⇑ 0 0 0 of 16 plegic 0 0
‡Patient 4 3 months 10 of 10 ⇑ 0 0 0 of 16 plegic 0 0
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post-stroke is 92%, which includes the outlier session where patient 3 only responded to

4 of the 9 events. During the visit at 3 months post-stroke, the accuracy improved to

98% with only one event being missed across the group by patient 3. Indeed, these event

response results suggest that the paradigm is suitable for stroke patients with a wide range

of motor deficits. Furthermore, the improvement in accuracy between the visits is more

likely to reflect the effects of rehabilitation than long-term learning, since the two sessions

were over two months apart. Interestingly, the patients have a tendency to respond with

more strength than required to meet the target in 10 of the 14 sessions. Since the grip

strength was measure relative to their MVC acquired during the calibration and training

before neuroimaging, it is possible that the patients were in fact not making their utmost

effort during the MVC calibration. However, this effect is not seen in the normal group.

Another plausible explanation is that the patient’s exhibit a loss of fine hand control that

is necessary to achieve the sub-maximal grip strength target.

In addition to the event responses, the patients 2 and 3 occasionally performed

extraneous contractions between events. This highlights the importance of using the motor

signal instead of the stimulus time sequence in neuroimage analysis. Patient 2 also often

performed mirror movements, which are visible in figure 8.1. Thus, we repeated data

analysis using the non-tested hand signal to determine whether distinct contralateral SMC-

related BOLD signal was detectable. Finally, in the case of patient 4, who has a plegic

contralesional hand, we used a surrogate motor response signal that was obtained by

convolving the event pulse train with signal 1 from figure 4.3 (page 57).

8.3.2 Neuroimage data

No problematic distortions due to infarction atrophy were observed in the preprocessed

neuroimages acquired from the stroke group. Interestingly, however, a prominent image

distortion of the anatomy appears in patient 2 due to a small extracerebral paramagnetic

implant on the right side of the skull. The paramagnetic implant attenuated the MR
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Figure 8.2: Demonstration of the neuroimage quality in a normal subject (a), and in
the presence of a large stroke infarction (b) and extracerebral paramagnetic implant
(c). A considerable distortion in the anatomy of the coregistered and functional
images in row c is appreciable.

signal in the T2 FLAIR structural image, and is distorted after coregisteration to the

EPI functional images. Figure 8.2 compares the extent of these anatomical distortions

to a normal subject. As shown in 8.2c, the coregistered structural image overlaps quite

well with the regions spared from paramagnetic attenuation in the functional images. In

this case, the extent of the region affected by attenuation was greater in the functional

image than in the structural one. Therefore, we decided to leave the data intact, since

artificially repairing the artefact in the T2 FLAIR and EPI images would at best restore

geometry in a region where the BOLD signal could not be measured. In general, we

found that the coregistration routine to be adequate for handling image distortions due

to infarction atrophy and minor head motion. Paramagnetic implants can potentially

lead to problematic attenuation of the functional signal. However, in our case, the spared

image region was smallest in the functional image, and we were still capable of reasonably
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coregistering the corresponding regions in the structural image.

Head motion in the normal subjects was always smaller than the EPI voxel dimen-

sions; therefore, the full image sequence data T = 160 were used in the analyses. The

stroke patients, however, were not always motionless. In particular, many images from

patients 1 and 3 had to be excluded from analysis because the motions were well beyond

the voxel dimensions and were often sudden and reoccurring. When excluding images, we

attempted to use as much data as possible without splicing together disjoint images se-

quences. All but one session retained at least 8 events and were over half of the full image

sequence, i.e., with T > 80. Unfortunately, one session retained only 5 events and was

shortened to T = 63 due in part by head motion and also by an unexpected malfunction in

the experimental apparatus where visual controlled feedback was lost after t > 100. The

malfunction was caused by an subtle error in the control software that was introduced

during an update in the software code. The problem was resolved after the session and

did not reoccur afterward. In general, we found that the detection and compensation

of head motion performed by the realignment routine used was adequate except in the

case of compensating for large motions that were greater than twice the image voxel size.

We verified the detection results from the realignment routine by generating videos of

the image data and visually marking time points when motion took place. Moreover, we

found this video inspection technique to be very useful in confirming the presence of large

movements that were not adequately removed by the realignment routine.

8.3.3 Bayesian hierarchical model

The Bayesian hierarchical model was fit to each of the 14 sessions from the normal and

stroke groups using the MCMC Gibbs sampler (algorithm 3, page 110). We verified

that in every session the MCMC simulated parameters converged to the joint posterior

probability density of the clustered neuroimage data according to the value of the potential

scale reduction factor described in the algorithm. Figure 8.3 shows the distribution of the
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Figure 8.3: Graph of the distribution of the MCMC simulated Bayesian hierarchical
model parameters for every cluster identified in the normal (black circles) and stroke
(red crosses) groups. Each point in the graph represents the difference of means
between the cluster and global signal correlations (plotted along the abscissa) and
the cluster’s SD of correlations (plotted along the ordinate). The boldfaced points
were selected as representing a BOLD signal response to the event-related paradigm.

model parameters for every cluster in all 28 sessions from both groups. For each cluster,

the difference between the mean values 〈β〉 and 〈α〉 is plotted along the abscissa, and the

corresponding SD of β, written as σβ is plotted along the ordinate. This graph illustrates

how the model represents each cluster in terms of two factors: how different the cluster

correlation is from the global signal, and with what certainty this difference is not a random

occurrence. According to this graph, the decision boundary for cluster selection appears to

be a linear relationship such that the absolute difference |〈β〉− 〈α〉| must grow linearly in

proportion to the SD in β for a cluster to be selected. As expected, the decision boundary

for positive and negative correlation is symmetric about the origin with parametric form

y = k|x|, for k ≈ 0.4.

The rejected clusters from both groups are similarly distributed and well-centred

around the global signal α. However, this is not the case for the selected clusters across

groups. In the normal group, the majority of the selected clusters are positively correlated

with few selected clusters being anticorrelated. While the stroke group has a similar

distribution of positive correlations, it also has far more anticorrelated clusters. This

suggests the presence of negative BOLD signals in our stroke group data. A second
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Figure 8.4: Characterisation of the space-time structure of the BOLD signal iden-
tified in the normal (black) and stroke (red) groups. a, Plot of the mean contiguity
function and its standard error for the selected clusters representing a BOLD response
signal. b, Graph of the causal cross-correlation maxima (rm, d) for the selected clus-
ters representing a BOLD response signal. In order to distinguish the delay values
(discretised as TR multiples), they were jittered using random noise uniformly dis-
tributed over [-1,1] seconds.

contrast between the groups seen in this figure is the number and proportion of selected

clusters. In the normal group, 384 clusters were identified among which 30 or 7.8% were

selected, while in the stroke group fewer clusters totalling 334 were identified, yet more

of them 41 in total or 12.3% were selected. This represents a considerable increase of

(12.3 − 7.8)/7.8 = 57.7% in the number of significant clusters observed in the stroke

group, and this increase seems to appear in large part as anticorrelated BOLD response

signals. The final two result sections, which directly quantify the space-time structure of

the selected clusters and display the corresponding neuroimages, demonstrate that these

results inferred by the model are also empirically appreciable.

8.3.4 Space-time structure of selected clusters

The space-time parameterisation of contiguity (definition 6, page 89) and causal cross-

correlation (definition 7, page 92) described in this thesis were applied to all selected

clusters to examine whether a difference in space-time structure is appreciable. Figure 8.4

shows the space-time structure of the selected clusters across both groups. In figure 8.4a,

the contiguity function from all selected clusters for each group were averaged and plotted
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along with the standard error of the mean. The typical function shape, rising sharply from

the right and reaching a peak contiguity before falling, is clearly shown for both groups.

Interestingly, both groups reach their contiguity maximum for the same threshold value

of rc ≈ 0.8. This suggests that the SNR is comparable between the groups. The contrast

between the groups lies in the mean contiguity value of the selected cluster maps. Our

data shows that after stroke, the contiguity of the BOLD response signal is significantly

diminished, which results in the occurrence of more sparsely distributed BOLD response

patterns in stroke patients.

In figure 8.4b, the delay d that maximises the causal cross-correlation function is

plotted along the abscissa, and the corresponding correlation rm to the motor response

signal is plotted along the ordinate. Because the delay is poorly sampled in blocks of 2

seconds (corresponding to the MRI TR parameter), we jittered these data with uniform

random noise over [−1, 1] seconds so that the individual points can be seen. As expected

from a normal BOLD response, the majority of the selected clusters from the normal group

appear in the top-left corner of the graph, corresponding to a positive correlation with the

motor signal that is delayed by 2 seconds (c.f. signal 1 in figure 4.3, page 57). In contrast,

the stroke group exhibit many anticorrelated clusters with short delays of 1 second, and

also positively correlated clusters with long delays of roughly 12 seconds. Furthermore, the

stroke group clusters appearing in the expected top-left region of the graph are on average

less correlated than those in the normal group. These data suggest that after stroke, a

wider variety of response signals being early/anticorrelated or late/correlated appear and

on average have a diminished correlation to the motor signal.

Interestingly, several unexpected outliers in the normal group appear to be weakly

anticorrelated and delayed by over 6 seconds. We found that all but two of these outliers

vanished after adjusting the probability threshold from p < 0.05 to p < 0.025, while

the positively correlated clusters remained. This suggests that the vanished clusters were

marginally selected as false positives. However, two of these clusters, with a 6-second delay



CHAPTER 8. IMAGING MOTOR DEFICITS AFTER STROKE 131

and rm of −0.15 and −0.24, remain and are just as significant as the positively correlated

clusters from the normal group. These clusters were identified from the same data set

acquired during the first session of normal subject 5. This is an unusual occurrence

that demonstrates either a physiologically significant effect, or a flaw of the Bayesian

hierarchical model that must be acknowledged. Therefore, we decided to focus on this

case in an attempt to resolve this confound.

To determine why these outliers were selected, we examined the global signal in

our normal group data and found that α is normally distributed with mean 0.019 and SD

0.076 (n = 14). However, we found that the session producing these significant outliers

has an abnormally high global signal correlation of 0.20; in fact, it is the highest observed

value in either group. This implies that a large proportion of voxels throughout this

subject’s brain were correlated with the motor signal; therefore, slightly anticorrelated

clusters can potentially stand out from the whole. We ruled out the possibility of stimulus-

related head movements in this session, which suggests that perhaps a stimulus-related

and distributed vascular response actually took place in this subject. In addition, the

significantly anticorrelated cluster maps are highly contiguous and appear in the basal

ganglia and the bilateral premotor cortex, respectively. These regions are well-known to

be involved in the performance of motor tasks and, hence, appear to be genuine responses.

All considered, there is reason to believe that this anomaly is physiologically significant,

since it is known that functional hyperemia is a spatially localised mechanism that does

not cause a cerebrum-wide BOLD response signal. Indeed, localised BOLD responses are

precisely what we observed in the remainder of our normal group data. Nonetheless, we

ought to remain sceptical of the significance of this anomaly, which did not reappear in

the second session of normal 5 or elsewhere. Therefore, we recommend that the parameter

α be carefully examined for unusually large correlations during analysis because these

extreme cases may not be well represented by the proposed Bayesian model.
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8.3.5 Identified sensorimotor-related brain regions

Figure 8.5 illustrates the observed BOLD response pattern from the normal group. The

selected clusters from all 14 sessions are summarised as an aggregate functional map

overlaid on a coregistered transverse structural image shown in radiological convention.

The voxels in the selected cluster maps are superimposed, and the colour scale indicates

the number of sessions in which the voxels are significant. Because both hands were

tested in these tasks, we reflected the functional data acquired during right-handed tasks

across the midline so that the expected sensorimotor-related regions can be compared

together. Hence, the expected contralateral responses should appear in the right cerebral

hemisphere.

Indeed, the expected SMC response is clearly seen in all sessions acquired from the

normal group. This demonstrates that the experimental apparatus, data acquisition, and

analytical methods proposed here systematically reproduce the BOLD signal response to

an event-related motor paradigm. Specifically, the M1 and primary somatosensory areas,

bordering the central sulcus contralateral to the moving hand, corresponds in all subjects

with a timely and localised BOLD response signal. The secondary cortical areas known

to be involved in hand motor tasks corresponded with a second timely and focused BOLD

signal in most subjects. These cortical areas are the SMA, located on the dorsomedial

cortical surface anterior to M1, and the premotor and posterior parietal areas ipsilateral

to the moving hand. In addition, the putamen and thalamus also corresponded with a

BOLD response signal. These deep brain centres appear in the second row from the top

of this figure, periventricular to the anterior horns.

Therefore, in agreement with the sensorimotor system literature reviewed in chap-

ter 2 (c.f. figure 2.2, page 25), the reproducible involvement of these specific regions seen

here supports the current evidence that multiple sensorimotor subcircuits interact across

distributed networks during the performance of somatosensory function. Two unexpected

cortical regions, the superior temporal gyrus and the insula, also corresponded with a bilat-
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Figure 8.5: BOLD response signal from the normal group performing the event-
related motor task with either hand shown in radiological convention on a coregistered
transverse structural image from a normal subject. Neuroimage data from right-
handed sessions are reflected across the midline. Voxels in the selected cluster maps
from all 14 sessions are superimposed, and the colour scale indicates the number of
sessions in which the voxels are significant.
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eral BOLD response signal in several subjects. These regions, however, are not considered

central to the functional anatomy of the sensorimotor system. One plausible explanation

for these observed BOLD responses might follow from the fact that the SMC and these

regions are located on the same cerebrovascular territory, which is primarily perfused by

the MCA (c.f. figure 2.4, page 29). Consequently, one could speculate that the blood

flow in these regions is affected to some extent by the retrograde vasodilation taking place

during functional hyperemia in the SMC. The remaining infrequently observed regions

visible within the cerebellum and the prefrontal cortex are less of interest in this paradigm

because they operate at abstract levels and so are involved in many faculties.

The characterisation of the space-time structure of the stroke group data indicated

a marked deterioration in the contiguity and correlation of the BOLD response signal in

this event-related paradigm. These effects are also clearly shown in the aggregate results in

figures 8.6 and 8.7, which show the BOLD signal clusters selected from the stroke patients

performing the motor task using either their ipsilesional hand, or their contralesional

hand, respectively. In these figures, we reflected the functional data acquired from patient

2 across the midline so that the expected sensorimotor-related regions from ipsilesional

and contralesional hands can be compared together. The arrows in the stroke group figures

indicate the slice and hemisphere where the SMC response is expected according to the

normal group results.

These results provide direct evidence that although the patients were perform-

ing the task, the expected functional hyperemia is largely absent. Instead, a widespread

and poorly correlated neurovascular response takes place inconsistently across the stroke

group. Indeed, the infrequent and patchy BOLD response patterns covering most of the

cortical surface of these stroke patients is strikingly different from the reproducible and

highly focused BOLD response in the normal subjects. There are two intriguing potential

explanations behind this phenomenon: i) neuronal plasticity is taking place, and the ob-

served patient-specific sparse cortical centres are acting in concert to compensate for the



CHAPTER 8. IMAGING MOTOR DEFICITS AFTER STROKE 135

Figure 8.6: BOLD response signal from the stroke group performing the event-
related motor task with the ipsilesional hand. The overlay is shown in radiological
convention on a coregistered transverse structural image from a normal subject. Neu-
roimage data from left-handed sessions are reflected across the midline. Voxels in
the selected cluster maps from all 7 sessions are superimposed, and the colour scale
indicates the number of sessions in which the voxels were significant. Arrows indicate
slice and hemisphere where the SMC response is expected according to normal group
results.
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Figure 8.7: BOLD response signal from the stroke group performing the event-
related motor task with the contralesional hand. The overlay is shown in radiological
convention on a coregistered transverse structural image from a normal subject. Neu-
roimage data from right-handed sessions are reflected across the midline. Voxels in
the selected cluster maps from all 7 sessions are superimposed, and the colour scale
indicates the number of sessions in which the voxels were significant. Arrows indicate
slice and hemisphere where the SMC response is expected according to normal group
results.
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damaged sensorimotor system, or ii) the cerebrovascular system has been compromised

by stroke, and the patient-specific BOLD signals appearing sporadically do not corre-

spond to colocalised neuronal activity. Of course, isolating the factors that lead to our

observations would require a larger study that also accounts for the confounding factors

between the groups (e.g., age), as well as, the co-morbidity factors associated with stroke

(e.g., hypertension, smoking, diabetes). However, based on our current results and our

review of neurophysiology and the cerebrovascular system in the first two chapters, we

may speculate that neurovascular dysfunction is a more plausible cause than neuronal

plasticity to explain the sparse and inconsistent BOLD response patterns we have ob-

served. Consider the following arguments. First, the cytoarchitectural organisation of

the human brain is remarkably consistent across individuals; e.g., consider the validity of

Brodmann’s areas, and the consistent BOLD response pattern seen in our normal group

data. Hence, if neuronal plasticity was taking place, we would expect to see BOLD re-

sponses appearing somewhat focused in the motor-related areas, yet this is clearly not the

case in our data. Second, Rossini et al. (2003) have failed to detect an SMC-localised

functional hyperemia in half of their unilateral stroke patients performing motor tasks.

However, they detected in all patients increased SMC-localised neuronal activity. Indeed,

functional hyperemia is a complex phenomenon that relies on a multitude of cells and

molecular signalling mechanisms to provide the neurovascular coupling between neuronal

activity and the cerebral circulation. Consequently, pathophysiology extending beyond

the ischemic core and penumbra could potentially render dysfunctional the neurovascular

unit throughout the cerebrovascular system.

In addition to this general lack of a consistent hemodynamic response, more subtle

differences are appreciable between the results obtained from the ipsilesional and con-

tralesional hands. Specifically, the ipsilesional data continue to show in most sessions a

BOLD response in the expected SMC (indicated by the arrows in figure 8.6) and the SMA.

This result is expected based on the literature presented in chapter 2, and on the knowl-
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edge that the SMC contralateral to this hand was not ischemic. However, in the data

acquired during contralesional hand movement, this expected response is almost entirely

absent (indicated by the arrows in figure 8.7). These contralesional data instead reveal

in most sessions a small, unexpected BOLD response in the hemisphere ipsilateral to the

moving hand (i.e., the hemisphere which was not ischemic) predominantly in the primary

somatosensory area and the posterior parietal area. Although the sensorimotor system is

known to operate to some extent across hemispheres, as suggested by the normal group re-

sult, little is known on whether such a bilateral interaction is sufficient for enabling centres

in one intact hemisphere to compensate for deficiencies incurred in the other hemisphere.

While these results suggest the presence of a neural-driven BOLD response ipsilateral to

the paretic hand in the majority of the stroke group data, it remains to be seen whether

this response is reproducible in future studies of unilateral stroke with motor deficit.

Individual neuroimage analysis results are now shown in order to demonstrate the

performance of the proposed model as well as the differences between groups. Figure 8.8

presents a summary of the results from the second session of normal subject 5, and figure

8.9 similarly shows the results from stroke patient 1 at 3 months post-stroke. At the top

of each figure, the Bayesian hierarchical model simulates the distribution of voxel time

sequence correlations with the motor response signal (rm) and shows their boxplots for

the global signal α and each cluster βi, for i = 1, . . . , K. For visual comparison, the 95%

probability interval of α is bounded between the two horizontal grey lines. The selected

clusters (marked by *) are considered significantly different from α if their Bayes’ error

is p < 0.05. At most three of the selected clusters are presented in each figure in order

of decreasing Bayes’ error. For each cluster, starting from left of the figure, a computer

rendition of the member voxel position (shown in green) relative to the brain (delineated

in grey) are shown from sagittal (top left), coronal (top right), and transverse (bottom)

views. A corresponding coregistered anatomical overlay is shown in radiological convention

containing the voxel with maximum centroid time sequence correlation r(x, vi) whose value
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Figure 8.8: Summary of neuroimage analysis results from normal subject 5 using
her right hand. The Bayesian hierarchical model shows which clusters are selected by
* having Bayes’ error p < 0.05 relative to the global signal. The cluster voxels are
shown (in green) from three computer rendered views, and the anatomical overlay, in
radiological convention, corresponds to the slice containing the voxel with maximum
centroid correlation. Cross-correlation and contiguity plots for all clusters are shown
with the same scale.
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Figure 8.9: Summary of neuroimage analysis results from stroke patient 1 using her
right hand. The Bayesian hierarchical model shows which clusters are selected by
* having Bayes’ error p < 0.05 relative to the global signal. The cluster voxels are
shown (in green) from three computer rendered views, and the anatomical overlay, in
radiological convention, corresponds to the slice containing the voxel with maximum
centroid correlation. Cross-correlation and contiguity plots for all clusters are shown
with the same scale.
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is indicated by the colour scale. Finally, the graphs for the cluster centroid time sequence

vi[t] in comparison to the motor responses (grey bars), and the cluster contiguity function

c(r) are shown using the same scale within each figure.

In both cases shown here, the subjects used their right hand to perform the task,

and their left-hemisphere SMC was identified as cluster 8 in the normal subject and cluster

27 in the stroke patient. In addition, regions within the putamen and thalamus were

identified as shown in clusters 17 in the normal subject and cluster 22 in the stroke

subject. Notice how in the normal case the centroid is positively correlated, while in

the stroke case it is anticorrelated. The emergence of anticorrelated clusters is typically

demonstrated here when comparing the boxplots between these subjects shown in the

Bayesian hierarchical model. The third unexpected clusters shown in these subjects are

marginally significant and lack the same synchronisation of the previous two clusters yet

reached a significant threshold nonetheless. While it would be easy to eliminate these

clusters by choosing a slightly smaller p, it is perhaps better to admit these clusters, verify

their location, and keep track of how often they appear across subjects before interpreting

their significance with respect to the task. Finally, these subjects demonstrate how the

cluster contiguity is typically diminished in the stroke group as can be seen in the cluster

renditions and their contiguity functions.

8.4 Discussion

This chapter applied the analytical methods developed throughout this thesis as a whole to

i) study the neuroimage data acquired from our normal and ischemic stroke groups, and ii)

to interpret the results in corroboration with the evidence reported in the neurological and

cerebrovascular literature. The sample sizes of the groups participating in this research

are small in relation to those required to make inference at the population level. Hence,

our clinical interpretation of the results are limited. However, the data acquired from
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these groups demonstrate the performance of the novel analytical methods proposed in

this thesis—the principal aim of this research—and also provide supporting evidence of the

reproducibility of the BOLD response to event-related motor tasks in the normal subject

population as defined here.

The results presented in this chapter do indeed show that the proposed analytical

method is capable of characterising and distinguishing between the space-time structure

of the identified response patterns in normal subjects and ischemic stroke patients. Specif-

ically, in the stroke group, the number of responding brain regions identified increases and

appear in normally unresponsive areas throughout the cerebrum relative to the normal

group. Moreover, these regions possess a diminished spatial contiguity, and a diminished

correlation to the motor responses that are either extensively delayed, or early and anti-

correlated.

The stroke patients who participated in our study illustrate the large variability

in how cerebrovascular disease can affect an individual. While our aim was to recruit a

sample of first-ever stroke patients with motor deficits that represent this population as

closely as possible, the size of the group included in this research turned out to be rather

small. Consequently, we chose to use this limited data set in the best way possible to

provide the aggregate results shown here. Specifically, we decided to pool our stroke data

in two groups: sessions using the ipsilesional hand, and those using the contralesional

hand. To do so, we essentially did not account for the potential effects introduced by

hemispheric asymmetry by reflecting some of our neuroimage data across the cerebral

midline so that comparisons could be made. Secondly, although three of our patients

returned for a second visit roughly three months post-stroke, we chose in this research

to pool all of our data into a single time point for analysis. Essentially, we thought that

the group was too small to subdivide any further and that, instead, a single aggregate

group would be more effective to demonstrate the proposed analytical methodology and

the most prominent differences between the normal and stroke groups. We also recognise
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that our study is inadequate for a compelling physiological interpretation of our results.

A larger study is required that accounts for the confounding factors between the groups

(e.g., age), as well as, the co-morbidity factors associated with stroke (e.g., hypertension,

smoking, diabetes) in order to identify how these factors influence our results.

Nonetheless, we can speculate based on the literature reviewed in this thesis, that

the results from our stroke group are predominantly affected by neurovascular dysfunction.

According to the current understanding of cerebrovascular autoregulation and functional

hyperemia (Attwell & Iadecola, 2002; D’Esposito et al., 2003; Girouard & Iadecola, 2006;

Hamel, 2006), it is plausible that the dispersed responses appearing throughout the cere-

bral cortex of the stroke patients are the result of a retrograde vasodilation, possibly

extending back to the larger arteries, whose increase in perfusion is inadequately regu-

lated by the microvasculature throughout most of the brain. To verify this hypothesis,

it would be necessary to recruit a cohort of ischemic stroke patients with motor deficits,

that are age-matched with a cohort of normal subjects, and monitor their recovery over

time using perhaps a similar event-related motor paradigm in order to determine whether

good motor recovery correlates with the disappearance of the spurious BOLD response

patterns leaving only the expected SMC-related and/or potentially novel cortical regions

colocalised with a timely and focused BOLD response signal.



Chapter 9

Conclusion

9.1 Introduction

This chapter concludes the thesis by summarising the salient points of the research de-

scribed herein whose principal objective was to develop novel analytical methods for func-

tional neuroimage data. The motivation for developing new analysis methods stems from

our ever growing awareness of the complexity of the human brain. It seems natural in

science that as our knowledge base grows, new questions come forward, which in turn

depend on new methods to obtain answers.

To write this thesis, it was necessary to draw from the many disciplines that form

the consilience of neuroscience in order to appreciate this remarkable biological system.

This interdisciplinary study has provided us with the appropriate vantage point to identify

the neurological questions that can be addressed with functional neuroimaging. Indeed,

the latest knowledge on the profound cerebrovascular changes that follow stroke has mo-

tivated this proposal of exploratory pattern recognition for functional neuroimage data.

Furthermore, the neurophysiological literature synthesised here was also fundamental in

experimentally observing these changes and comparing their space-time characteristics.

Hopefully, the consolidation of the interdisciplinary material presented here goes beyond
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the thesis motivations by providing a broader perspective of neuroscience that is needed

to ponder the fundamental questions on the subject.

9.2 Summary and critique of the proposed methods

A critique of the proposed methods is provided here, which summarises the limiting as-

sumptions, advantages, and issues discussed throughout the thesis. Potential avenues for

future work are also mentioned here.

The experimental design used in this research was developed particularly to char-

acterise the sensorimotor system using BOLD fMRI data acquired from healthy volunteers

and ischemic stroke patients with motor impairments. Consequently, its ability to char-

acterise impairments in other systems was not assessed and should be limited to studies

focused on the topics described here. Our experimental protocol proved to be flexible

enough to account for the wide range of impairments and clinical needs of the stroke pa-

tients in our study. We also found that the event-related motor paradigm was effective

in engaging all participants, and succeeded in systematically reproducing functional hy-

peremia in our normal group. The major issues with our approach are technological in

nature. MRI is very sensitive to head movements and generates prominent artefacts in

our functional neuroimage data. We found these difficult to avoid in our stroke group due

to their involuntary motion. MRI is not readily compatible with other electromagnetic

instruments, which makes the simultaneous imaging of both neural and vascular compo-

nents difficult. This limited our comparisons to muscular responses in the hands instead

of direct measures of neural activity.

The preliminary analysis of our BOLD fMRI data was successful in measuring the

degree of correlation present within each session. This analysis was instrumental in i)

selecting the MRI RF coil settings with smallest correlation values, and ii) modelling the

noise process for BOLD fMRI data simulation. An important direction for future research



CHAPTER 9. CONCLUSION 146

is to develop statistical methods to extract independent samples from highly correlated

neuroimage data. For example, one approach that shows promise is the application of

autoregressive models.

When working with the original correlated data, this thesis proposes a novel time

series bootstrap algorithm for neuroimage session simulations. Although this approach has

the advantage of generating many neuroimage session simulations with realistic anatomical

and functional traits, a limitation is that the original neuroimage acquisitions require

additional techniques to obtain consistent slice positioning so that each simulation retains

a realistic anatomy. A potential future project is to develop and test consistent slice

positioning techniques to attempt the generation of large scale bootstrap simulations from

null fMRI data.

The fuzzy k-means pattern recognition algorithm used to partition each neuroimage

session was successful in distinguishing between distinct BOLD signal responses. Our ap-

proach to determine the optimal clustering number k relied upon previous work based on a

heuristic technique. Although this algorithm is suitable for this problem due to its ability

to identify the presence of compact well-separated clusters, a direct link to a probabilistic

framework has not been found, which would eliminate the need for the currently-used

heuristics. Notably, the notion of information entropy may be helpful in making this

link. Consequently, we addressed this problem by proposing a novel computer-intensive

technique that could lead to lower-bound probability estimates for partition entropy of

neuroimage data sets. The major limitation of this approach is the computational re-

sources required, preventing us from showing more than a preliminary result from a small

data set. For future work, it would be interesting to perform these entropy estimates on

a large data set to determine if these entropy estimates could lead to a probability-based

fuzzy k-means clustering method.

A novel method to characterise the space-time structure of neuroimage data is

proposed in this thesis. We applied these characteristics to neuroimage data and demon-
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strated their usefulness as selection criteria for the identification of stimulus-related voxel

clusters. However, the criteria used here should be limited to the study of the BOLD

signal induced by functional hyperemia, since they were designed based on the known

features of this response. Caution is advised, since these features may not apply in other

neuroimage modalities or for the use with different experimental paradigms.

A Bayesian hierarchical model is proposed for the analysis of neuroimage data in

this thesis. This idea has also been proposed recently by another research group whose

authors are arguably amongst the leading statisticians in Bayesian analysis. We conceived

this idea independently and demonstrated that, indeed, this model is suitable to repre-

sent the hierarchical nature of voxel time sequence correlations in our neuroimage data.

Furthermore, the model also accounts for the potential bias introduced by the global sig-

nal present throughout the data. It was advantageous to implement the model using the

Markov chain Monte Carlo simulation technique so that the model’s probability densities

can be modified without the need of calculating analytical expressions for joint probability

models. For example, a project for future work would be to apply this model with a more

general parametric form of the global signal density function to account for non-Gaussian

effects, e.g., the skews or spikes occasionally encountered in some of our neuroimage ses-

sions.

9.3 Summary of the neuroimage stroke trial results

The research undertaken in this thesis is dedicated to the advancement of our understand-

ing of the regulatory mechanisms of the cerebral circulation and its dysfunction in disease.

This thesis presents neuroimage results from relatively small population samples from

healthy volunteers and ischemic stroke patients. The proposed method was successful in

differentiating between these populations.

Throughout our neuroimage experiments involving healthy volunteers, our methods
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were successful at corroborating and reproducing the expected functional hyperemia re-

lated to sensorimotor function. Namely, the consistent appearance of localised and timely

functional hyperemia in the sensorimotor cortex contralateral to the moving hand and in

the supplementary motor areas. Secondary responses that are also associated with the

sensorimotor system were also identified in the premotor and posterior parietal areas ipsi-

lateral to the moving hand. Occasionally, responses within the basal ganglia and thalamus

were also encountered. As discussed throughout the thesis, these sensorimotor centres are

known to play key roles in visual feedback controlled motor tasks and have been observed

in other neuroimaging studies similar to ours.

Secondly, we applied this method to provide preliminary results on how ischemic

stroke may affect the sensorimotor system. In contrast to the results from the normal

subjects, the neuroimage experiments involving the stroke patients produced strikingly

different responses. In these patients, a two-fold increase in the number of responding

brain regions was observed. These regions had a significantly diminished spatial contiguity.

Specifically, these response patterns were not confined to the expected sensorimotor centres

but rather appeared throughout most of the cerebral grey matter. Furthermore, the timely

and consistent cross-correlation structure of the normal group responses appears to have

deteriorated in the stroke group data. Our results show that this temporal relationship

with the motor signal was substantially more variable than in the normal group due to the

unexpected appearance of i) early and anti-correlated responses, and ii) late and positively

correlated responses.

It is most likely that these widely dispersed response signals appearing throughout

the cerebral cortex of the stroke patients are no longer coupled to colocalised neural

activity. Alternative interpretations based on cortical plasticity, i.e., the recruitment of

unexpected areas of cortex to compensate for the infarcted tissue, are not likely to explain

our results because the observed responses are not contiguous, timely, nor consistent within

the stroke group. According to this premise, our results suggest that the mechanisms of
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cerebral autoregulation and functional hyperemia can remain compromised in the months

following ischemic stroke.

9.4 General conclusion and future directions

In conclusion, this thesis provides direct evidence supporting the application of exploratory

pattern recognition and the Bayesian analysis of neuroimage data acquired during the

study of ischemic stroke and its impact on the cerebrovascular system. The benefit of using

such algorithms to study the complex regulatory mechanisms and their interaction with the

nervous system in the wake of cerebrovascular disease may be unprecedented. Therefore, it

is recommended that the analytical methods proposed here be extended into a longitudinal

study of recovering ischemic stroke patients with motor deficits. Monitoring the space-

time structure of the neurovascular response to motor tasks during recovery would provide

key information on our ability to directly assess the efficacy of stroke rehabilitation and

help validate future programmes.
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A.2 Protocol involving human subject particiaption







































APPENDIX A. ETHICS AND EXPERIMENTAL PROTOCOL 184
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