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Abstract. Electrical Impedance Tomography solves an inverse problem to estimate
the conductivity distribution within a body from electrical simulation and
measurements at the body surface, where the inverse problem is based on a solution of
Laplace’s equation in the body. Most commonly, a finite element model (FEM) is used,
largely because of its ability to describe irregular body shapes. In this paper, we show
that simulated variations in the positions of internal nodes within a FEM can result
in serious image artefacts in the reconstructed images. Such variations occur when
designing FEM meshes to conform to conductivity targets, but the effects may also be
seen in other applications of absolute and difference EIT. We explore the hypothesis
that these artefacts result from changes in the projection of the anisotropic conductivity
tensor onto the FEM system matrix, which introduces anisotropic components into the
simulated voltages, which cannot be reconstructed onto an isotropic image, and appear
as artefacts. The magnitude of the anisotropic effect is analyzed for a small regular
FEM, and shown to be proportional to the relative node movement as a fraction of
element size. In order to address this problem, we show that it is possible to incorporate
a FEM node movement component into the formulation of the inverse problem. These
results suggest that it is important to consider artefacts due to FEM mesh geometry
in EIT image reconstruction.

Keywords : Electrical Impedance Tomography, Image Reconstruction, Finite Element

Models, EIT Simulation Anisotropy

1. Introduction

This paper describes the image reconstruction artefacts which occur in electrical

impedance tomography (EIT) images due to limitations in finite element models. We

develop a hypothesis to explain these artefacts, show results to support it, and then

develop an image reconstruction method to reduce these artefacts. EIT is a technology

designed to measure conductivity changes within a body using electrical stimulations

and measurements at electrodes on the body surface. Typically, patterns of alternating

currents are sequentially applied to the electrodes and the resulting voltages measured.

This set of measurements constitutes an EIT data frame, from which images may then

by reconstructed of the body’s internal impedance distribution (absolute imaging) or

the change in impedance distribution between two data frames (difference imaging).
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EIT thus has the advantage of providing tomographic information about a body

from measurements using equipment which is non-invasive, minimally cumbersome and

potentially inexpensive (Holder, 2005).

Reconstruction of EIT images requires solving an ill-posed inverse problem. EIT

has low sensitivity to interior contrasts due to the physics of current propagation; most

current stays close to the source electrodes on the body surface, while only a much

smaller fraction penetrates the interior, which is typically the region of interest. One

further consequence of the current propagation is the extreme sensitivity to the shape of

the body surface and exact electrode placements and properties (Soleimani et al 2005).

One technique to deal with shape and electrode uncertainties is the use of time difference

imaging, in which is less sensitive to shape uncertainties which do not change between

data frames (eg. Adler et al 1996b).

The earliest approaches to EIT image reconstruction were based on 2D circular

approximations of the thorax (Seagar and Bates, 1985; Barber and Brown, 1988).

However, since such analytical models cannot describe electrical propagation in complex,

realistic body shapes, finite element models (FEM) have been used (Murai and Kagawa,

1985; Yorkey et al 1987). Over the last two decades, the FEM has become the

most popular approach to model EIT physics. Other numerical models, such as

those based on finite differences (Yang and Patterson, 2007) have been used; however,

the FEM continues to be popular because finite element mesh elements can conform

to arbitrary body shapes and be refined in regions of high electric field, such as

near to electrodes. Most EIT research has used the simplest FEM structure using

simplex elements (triangles in 2D and tetrahedrons in 3D) and conductivity modelled

as piecewise constant (so that changes in conductivity occur only at element boundaries).

Such choices are reasonable: all FEM meshing packages provide good support for simplex

elements, and anatomically realistic conductivity changes do occur abruptly at organ

boundaries. Additionally, two further FEM approximations are typically made: 1) first

order elements are used, which interpolate voltage across each element linearly between

nodes. Physically, such elements may be modelled by a resistor network (Murai and

Kagawa, 1985). Such a FEM is easier to conceptualize and may be used as the basis

for a physical resistor network model of the medium (Gagnon et al 2010). On the

other hand, FEM errors decrease linearly with element size for first order FEMs, while

the rate of error decrease is larger for higher order models (Silvester and Ferrari 1990).

2) the conductivity is assumed to be isotropic. While many tissues are (macroscopically)

anisotropic, it is difficult to measure these properties and few published values exist.

Thus, it has been common to simply ignore anisotropy in an EIT model. On the other

hand, the anisotropic effects can be included into the FEM fairly straightforwardly

(Abascal et al 2008).

The most common approach to image reconstruction in EIT has been to parametrize

the conductivity distribution vector, m, as piecewise constant over each FEM element.

The reconstructed conductivity (or conductivity change) distribution, m̂ is then



Image artefacts from FEM variability 3

calculated from data (or difference data), d as

m̂ = arg min
m

‖d− F (m)‖2

Σ−1

n

+ ‖m−m0‖2

Σ−1

d

(1)

where F (m) represents the FEM voltages (absolute imaging) or voltage differences

(difference imaging), Σn the covariance of electronic measurement noise, and m̄ and

Σm, respectively, are the image prior expected mean and covariance. In this way, the

reconstructed image, m̂, is the selection of FEM conductivity parameters which best

fits the data and prior model.

In this paper, we report that this approach to image reconstruction is very sensitive

to any geometrical variability in the FEM. For example, a small change in the positions

of internal nodes, even if it preserves the conductivity distribution, can result in

large image reconstruction artefacts. This effect was unexpected, since the voltage

distribution simulated by the FEM is accurate even for moderately dense models. This

paper expands on our previous report (Adler et al 2008), and we are not aware of

previous reports of this phenomenon. This effect may explain a few puzzling results.

For example, studies of electrode movement have often used FEM simulations to show

that unacceptable artefacts occur for very small electrode displacements (Breckon and

Pidcock 1988, Adler et al 1996b). On the other hand, experimentally, electrode

movements which are an order of magnitude greater, such as the movement of > 1 cm

for thoracic imaging, still permit usable images.

In the following sections, we first illustrate the effect for 2D and 3D FEMs. Next, we

show how this effect is related to anisotropic conductivity contributions, and analyse the

magnitude of the effect as a function of FEM geometry. We then develop a hypothesis

which may explain the effect, and show numerical and model evidence to support it.

Finally we propose an approach to modify image reconstruction which dramatically

reduces these image artefacts.

2. Geometry variability example

FEM accuracy is normally considered from the point of view of voltage errors between

the FEM and physical phantom. In this case, any errors may be explained by small

details in the phantom which are not considered in the model, which means that it is

difficult to use such a test to verify high model accuracy. Here, we evaluate a FEM model

by looking at small changes in the model and the consequences on difference EIT images.

In difference EIT, the difference image, m = σ−σr, between conductivity distribution,

σ, and a reference distribution, σr, is calculated from difference measurements, d =

v− vr, where v and vr represent the current and reference frames of EIT data. In this

section, we show how re-meshing around a circular object can introduce large artefacts

into the reconstructed difference images.

We study difference imaging and a linear reconstruction in order to represent the

artefacts or errors. Iterative calculations, such as those needed for absolute imaging, will

accumulate such errors at each iteration stage. The easiest (and most common) way to
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simulate a target in a medium is to use a single FEM to select and then interpolate the

elements which are part of the target. There are then no changes to the underlying FEM,

and thus no model difference artefacts in the images. A more accurate representation

of a target is to create a target region within the FEM and to re-mesh around it. In

this case, the mesh will change between each target position, not only near the target,

but throughout the FEM due to the propagation of changes in triangularization.
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Figure 1. Simulation FEMs and simulated conductivity target positions (within blue
circle). Electrode nodes are indicated in green. An inner region surrounding a target is
shown. Left: Coarse meshes (maximum mesh size of 0.16, 1441 triangles) Right: Fine
meshes (maximum mesh size of 0.07, 1941 triangles) Top: Meshes with no adaptation
for target. Element conductivity is defined by region membership. Bottom: Meshes
adapted to target region.

To illustrate this process, figure 1 shows 2D circular FEMs with 16 electrodes

with local refinement of the FEM near each electrode. Meshes were generated using

Netgen (Schöberl, 1997) by defining constructive solid geometry shapes for the medium,

electrodes and inclusion. Coarse and fine meshes are calculated by controlling the

maximum permissible element size. Two different strategies to specify the region of

a simulated conductivity target region are shown. On top, the mesh is not adapted

to the target. The conductivity of each element is selected based on the membership

in the target region (an element with 50% of its area in the region will have a target

conductivity of the average of the background and target region). On the bottom,

the FEM is adapted to the target region, resulting in mesh geometry changes which

propagate throughout the FEM.

For these models, EIT data were simulated using a Sheffield-type adjacent

stimulation and measurement protocol, and images are reconstructed on a coarse 2D

regular mesh geometry (shown in figure 2). A one-step Gauss Newton reconstruction

is used with a scaled diagonal image prior (Cheney et al 1990), and the regularization

parameter is chosen such that the noise figure is 1.0 (Adler and Guardo 1996a). Images in
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Figure 2. Reconstructed difference images calculated from the simulation FEMs
(figure 1) on a 576 element 2D mesh. left Coarse meshes, and right Fine meshes.
Top Difference images with both data frames simulated on the same geometry, and
interpolated target conductivities. Bottom Difference images with targets simulated of
different mesh geometries: vr on top FEM, and v on bottom FEM (adapted to target).
The simulation target position is indicated by the blue circle.

which the simulation mesh geometry matched exactly (figure 2, top) show the expected

location and shape. However, when the mesh geometry changes between difference data

simulations (figure 2, bottom) artefacts occur throughout the images. Reconstruction

artefacts decrease as the FEM density increases, due to the increase in accuracy of the

FEM with decreasing mesh size.

Similar artefacts occur for 3D simulations; however, the effect is considerably

larger because many more FEM elements are required to achieve the same level of

refinement (mesh size reduction) in 3D compared to 2D. In figure 3, 3D FEMs are created

corresponding to the 2D simulations in figure 1, with a cylinder created by vertically

extruding the 2D shape (and target position), using circular electrodes at half the

cylinder height. In order to show a similar effect, the level of refinement of the coarse and

fine mesh were manually adjusted until image artefacts of approximately the same level

figure 2 were obtained. Reconstructed images are shown in figure 6(right,top), above

the improved images which can be obtained by the algorithm developed in section 4.

In order to quantify the level of image artefact, we calculate reconstructed images

for a series of FEM models of increasingly refined mesh size for the 2D and 3D FEM.

Difference images are calculated from the pair of simulated measurements from the

FEMs with and without adaptation to the target shape. Both models are assigned a

homogeneous conductivity, which, except for the effects considered in this paper, should

yeild a difference image of zero. The resulting image is considered the artefact due to

the model, and an image artefact amplitude (AAM) is defined as AAM =
∑

i Aim̂i,
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Figure 3. Simulation 3D FEMs with a simulated conductivity as a vertical cylinder,
with positions (within blue circle). Electrode nodes are indicated in green. Left: Coarse
meshes (maximum mesh size of 0.18, 5941 triangles) Right: Fine meshes (maximum
mesh size of 0.05, 19379 triangles) Top: Meshes with no adaptation for target, vertical
view. Middle: Meshes with no adaptation for target. Bottom: Meshes adapted to
target region.
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Figure 4. Artefact amplitude (normalized to image amplitude from a contrast) in a
reconstructed image of the central slice as a function of number of FEM nodes in the
simulation model, for: Left: 2D simulation models, and Right: 3D simulation models.

where Ai and m̂i represent the area and reconstructed amplitude in FEM element i;

AAM values are normalized to the image amplitude of the conductive target. Figure 4

shows AAM as a function of the number of nodes in the simulation. AAM decreases

with number of FEM nodes, and is larger for 3D models.



Image artefacts from FEM variability 7

3. Example of FEM geometry changes

In this section we develop and analyse the FEM system matrix to describe a simple 2D

example of mesh geometry changes, and show that this results in anisotropic behaviour.

Figure 5 shows a five node vertically and horizontally symmetric FEM with one internal

node. All elements have homogeneous uniform conductivity, σ. We calculate the

impedance across the network vertically (node 2–4) and horizontally (node 1–3) as a

function of the horizontal displacement of internal node d. Näıvely, since the boundary

node positions do not change, one would expect no change in the external impedance.
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Figure 5. Example of an internal change within a FEM geometry. Left: Original FEM
geometry, with mirrored right triangles. Element numbers are in circles, global node
numbers in bold font, and element node numbers in italic font. Right: Displacement
of internal node by d. Current is applied and compared across polar nodes vertically
(shown) and horizontally. The origin (0,0) is at the entre of each figure.

Given a D-dimensional first order tetrahedral FEM of N nodes and E elements, we

have D + 1 nodes per element and (D + 1)E local nodes; in our example D = 2, N = 5,

and E = 4. Based on the FEM system matrix, S ∈ CN×N , the nodal currents,

Q ∈ CN×1, and potentials, V ∈ CN×1, are related by Q = SV (Silvester and Ferrari

1990). The global S is calculated from the element-wise system matrix SE using the

connectivity matrix C ∈ R(D+1)E×N as S = CTSEC, where SE is a banded diagonal

matrix containing the element system matrices, and C is 1 at the positions where global

and element nodes coincide. For the given example,

C =


1 1

1 1

1 1

1 1

1 1 1 1


T

(2)
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and, as a function of the element system matrices (S(k)), the symmetric S is

S =


S

(1)
11 + S

(4)
11 S

(1)
12 0 S

(4)
12 S

(1)
13 + S

(4)
13

S
(1)
22 + S

(2)
22 S

(2)
12 0 S

(1)
23 + S

(2)
23

S
(2)
11 + S

(3)
11 S

(3)
12 S

(2)
13 + S

(3)
13

S
(3)
22 + S

(4)
22 S

(3)
23 + S

(4)
23

S
(1)
33 + S

(2)
33 + S

(3)
33 + S

(4)
33

 (3)

For element k of conductivity σk, the element system matrix S(k) is

S(k) =
1

D!

σk

| detA|
BTB (4)

where A is based on node locations (in 2D, pairs r
(k)
x , r

(k)
y ) and where B ∈ RD×(D+1) is

A with the first row removed. For the given FEM, for element #1,

A =

 1 r
(1)
x r

(1)
y

1 r
(2)
x r

(2)
y

1 r
(3)
x r

(3)
y


−1

=

 1 s 0

1 0 s

1 d 0


−1

= (detA)−1

 −ds 0 s2

s 0 −s

d s− d −s

 (5)

where detA = (s2−ds)−1. Since the other elements are reflections, A may be multiplied

by a unitary reflection matrix R such that A(k) = R(k)TA(1)R(k). Based on these values,

and considering (detA) is positive for s > d,

S(k) =
σk

2s(s − d)

 s2 + d2 d(s − d) −s(s + d)

d(s − d) (s − d)2 −s(s − d)

−s(s + d) −s(s − d) 2s2


−1

(6)

where, due to the reflections, d is replaced by −d for elements 2 and 3.

We may now calculate the impedance for vertical and horizontal current flow. For

a FEM of uniform conductivity σ, the vertical current is calculated setting nodes 1,3 to

V = 0 and current Q2 = +1, Q4 = −1 applied, as shown in figure 5, which yields[
Q2

Q4

]
=

[
S

(1)
22 + S

(2)
22 0

0 S
(3)
22 + S

(4)
22

] [
V2

V4

]
= σ

[
V2

V4

]
(7)

From this expresion, the impedance Zi for current through node i is calculated, as

Zi = Vi/Qi, which gives: Z2 = Z4 = σ−1. Here S
(1)
22 + S

(2)
22 = S

(3)
22 + S

(4)
22 =

σ
(

(s−d)2

2s(s−d)
+ (s+d)2

2s(s+d)

)
= σ, since the direction of d is reversed between reflected element

pairs (1, 2) and (3, 4). On the other hand, the horizontal current is calculated setting

nodes 2,4 to V = 0 and current Q1 = +1, Q3 = −1 applied, giving[
Q1

Q3

]
=

[
S

(1)
11 + S

(4)
11 0

0 S
(2)
11 + S

(3)
11

] [
V1

V3

]
= σ

[
s2+d2

s(s−d)
0

0 s2+d2

s(s+d)

] [
V1

V3

]
(8)

From this expression, Z1 = 1−f
1+f2 σ

−1, and Z3 = 1+f
1+f2 σ

−1, where f = d/s represents the

relative geometric distortion.

This result illustrates the anisotropy; for this simple model, vertical impedance is

not affected by the internal deformation, while horizontal impedance is affected by an
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amount related to the relative deformation f . Since the anisotropy is proportional to

the relative and not the absolute deformation distance, the anisotropic contribution will

continue to be relevant for all FEM sizes.

4. Image Reconstruction Formulation

In this section, we propose an image reconstruction formulation to mitigate this problem.

The fact that some errors exist is not surprising – the FEM is, after all, only an

approximation. The concern is the size of the image errors; surprisingly large image

errors continue to exist (especially in 3D models) even for fine mesh geometries.

We hypothesize that the main source of image reconstruction artefacts is that the

simulated EIT measurements cannot be explained by a purely isotropic conductivity on

a fixed mesh. A selection of a particular FEM geometry is equivalent to a particular

representation of the (potentially anisotropic) conductivity tensors on each tetrahedron

onto the FEM system matrix. A first-order FE model is equivalent to a resistor on

each FE mesh edge, so the maximum degrees of freedom in the FEM is the number of

edges. Since there are more edges than elements (by a factor of approx 3
2

in 2D and 2

in 3D), not all FEM matrices correspond to isotropic conductivities, and any distortion

of the mesh will (typically) be consistent only with an anisotropic conductivity on the

original mesh (Abascal et al 2011). Difficulties associated with recovering anisotropic

conductivities using a FEM model on geophysical data were explored by Herwanger et al

(2004). Any change in the FEM geometry projects this conductivity tensor differently,

resulting in slightly different anisotropic “content” in the simulated voltages. Here, we

use the concept of “content” and consider the anisotropy as resulting in addition of a

small deviation (∆da) to the measurements, di, that would result from a purely isotropic

model: d = di + ∆da.

This analysis suggests that the origin of these image errors is the fixed geometry

of the FEM used in the image reconstruction. The Jacobian (sensitivity) matrix based

on the fixed FEM will not have a range which includes the anisotropic “content”, ∆da.

Such deviations will thus be associated with singular values of the Jacobian which are

zero (or very small, depending on numerical error). During image reconstruction, these

deviations thus cannot be explained by an inverse model parametrized only for isotropic

conductivity, and will then be reconstructed as artefacts, which are projected onto the

reconstructed image.

Given this source of image errors, we propose a modification of the reconstruction

process to compensate for the anisotropic “content”. The key motivation is to allow

the image reconstruction algorithm to vary the FEM geometry to “explain” the

measurements. The reconstruction problem is formulated in terms of a regularized

inverse, using an augmented Jacobian, sensitive to both conductivity and the position

of FEM nodes. Image reconstruction then seeks to calculate both the element

conductivities and the node positions which best conform to the data and prior model.

For difference EIT, we consider EIT difference measurements, d = F (∆σ), originating
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from isotropic conductivity changes ∆σ and augment the FEM model, F (∆σ, ∆r), to

consider the conductivity distribution, ∆σ, and the node positions, ∆r. Based on this

model, we calculate a conductivity Jacobian, Jc (the sensitivity of measurements to

conductivity changes); and a movement Jacobian, Jm (the sensitivity of measurements

to node position movements),

[Jc]ij =
∂Fi(∆σ, ∆r)

∂[∆σ]j
, and (9)

[Jm]ij =
∂Fi(∆σ, ∆r)

∂[∆r]j
. (10)

This approach follows the electrode movement analysis of Soleimani et al (2006) but the

formulation is modified to include movement of all internal FEM nodes. Calculation of

Jc is performed normally, using the adjoint field (Vauhkonen et al 1999), while Jm is

calculated using the formulation of Gómez-Laberge and Adler (2008).

The standard linear solution, m̂, to (1) is

m̂ =
(
JTΣ−1

n J + Σ−1
d

)−1
JΣ−1

n d = ΣdJ
T

(
JΣdJ

T + Σn

)−1
d, (11)

assuming m0 = 0, as normally done for difference EIT.

Normally, the parameter vector, m̂, represents only the conductivity change, ∆σ.

Instead, we represent our scheme using the conductivity change and vertex movement

as parameters: m̂ = [∆σT |∆rT ]T and J = [Jc|Jm]. In this case, the prior Σd may be

decomposed into

Σd =

[
Σc 0

0 Σm

]
(12)

representing conductivity change, Σc, and movement, Σm, parts with no correlation

assumed between these parameters (following Soleimani et al 2006), yielding:

m̂ =

[
ΣcJ

T
c

ΣmJT
m

] (
JcΣcJ

T
c + JmΣmJT

m + Σn

)−1
d (13)

Since we are only interested in displaying the reconstructed conductivity change,

∆σ̂, only this fraction of (13) is used. Thus, standard and proposed reconstruction

formulations differ only by the term JmΣmJT
m:

∆σ̂ =

{
ΣcJ

T
c

(
JcΣcJ

T
c + Σn

)−1
d standard

ΣcJ
T
c

(
JcΣcJ

T
c + Σn + JmΣmJT

m

)−1
d proposed

(14)

The standard and proposed image reconstruction approaches (14) were

implemented for the simulated data of figure 1, and are shown in figure 6. The proposed

approach (bottom row) shows a significant reduction in image artefacts, but roughly the

same resolution of the conductivity target. Σm was chosen as the scaled identity matrix

with an amplitude such that the noise figure (Adler and Guardo 1996a) reduced from

1.0 (standard) to 0.8 (proposed).
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Figure 6. Reconstructed difference images calculated as in figure 1 for changes in
FEM geometry. In each labelled image pair: Left: Coarse Mesh, Right: Fine Mesh.
The target position is indicated by the blue circle. A,B: Data from 2D FEM; and C,D:
Data from 3D FEM. A,C: Standard approach, and B,D: Proposed approach.

5. Discussion

This paper considers one limitation of finite element models for EIT image

reconstruction. We propose the hypothesis that image reconstruction artefacts which

occur due to changes in FEM geometry, as a result of projections of the element

conductivity tensors onto the FEM system matrix. During image reconstruction,

such anisotropic contributions cannot be represented in an isotropic model and are

reconstructed as artefacts. The effect is proportional to the relative FEM geometry

change, d/s, where d is the FEM node movement and s is the size of the element. This

suggests that such anisotropic effects will continue to play an important role, even if

very small FEM elements are used.

In order to compensate for this effect, we propose an augmented formulation of the

EIT inverse problem and the inclusion of a FEM node movement term into the inverse

term in (14), yielding (JcΣcJ
T
c + JmΣmJT

m + Σn)−1. Noting that the movement term

is added to the “raw” instrument noise term Σn, we may interpret JmΣmJT
m as the

correlated noise due to the structure of the FEM.

Several papers have considered related problems. Kohn and McKenney (1990)

implemented a variational method, and proposed stabilising the inverse problem by

allowing limited aniotropic conductivity. Kolehmainen et al (2007) develop an inverse

solution in which they reconstruct an anisotropic conductivity and use that value to

model a matching approximate isotropic conductivity. Tarvainen et al (2010) show

that Baysian reconstruction which considers both the first and second order statistics of

model errors results in improved reconstructions in diffuse optical tomography. These

errors were estimated from a distribution of coarse approximations to a fine FEM using
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the approach of Kolehmainen et al (2009). Interestingly, (14) is equivalent to that

proposed by Nissinen et al (2010) at the same conference in which we presented an

early version of this work. This paper showed how addition of the FEM geometry

term dramatically improves absolute image reconstructions in cases where the model

geometry differs from the original measured one. While we arrive at the same expression

as Nissinen et al, we approach the problem from a different perspective, and explain the

importance of the contribution largely in terms of the contribution of anisotropic effects.

Our study has several limitations. We are guided by the hypothesis that these

FEM errors are a result of anisotropic effects. While numerical evidence supports this

interpretation, we do not prove this is the main (or only) effect. This study considers only

first order FEM elements. Such elements suffer several limitations for EIT. Specifically,

the formulation of such a FEM model requires voltage continuity across elements, but

only fit current in an average (or weak) sense (Silvester and Ferrari 1990). This means

that the voltages, but not the voltage gradients on elements, are guaranteed to converge

pointwise with decreasing element size. However, EIT reconstruction depends on an

accurate model of the sensitivity (Jacobian), which, in turn, depends on estimates of

FEM gradients. We thus recommend that this analysis be conducted for higher order

FEM elements to understand the importance of FEM geometry effects in these systems.

Another limitation is that we only consider linear difference imaging, and reconstruct

images comparing FEM solutions for two different meshes; while an absolute image

solution would only involve one forward and one inverse solution FEM. For absolute

imaging, it is also necessary to consider the interaction between errors due to the FEM

and those due to limitations of the linear approximation.

In summary, these results help explain the strange effect that EIT simulations from

adapted target meshes often show large artefacts, and also the effect that simulations

of electrode movement show much larger effects than are observed in measured data.

Additionally, these results suggest that EIT image reconstruction should allow for

anisotropic behaviour in the measured signals. Thus, this work calls for consideration

of FE models and the assumption of isotropic conductivity in EIT.
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