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Abstract

Electrical Impedance Tomography (EIT) is a method of obtaining images of inte-

rior conductivity from electrode measurements on the boundary. Using EIT, this

work focuses upon boundary movement in the two-dimensional reconstruction prob-

lem. Investigations were carried out using the tools of the Finite Element Method

(FEM), inverse problem theory, and conformal transformations though simulation

and tank tests. The limitations of boundary movement reconstruction algorithms

that assume isotropic conductivities were explored. Initial testing of the boundary

movement reconstruction technique with a deformable phantom showed that the de-

tected boundary movement still had errors. Simulations showed that these errors

are likely conformal and do not introduce artifacts into the image but do result

in incorrect boundary approximations and subsequent deformations of the recon-

structed image. A mathematical exploration of the conformal motions in EIT for

two dimensions was carried out. Finally, it was found that, with conformal boundary

movements, electrode models could cause various image artifacts.
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Chapter 1

Introduction

This thesis investigates the effect of shape deformation on two-dimensional Electrical

Impedance Tomography (EIT). EIT is an electromagnetic modality that is inherently

three-dimensional.[1, 2] This thesis focuses on two dimensions, rather than three, for

the particular properties that occur with this two-dimensional approximation.

EIT is a means of obtaining an image of the internal conductivity of an object

without resorting to destructive or invasive testing. In biomedical EIT, for exam-

ple, sixteen electrodes and an additional ground electrode are attached around the

circumference of the chest. Current is applied across pairs of electrodes, and simul-

taneously, voltage measurements are taken at the other electrodes. Another pair of

electrodes are selected, and the process is repeated. A number of calculations are

performed on these results to obtain an image of the internal conductivity distribu-

tion or the change in conductivity.[3] This thesis focuses on those calculations and

how they are affected by deformations of the object.

2
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1.1 Medical Tomography

Medical tomography plays a critical role in modern Western healthcare.[4] Diagnostic

tools such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)

are regularly called upon to assist in the determination of a course of treatment. They

are used to investigate new pathologies and monitor the progress of treatments.[5]

These tools have become ubiquitous in hospitals because they provide a non-

invasive, non-destructive method of testing hypotheses and searching for answers.

They are used despite their prohibitive monetary costs [6]; the benefits they provide

far outweigh those costs.

EIT offers a similar opportunity by providing a different type of information

to investigators: conductivity. EIT has existed nearly as long as MRI but has not

achieved widespread acceptance in the medical community. The issues with EIT from

a clinical point of view are generally image quality and ability to provide predictive

diagnostic information. EIT is relatively low resolution, has artifacts in the images,

and can distort the image in unexpected ways rendering anatomical representations

difficult. Despite this, EIT provides many benefits since it is inexpensive, portable,

and non-invasive It also provides novel diagnostic information, conductivity, not

available through other currently used modalities. EIT presents an interesting chal-

lenge, and the potential for significant benefit in medical diagnosis.[7]

1.2 Thesis Objectives

The objective of this thesis is to explore the effect that specific shape deformations

have on two-dimensional EIT reconstructions through theoretical explorations and
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the use of simulation and tank studies. These investigations employ the Finite

Element Method (FEM), inverse problem theory, and conformal transformations

to explore the problem space. The focus is upon algorithms that assume isotropic

conductivities such as those found in lung imaging.

1.3 Thesis Contributions

This thesis offers two novel contributions. First, an EIT reconstruction technique

that adapts to boundary deformation is evaluated in vitro through the construction

of a two-dimensional, deformable phantom. The algorithm is found to be incapable

of discovering a specific class of deformations, the conformal motions. These con-

formal deformations are explored mathematically in an EIT context. A differential

interpretation of these results is provided in a form more recognizable to the engi-

neering community. Second, the effect of electrode models under these deformations

is explored, and it is found that the Complete Electrode Model (CEM) can cause

significant artifacts when the electrode does not deform in the same manner as the

boundary, as is likely to occur in vivo. In addition, it is shown that contact impedance

decreases result in significant artifacts while contact impedance increases do not.

These results have been published in the proceedings of the 9th International

Conference on Biomedical Applications of Electrical Impedance Tomography, Dart-

mouth, USA (EIT 2008) and the 10th International Conference on Biomedical Ap-

plications of Electrical Impedance Tomography, Manchester, UK (EIT 2009).[8, 9]

Software modifications supporting this work have been contributed to the Electrical

Impedance and Diffuse Optics Reconstruction Software (EIDORS) package [10] un-

der the GNU General Public License.



Chapter 2

Electrical Impedance Tomography

Tomography is “a method of producing [an] . . . image of the internal structures of

a solid object (as the human body or the earth) by the observation and recording

of the differences in the effects on the passage of waves of energy impinging on

those structures.”[11] It is, in short, a technique for making images, with all the art

and science that involves. Science, in the sense that the images are created using

measurements that are interpreted from fundamental physical and mathematical

principles and manipulated using a multitude of mathematical techniques. Art, in

the sense that the resulting images are ultimately intended to present information

to physicians, technicians, equipment operators, or other individuals and systems in

various fields to aid in decision making.

Electrical Impedance Tomography (EIT) is a form of tomography, and thus, a

knowledge of what types of tomography currently exist provides context for under-

standing where EIT fits in the tomography spectrum.

5
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2.1 Tomography

There are a wide variety of tomography methods, and they vary with the underlying

physical phenomena measured to construct the images. Two of the most widely

recognizable medical tomography techniques are Computed Tomography (CT) and

Magnetic Resonance Imaging (MRI). CT uses x-rays projected through the target

and captured on the far side with a detector at a variety of angles. CT images

show density; the X-rays are absorbed in proportion to the density of the medium.

MRI uses a strong magnetic field and induced electromagnetic fields to measure the

magnetic alignment of protons, mainly hydrogen nuclei in humans, within a target.

This gives very high resolution images indicating the distribution of water molecules

throughout a subject.

Other types of tomography include confocal laser scanning microscopy, various

electrical impedance and capacitance tomography techniques, magnetic induction

tomography, neutron tomography, ocean acoustic tomography (sonar), optical pro-

jection and optical coherence tomography, positron emission tomography (PET),

single photon emission computed tomography (SPECT), ultrasound tomography,

and seismic tomography (ground penetrating radar). These techniques use a wide

array of physical sources including electromagnetic radiation in the ultrasound, ra-

dio and optical frequency ranges, and nuclear sources (i.e. x-rays, gamma rays,

electron-positron annihilation).[12]

Tomography is used in an equally broad array of contexts: the medical field,

geophysical investigations in the oil and gas industry, materials science and non-

destructive testing in a range of manufacturing industries, and process monitoring

in industrial manufacturing such as chemical plants.
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With an understanding of what tomography can be, an examination of the “elec-

trical impedance” component of EIT gives meaning to the modality.

2.2 Electrical Impedance

EIT applies low frequency current to a target and measures the resulting voltages

through electrodes. It measures the impedance (resistance, capacitance and induc-

tance) throughout the domain. Unlike x-rays used in CT, the current does not travel

in a straight line through the object but flows along a path dictated by the distribu-

tion of impedance. This makes reconstructing the impedance from the measurements

particularly challenging and makes it difficult to obtain enough information to resolve

an image at all, let alone one that would be considered “high resolution”.

Despite these challenges, EIT remains a viable technology because it is portable,

non-invasive, non-destructive, and inexpensive. MRI and CT systems can cost mil-

lions of dollars and require specially constructed rooms to safely house the machinery.

A typical EIT system can be used bedside or transported in a small suitcase and

costs thousands of dollars, orders of magnitude less than CT or MRI. Long term

monitoring is a possibility because the system is small, portable and inexpensive.

(Figure 2.1 and 2.2)

2.3 Electrical Safety

Because biomedical EIT is using current applied through a person’s body as its

mode of measurement, electrical safety becomes an immediate concern. The limit for

how much current is acceptable to pass through the human body varies depending
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Figure 2.1: Example EIT system, photo; (left) laptop sitting on top of Goe-MF II
EIT system (Viasys Healthcare, Höchberg, Germany), (right) electrode wires con-
necting to phantom (yellow)

on how it is applied and at what frequency. Measurements [13] have shown that

as little as 10-mA at 60-Hz was the limit before a human could no longer release

a wire when held in each hand (known as the “let-go current”). Currents above

10-mA can have serious physiological effects including respiratory paralysis, pain,

and ventricular fibrillation. Beyond an Ampere, sustained myocardial contractions,

burns, and other injuries occur. Below the 10-mA let-go limit, there is a region

where a sensation of tingling occurs. With a further reduction in current, there is

no discernible sensation. The let-go current and the corresponding thresholds for

sensation fall to a minimum around a frequency of 60Hz.[14] (Figure 2.3 and 2.4)

The skin acts as an electrically protective layer around the mostly saline human



2.4. A BRIEF HISTORY 9

data
acquisition

unit

data
processing

unit

Figure 2.2: Example EIT system, schematic; (left-to-right) subject with attached
electrodes, data acquisition unit including current source and voltage measurement
hardware (voltage is measured relative to a ground electrode placed elsewhere on
the subject), data processing unit controls data acquisition unit and handles data
processing and display

body. Reduction in the resistance of this protective layer, through abrasion, the use

of adhesive electrodes, or needles, significantly reduces the safe current level. The

IEC 60601-1 standard [16] specifies safe current levels and leakage current limits for

medical equipment operating under biomedical conditions.

Biomedical EIT typically operates with current sources running at 50kHz and

with an upper limit of 5-mA current. These values are well within the safe operating

range for biomedical equipment. In Canada, medical devices such as EIT systems

intended for use with human subjects must be certified to comply with IEC 60601-1

by certified laboratories such as Underwriters Laboratories (UL) or the Canadian

Standards Association (CSA) to affirm that they meet these safety standards and

do not endanger researchers or subjects.

2.4 A Brief History

This section is a brief summary of the material contained in [3, §B] which itself refers

to [17, 18, 19, 20, 21, 22, 23].
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Figure 2.3: Physiological effects of electricity; threshold or estimated mean values
are given for each effect in a 70-kg human for a 1- to 3-s exposure to 60-Hz current
applied via copper wires grasped by the hands. (reproduced from [14, Fig14.1])

Biomedical EIT has existed since approximately 1976, when initial images were

constructed using a large number of electrodes on a single side of the chest.[17]

Brain imaging for tumors was proposed shortly after with parallel electrode arrays

and a saline filled tank used as a proof-of-concept.[18] The first widely used and com-

mercially available system for what was then called Applied Potential Tomography

(APT) was the Sheffield Mark I.[19] It used the, now familiar, ring of sixteen elec-

trodes configuration. The first published images resulting from this system showed a

crude cross-section of the forearm.[20, 21] Other groups have continued to developed

EIT systems and have taken advantage of an improved understanding of the hardware

problems in EIT and the reduced size and improved quality of electronics over time.

Systems have been built at various universities (Sheffield, Rensselaer Polytechnic In-

stitute, École Polytechnique Montreal, Cardiff University, Georg-August-Universitát

Góttingen, and others)[22] while commercial systems have been manufactured by
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Figure 2.4: Let-go current versus frequency; percentile values indicate variability of
let-go current among individuals. Let-go currents for women are about two-thirds
the values of men. (reproduced from [14, Fig14.3], in-turn reproduced from [15])

CardioInspect, Draeger Medical and Viasys. EIT has not found favour within the

broader medical community largely because of its low resolution when compared to

ultrasound and CT. Biomedical interest has largely focused on breast cancer, the car-

diac cycle, gastric emptying, brain function and pathology, and lung ventilation.[23]

More recently, research has branched out into several related fields: Magnetic

Induction Tomography (MIT), Magnetic Resonance EIT (MREIT), and multifre-

quency EIT. MIT uses coils to induce electromagnetic fields and measure the result-

ing eddy currents. MREIT combines the MRI modality with simultaneous EIT to

obtain detailed information on conductivity at higher resolutions. Multifrequency
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EIT applies current at a variety of frequencies to obtain information on the frequency

response of the internal impedance distribution. Most systems have the capability of

imaging absolute conductivities but perform difference imaging instead, finding the

change in conductivity, as a means of dealing with numerous factors that otherwise

introduce unacceptable artifacts into the image.

The current state of EIT can be summed up with the quote “it doesn’t clearly

work, so we can reap the fruits of its images, or not work, so we can change direction;

it usually almost works, which is an incitement to redouble our efforts.”[3]

2.5 Breaking it Down

The EIT problem is solved using a combination of tools. The Finite Element Method

(FEM) is used to solve the forward problem, simulating the voltages on the boundary

and within the domain given a set of input currents and the conductivity distribution.

The inverse problem, that of discovering the conductivity distribution given currents

and voltages on the boundary, requires the creation of a Jacobian to describe how

the boundary voltage changes with respect to conductivity and the application of

various regularization techniques to solve the problem. (Figure 2.5) The resulting

image shows the conductivity distribution on the interior of the domain. (Figure 2.6)

When in vivo measurements are used in the inverse problem, the forward problem’s

formulation is still required.



2.5. BREAKING IT DOWN 13

V

σ

I|∂Ω

A

(a) forward
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(b) inverse

Figure 2.5: Forward and inverse problem flow; forward (a) and inverse (b) problems
use the variables: conductivity σ, voltage everywhere on the domain V and only on
the boundary V|∂Ω, current on the boundary I|∂Ω, forward FEM system matrix A,
and inverse Jacobian J
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Figure 2.6: Sample difference EIT simulation; forward model (a) used to generate
difference voltage measurements (b, red = blue - green voltages) given a conductiv-
ity distribution and applied currents, measurements are then used to reconstruct a
conductivity distribution (c) by solving the inverse problem



Chapter 3

The Finite Element Method

This chapter is largely derived from [24] and [3, §1.8.1] with additional material from

[25] and [26].

Electrical Impedance Tomography (EIT) requires the use of the Finite Element

Method (FEM) in both the forward and inverse problems. The FEM is a numer-

ical technique for solving Partial Differential Equations (PDEs) by converting the

problem into a system of linear equations. These linear equations are based on an

approximation that breaks the domain of the problem into elements, where the con-

nected elements are called a mesh. Each element has a portion of the solution over its

region which is controlled by an expansion function that has values over the element

and is zero elsewhere. The expansion function’s profile over the element is, in turn,

uniquely controlled by a set of node values.

Each element, in discrete form, is expressed as an element matrix that captures

the solution of the problem within the element and the boundary conditions upon

which the solution depends. In general, for elements that are connected, the bound-

14
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ary conditions of the adjoining elements will cancel. When the element matrices are

assembled into a system matrix, they incorporate the underlying conditions of the

problem, and the conditions on the boundary of the domain form a second vector.

In EIT, FEM models are used to solve for the voltage distribution over the

domain, given a known conductivity (the underlying conditions) and the applied

current at the electrodes (the boundary conditions). The solution of this forward

problem allows simulation of the voltages expected at the electrodes and anywhere

on the domain given a set of applied currents.

3.1 Finding Voltage on a Domain

In EIT, generally, the intent is to solve for the conductivity, but before getting to the

inverse problem, the formulation of the forward problem is required. The derivation

and corresponding assumptions for the governing equations of EIT are outlined in

the following sections as well as a description of how these equations are implemented

within the FEM framework.

3.1.1 Assumptions

The assumptions upon which single frequency EIT is based are as follows:

1. the system is quasi-static, meaning that the system is operating at a low enough

frequency such that, approximately, there are no time varying components in

the electric and magnetic flux density fields,

ω ' 0
∂D

∂t
' 0

∂B

∂t
' 0 (3.1)
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2. the medium behaves as a linear conductor, such that current flow is distributed

through the medium dependent solely on conductivity and induced electric

field,

3. the medium is dispersionless, such that there are no losses due to heating or

other means, and

4. the electric field E is C2 smooth (i.e. it has first- and second-derivatives), and

the field tends to zero at a rate faster than 1/r2 as the distance r approaches

infinity.

Current is represented by a complex phasor at a frequency of interest. Where

that frequency is low, assumption (1) indicates that any frequency dependent sus-

ceptibility component ε of admittivity γ is assumed to have no effect since ω ' 0.

γ = σ + iωε
ω'0−−→ γ ' σ (3.2)

Thus, conductivity σ has only a real component but is not constrained to be isotropic

and therefore, may be a scalar or a matrix.

Assumption (4) is required for application of the Helmholtz decomposition and

is satisfied for any real world electrostatic case but can be violated in contrived

problems.

3.1.2 Derivation

The equation governing the behaviour of EIT systems is founded in fundamental

electromagnetics. By taking the aforementioned assumptions and applying some
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algebraic manipulation, the desired equation can be derived. This in itself is not

enough, however; further massaging is required to make these equations usable in a

FEM setting by transforming the system of discrete equations into functions of first

derivatives.

The derivation of the governing equations for EIT begins with Maxwell’s equa-

tions for electromagnetics

∇ ·D = ρ/ε0 Gauss’ Law (3.3a)

∇ ·B = 0 Gauss’ Law for electromagnetism (3.3b)

∇× E = −∂B

∂t
Faraday’s Law (3.3c)

∇×H = µ0ε0
∂D

∂t
+ µ0J Ampere’s Law (3.3d)

Employing the quasi-static assumption where ∂B/∂t ' 0 (3.1) and applying it to

Faraday’s Law (3.3c) gives

∇× E ' 0 (3.4)

This indicates that assuming a quasi-static field means the field is “irrotational,”

and by applying the Helmholtz decomposition, the electric field E is seen to be the

gradient of a scalar function

E ' −∇φ (3.5)

where φ is the potential.

Taking the conservation of charge law (the divergence of curl identity),

∇ · (∇×H) = 0 (3.6)
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and substituting in Ampere’s law (3.3d) gives

∇ · (µ0ε0
∂D

∂t
+ µ0J) = 0 (3.7)

and then, employing the quasi-static assumption where ∂D/∂t ' 0 (3.1) gives

∇ · (µ0J) ' 0 (3.8)

where rolling the permeability of free space constant into the current density µ0J → J

gives

∇ · J ' 0 (3.9)

Kirchhoff’s formulation of Ohm’s law assumes a conductor operating in a linear range

with no dispersion

J = σE (3.10)

Substituting this into (3.9) and applying our equation for a quasi-static electric field

(3.5) gives

∇ · (σE) ' 0 (3.11)

∇ · (σ∇φ) ' 0 (3.12)

which is a generalized Laplace equation that describes the relationship between con-

ductivity and potential over a domain. It is an elliptic PDE whose solution is a

harmonic function. (Harmonic functions are twice continuously differentiable and

satisfy Laplace’s equation.) Analytic solutions for this equation can be obtained for
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simple geometries and conductivity distributions, but for more complicated configu-

rations, numerical solutions can be found using a FEM model with considerably less

difficulty.

3.2 Weak Form

To resolve the governing equation for EIT over a domain, the governing equation

must first be converted to a different form so that it can be solved numerically. The

FEM solution of (3.12) requires that the equation be converted to its weak form

by applying Stokes’ Theorem to convert the original equation containing a second-

order derivative into an equation containing only first-order derivatives. To apply

Stokes’ Theorem, the surface must be orientable and smooth. A surface is orientable

if the surface normal is well defined, as it is for most physical objects, allowing the

right-hand rule to be specified. A Möbius strip is an example of an object with an

undefined surface normal. An object is smooth if it is differentiable (i.e. has no

singularities or discontinuities). For (3.12), the surface needs to be C2 smooth (i.e.

has first- and second-order derivatives).

The weighted residual is used to obtain a solution to the FEM model such that

the integral is approximately zero when some test function u is applied

∇ · (σ∇φ) = 0 →
∫

Ω

u(∇ · (σ∇φ))dV = 0 (3.13)

By taking the vector derivative identity and applying it to the EIT governing equa-

tion, the second-order derivative is separated into two new terms, one of which has
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only first-order derivatives.

∇ · (fA) = f(∇ · A) + (∇f) · A where f = u, A = σ∇φ (3.14)

∇ · (uσ∇φ) = u(∇ · (σ∇φ)) +∇u · (σ∇φ)︸ ︷︷ ︸
σ∇u · ∇φ

(3.15)

Rearranging (3.15) for the first term on the right-hand side and substituting into

(3.13) gives a weighted residual function

∫
Ω

∇ · (uσ∇φ)dV −
∫

Ω

σ∇u · ∇φdV = 0 (3.16)

Applying the divergence theorem to the left-hand term of (3.16) gives

∫
Ω

(∇ · F )dV =

∮
∂Ω

F · n̂dS →
∫

Ω

∇ · (uσ∇φ)dV =

∮
∂Ω

(uσ∇φ) · n̂dS (3.17)

which is the weak form, where the second-derivative of potential φ in (3.13) has been

reduced to a first-derivative by transferring a derivative to the test function u

∫
Ω

σ∇φ · ∇udV =

∮
∂Ω

(uσ∇φ) · n̂dS (3.18)

The potential gradient term normal to the boundary ∇φ · n̂ is the outward normal

current density on the boundary (J · n̂), and the current density on the boundary is

zero everywhere except where electrodes are attached.
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3.3 Expansion Functions

A test function similar to the one used in the previous section is required to obtain

a discrete approximation of the potential φ. These test functions can be chosen

arbitrarily. The Galerkin method, or more specifically the Rayleigh-Ritz method,

elects to use the same discretization for the two test functions. The discretization

functions are called the expansion functions, where u = Ψ, φ(x) =
∑

i φiΨi(x).

The choice of expansion function used for the discretization of the potential

distribution affects the distribution that can be accurately approximated. To make

interpretation of the results simple, it is desirable that first-order expansion functions

have a value of one at a single node of the element, zero at the other nodes, and zero

outside of the element. When multiplied by node values, the summation of expansion

functions for an element will give the value of the approximation at a point within

the element. At the exact location of a node, the approximation is independent of

other nodes thereby simplifying the process of plotting the solution. The summation

of all elements will give an approximation of the function over the domain. A first-

order scalar interpolatory expansion function, a straight line between node values, is

the simplest starting point allowing for zero-order continuity C0 between elements.

(Figure 3.1) Expansion function choices include hierarchical interpolatory, Legendre,

Figure 3.1: Two-dimensional first-order scalar interpolatory expansion functions;
sum of expansion functions controlled by the mesh element’s three corner nodes
gives a linear approximation over the element



3.3. EXPANSION FUNCTIONS 22

Hermite, and other specialized polynomials that allow second and higher order curves

between nodes in the discretization. These additional degrees of freedom can allow

manipulation of the expansion functions to enforce physical constraints, such as

enforcing continuity when assembling the system matrix or to isolate components of

the expansion function in other ways. (Figure 3.2) Increasing the polynomial order

of the discretization, in FEM terminology, is called p-refinement and can be done

on an element-by-element basis. Splitting individual elements into smaller elements

is called h-refinement. Typically, commercial FEM implementations would form an

initial solution on a basic mesh and then refine the mesh based on some estimate of

the discretization error.

(a) 1st- and 2nd-order Hermite functions (b) Hermite derivatives

Figure 3.2: An example of an alternative expansion function; one-dimensional first-
order (solid) and second-order (dashed) Hermite expansion functions (a) and their
derivatives (b); note that the value of the second-order expansion functions at the
edges of the element (+1 and −1) are zero, while the derivatives of the first-order
expansion function are zero at those same points allowing independent control of
slope and value at the node

In general, linear expansion functions with no refinement are the most common

choice for EIT. The conductivity is generally treated as piecewise scalar constant (i.e.

a constant across each element of the mesh) though first-order linear approximations

have also been used.[3, 26]
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The element equations take the form, for each i

∑
j

φj

∫
Ω

σ∇Ψi · ∇ΨjdV −
∮
∂Ω

(uσ∇φ) · n̂dS = 0 (3.19)

where the test function and continuous potential have been substituted for their

discrete equivalents using the common expansion function Ψ. Potential at the node

j is a scalar constant φj. The element equations can be written in matrix form as

the element matrices

Aexe = be (3.20)

where

Ae
ij =

∫
Ω

σ∇Ψi · ∇ΨjdV (3.21a)

bei =

∮
∂Ω

(uσ∇φ) · n̂dS (3.21b)

xej = φj (3.21c)

The row and column of the matrix are identified by i and j respectively. For a first-

order scalar interpolatory expansion function in two dimensions with triangular mesh

elements, there are three expansion functions i, j = 1..3 forming a 3-by-3 element

matrix Ae.

Combining the summation of the element matrices over all nodes gives the system

matrix, where the boundary conditions be for adjoining elements cancel and leave

only the boundary conditions on the surface of the domain.

The system matrix takes the form of a system of linear equations representing a

circuit V = IR, and this interpretation leads to a second way of viewing the meshed
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domain. The FEM mesh can be viewed as a resistor model where resistors connect

the nodes instead of a continuous domain of conductivity. Boundary conditions can

be interpreted as a current source attached to a node for the Point Electrode Model

(PEM), a shunt connecting each electrode’s nodes for the Shunt Electrode Model

(SEM), or an additional node in the resistor network with impedances connecting

to the electrode’s nodes for the Complete Electrode Model (CEM).

3.4 Boundary Conditions

In FEM terminology, there are two types of boundary conditions: “Dirichlet” and

“Neumann” boundary conditions. Dirichlet boundary conditions directly assign a

value to the discretized function on the boundary. In EIT, this would be assigning

a specific potential φ to a node. A Neumann boundary condition sets the first

derivative of the discretized function in the normal direction to the boundary. (The

normal is usually an “outward” unit normal; though it depends on the “right-handed-

ness” of the domain, whether the right-hand rule has been applied in assigning the

vector components of the domain.) For EIT, this would be a current density J into

the domain over an electrode σ∂φ/∂n̂ = J . Mixed boundary conditions are also

possible combining the Neumann and Dirichlet boundary conditions.

For a PEM, the boundary conditions are applied by setting the appropriate input

or output current I in the system matrix. This does not directly represent a current

density over an element but instead, requires interpretation of the FEM mesh as a

resistor network.

SEMs require an additional step with respect to the PEM which is to set all nodes
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associated with an electrode to the same voltage. This is achieved by “forcing” the

matrix by replacing rows and columns in the system matrix for all but one of the

nodes so that they will be assigned the same voltage (i.e. φ1 = φ2). The remaining

node is assigned the input or output current which will be distributed across the

shunt.

For a more realistic boundary condition, a CEM can be implemented as a “Neu-

mann” boundary condition. This implies an additional contact impedance for each

electrode which is distributed across the boundary associated with that electrode.

The simplest approximation is to assume a uniform distribution of contact impedance

over the area of the electrode.

σ
∂φ

∂n̂
=

{
J electrodes

0 elsewhere
(3.22)

Taking the integral of (3.22) gives the current through the electrode
∫
JdS = I.

The system matrix with the CEM for all electrodes then becomes

 Aα + Aβ Aγ

AT
γ Aδ


 xn

xk

 =

 0

b

 (3.23)

where xn is the voltage on the FEM mesh’s nodes, xk is the voltage measured at the
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electrodes with outward current flow b, and

Aα ij = σ

∫
Ω

∇Ψi · ∇ΨjdV (3.24a)

Aβ ij =
∑
k

1

zk

∫
Ek

ΨiΨjdS, i, j ∈ Ek (3.24b)

Aγ ik =
1

zk

∫
Ek

ΨkdS, i ∈ Ek (3.24c)

Aδ kk =

{
1 k ∈ Ek

0 elsewhere
(3.24d)

where an electrode k has a set of nodes Ek associated with it. The sub-matrix Aδ

is an identity matrix I. As before, the row and column of the matrix are identified

by i and j respectively, and the rows and columns associated with k are those that

augment the matrix to implement the CEM. Note that integrals over the expansion

functions and their first derivatives, dependent on the geometry of the elements, are

required. If the mesh does not change, the integrals over the expansion functions

can be precomputed.

This finite element formulation, with first-order interpolatory expansion func-

tions, is implemented in the Electrical Impedance and Diffuse Optics Reconstruction

Software (EIDORS) package, version 3.3.

Equations (3.24) form the setting in which EIT is performed, but in fact, it is not

the final problem to be solved. The problem when stated this way does not match

the information available: a set of applied currents and measured voltages on the

boundary with an unknown conductivity. To find the unknown conductivity requires

a further tool: inverse problem theory.



Chapter 4

Inverse Problems

This chapter is derived from [27, 28] and [3, §1.1–1.7] with additional material from

[25] and [26].

Inverse problems are those problems where parameters must be inferred from a

set of data. In Electrical Impedance Tomography (EIT), the problem is inferring

the interior conductivity from applied currents and the resulting voltages on the

boundary. This is not the direct opposite of the forward problem (voltages found

everywhere from injected current and known conductivity) but instead, a slightly

different problem where the currents are assumed constant and conductivity is re-

constructed by examining how the measured voltages would change if conductivities

changed slightly.

According to the mathematician Jacques Hadamard (1865–1963), mathematical

problems can be classified as either “well-posed” or “ill-posed”. The Hadamard

criteria for a well-posed problem are as follows:

1. for all admissible data, a solution exists,

27
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2. for all admissible data, the solution is unique, and

3. that the solution depends continuously on the data.[29]

In EIT, the existence and uniqueness of a solution, conditions 1 and 2, have been

proven for some specific cases where the boundary takes a simple cylindrical form

and interior conductivity is severely constrained: with all boundary data known,

with gaps in the data, and with various electrode models.[30, 31, 32, 33] Typically,

analytic analysis of more complex boundaries and interior conductivities rapidly

becomes infeasible without resorting to broad approximations. The real challenge

in EIT comes from condition 3 (that the solution should depend continuously on

the data). The problem is that small changes in the measurements correlate with

significant conductivity changes in the interior because changes in the applied current

affect all measurements; the problem is non-local. As a result, the addition of noise

to the measurements can result in significant changes in the resulting reconstructed

image.

The solution of EIT images is formulated using the Finite Element Method

(FEM) discretization. Because the problem is discrete, it is more properly referred

to as an ill-conditioned problem.[27]

4.1 Finding Conductivity Change

Understanding the forward problem, from the previous chapter, of finding voltages

everywhere from conductivity and applied current, the inverse problem in EIT is de-

fined as finding an operator that converts the measurement data into a conductivity.

(Recall that Ax = b, where x are node voltages from the FEM and b are the bound-
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ary currents.) For difference imaging, the absolute voltages and conductivities are

not of interest, but instead, their respective changes Λσ : ∆φ|∂Ω 7→ ∆σ are of interest.

With a linearized discrete approximation of the domain, the Dirichlet-to-Neumann

operator Λσ is a Jacobian J, a matrix of all first-order partial derivatives of mea-

sured voltages with respect to conductivity. It is recognized as a transconductance

operator and is sometimes called the sensitivity matrix.

The standard method of deriving the Jacobian from the forward problem uses

an extraction matrix T on the forward solution’s voltages x to select the nodes of

the FEM mesh to use as the measured voltage v. Since the problem is to find a

difference image, only the change in voltages at the electrodes is of interest.

z = ∆v = T [x(σ2)− x(σ1)] = T [x(σ0 + ∆σ)− x(σ0)] (4.1)

Multiplying top and bottom by this change in conductivity ∆σ

z = T

[
x(σ0 + ∆σ)− x(σ0)

∆σ
∆σ

]
(4.2)

and taking the limit as this change approaches zero

lim
∆σ→0

x(σ0 + ∆σ)− x(σ0)

∆σ
' ∂x(σ0)

∂σ
(4.3)

gives the partial derivative. Substituting this back into the difference voltage equa-

tion (4.1), with c = ∆σ, gives

z = T

[
∂x(σ0)

∂σ
c

]
where x(σ0) = A(σ0)−1b → x0 = A0

−1b (4.4)
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and the partial derivative is used with a change in notation to identify that the FEM

matrix A0 is calculated at a specific background conductivity σ0.

z = T

[
∂
(
A0
−1
)

∂σ
bc

]
(4.5)

By applying the matrix derivative identity ∂(X−1) = −X−1(∂X)X−1 to the partial

derivative

z = −T

[
A0
−1∂A0

∂σ
A0
−1bc

]
, x0 = A0

−1b (4.6)

J = −T

[
A0
−1∂A0

∂σ
x0

]
(4.7)

This equation can be solved as a least squares problem to find the change in con-

ductivity c with

arg min
c
||Jc− z|| (4.8)

but is severely ill-conditioned in the presence of noise, and thus, further regularization

steps are required to obtain a reasonable solution.

The standard method, outlined here, can be used to calculate the Jacobian but

requires the calculation of the inverse A0
−1 and partial derivative ∂A0/∂σ of the sys-

tem matrix along with the node voltages x0. Other methods are available, including

various perturbation techniques that approximate the Jacobian by simulating small

changes in the conductivity, where small changes are large enough to avoid numerical

precision errors while still giving a reasonably accurate solution. Many of the meth-

ods are significantly more efficient, but some approximations can be inappropriate,

so an alternative must be selected with care.[34, 35, 36, 1]
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4.2 Regularization Methods

There is a large variety of regularization methods which can be employed to “stabi-

lize” the solution of the inverse EIT problem. These can broadly be separated into

methods that provide a solution in a single step and those that require an iterative

solution process. Considering these solutions with a probabilistic framework in mind

is useful when considering the effect of regularization, whatever its form.

4.2.1 A Bayesian View

It is helpful to consider these regularization techniques in a Bayesian framework

where the a priori knowledge is clearly separated from the measurements and fixed

qualities of the problem. All variables are treated as random variables with their

respective probability distributions. Bayes formula

P (σ|φ) =
P (φ|σ)P (σ)

P (φ)
(4.9)

shows the posterior probability P (σ|φ), the probability of σ given φ, is related to

the conditional probability P (φ|σ) and the prior probability P (σ). The marginal

probability P (φ) is not relevant when the posterior probability does not need to be

normalized. An example is the Maximum A Posteriori (MAP) estimate where the

solution is

σ̂MAP = arg max
σ

P (σ|φ) (4.10)
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the maxima of the posterior probability. The Conditional Mean (CM) estimate is

another Bayesian solution

σ̂CM = E{σ|φ} =

∫
σP (σ|φ) (4.11)

which gives the mean value of the posterior distribution which is not necessarily the

same as the MAP estimate particularly when the posterior distribution has more

than one peak. The Maximum Likelihood (ML) estimate

σ̂ML = arg max
σ

P (φ|σ) (4.12)

asks “What is the most likely value σ to have produced this outcome φ?” It is

possibly the most common statistical estimate but frequently corresponds to solving

the unregularized solution.

The Bayesian interpretation shows that there is always some quantity of prior

knowledge incorporated into a reconstruction and rarely, are there any certainties

involved in either the measurements or the solution. With regularization techniques

that do not appear to incorporate prior information, it is not obvious what as-

sumptions are being made. For example, with difference imaging in EIT, a prior of

zero conductivity change across the domain is frequently being implicitly assumed.

Another common prior assumption is one of smoothness on the conductivity distri-

bution. Likewise, a single reconstructed image represents only a single selection from

the posterior distribution. Regularized reconstruction algorithms bias that selection

towards prior assumptions, but without detailed analysis, there is no guarantee that

the posterior distribution has a single maximum (i.e. there may be similar conduc-
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tivity images that result in the same measurements). There is no perfect solution

for a given set of measurements when there is noise in those measurements due to

the instability of the inverse problem.

A desirable property for any regularization mechanism is that there be a clear

separation between the a priori information, the measurement data and the regu-

larization mechanism.

4.2.2 Single Step Solutions

The simplest reconstruction algorithm for the problem Jc = z would be one using

the inverse of J such that c = J−1z. This will not work for EIT problems because the

matrix J is not square and therefore, does not have an inverse. A simple solution is

to use the Moore-Penrose pseudoinverse J† = (J*J)−1J* where the columns of J are

linearly independent. This is the least squares solution cls = arg minc ||Jc − z||2 =

J†z given by the backslash operator (J\z) in many scientific computing environments

(MatLab, Octave, SciLab, etc.).

This will not give a satisfactory solution because of the instability of the EIT

problem as observed by looking at the condition number of the Jacobian J such that

κ(J) = ||J|| · ||J−1||. The condition number can be understood as the ratio of the

smallest to largest singular values of the Singular Value Decomposition (SVD). The

singular values of an ill-conditioned problem tend to fall off sharply with a significant

number of small values. When the inverse problem is considered with the addition

of noise, these small singular values are affected by the noise resulting in large fluc-

tuations in the solution. (Figure 4.1) A small condition number indicates that an

inversion will magnify any errors in the data. EIT problems typically have very
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small condition numbers unless some form of regularization is applied. To improve

the stability of the solution, additional information can be added to the matrices to

reduce the effect of the small singular values. This is the essence of regularization.

An intuitive fix for these small singular values is the Truncated SVD (TSVD) which

sets a certain number of the smallest values to zero. Unfortunately, the TSVD does

not give good results in many situations, and more complex algorithms are called

for.
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Figure 4.1: Singular values of an inverse EIT problem shown in Figure 2.6(c); 523
singular values organized from largest to smallest; note the smallest values are 17
orders of magnitude smaller than the largest values and match the machine precision

Tikhonov regularization is a basic form of regularization that admits many vari-

ations and forms a good framework for examining a variety of priors.

cλ = arg min
c
||Jc− z||2 + λ2||c||2 (4.13)
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which has the solution

cλ = (JTJ + λ2I)−1JTz (4.14)

where λ is the hyper-parameter which controls the intensity of regularization.[37, 27,

35] Observe that as the hyper-parameter λ approaches zero, reducing the amount

of regularization, the solution becomes the pseudoinverse. Increasing the hyper-

parameter affects the condition number and admits a more stable solution.

There are three modifications that improve the broad applicability of Tikhonov

regularization:

1. allow weighting of the relationship between solution values L,

2. allow a prior solution c0 to be preferred, and

3. allow weighting of the data W so that unreliable data can be discounted.

This gives the generalized form of Tikhonov regularization

cλ = arg min
c
||Jc− z||2W + λ2||L(c− c0)||2 (4.15)

which has the solution

cλ = (JTWJ + λ2LTL)−1(JTWz + λ2LTLc0), or (4.16)

cλ = (LTL)−1JT
(
J(LTL)−1JT + λ2W−1

)−1
(z− Jc0) + c0 (4.17)

where the latter equation (4.17) is the Wiener filter form J∗/(JJ∗ + SNR). See

Appendix B for derivations of these Tikhonov solutions (4.14) (4.16) (4.17). Setting

L to a discrete derivative approximation creates a smoothing norm that penalizes
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sudden changes in slope, preferring “smooth” solutions. Setting L = I gives the basic

Tikhonov regularization, preferring “small” solutions that are near the image prior.

This single step solution framework is implemented in the Electrical Impedance and

Diffuse Optics Reconstruction Software (EIDORS) package, version 3.3.

There are a variety of regularization techniques that can be shown to be a con-

strained form of Tikhonov regularization such as the TSVD. Note that, with a bit

of manipulation, the Bayesian MAP estimate can be reformulated as Tikhonov reg-

ularization where the covariance matrices for the measurement and regularization

terms can be transformed to the Tikhonov variables L and W; thus, philosophically

tying the Tikhonov and Bayesian frameworks together.

4.2.3 Iterative Solutions

Iterative solutions can provide a means to solve problems insoluble with a single step

solution or provide a significant improvement in calculation efficiency.

Non-linear Landweber, the modified Newton-Raphson method (also known as

the Gauss-Newton method), the Levenburg-Marquardt method (Gauss-Newton with

Tikhonov type regularization), and various flavours of non-linear conjugate gradient

algorithms allow the solution of non-linear problems, such as EIT, through iterative

updates of the operational linearization.[38]

Total Variation (TV) applies a regularization term that is not differentiable, and

therefore, iterative solutions are required. The Primal-Dual Interior Point Method

(PD-IPM) is one such technique specific to TV regularization.

Conjugate gradient and its many variants provide an efficient iterative solution

to the Tikhonov functional. They provide a variety of trade-offs in efficiency versus
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accuracy, and a number of parameters, such as stopping criteria or iteration limits,

which must be predetermined.

Other options include statistical methods such as Markov Chain Monte Carlo

(MCMC) and multigrid techniques.[39, 40]

However, this thesis focuses on single step solutions. Some iterative techniques

such as PD-IPM are implemented in the EIDORS package, version 3.3.

4.3 Hyper-parameter Selection

Frequently, the hyper-parameter λ, the parameter used to adjust the amount of

regularization applied to the solution, is set by tweaking its value over successive

runs until an image that resembles the expected image appears. This procedure

roughly corresponds to two different procedures for choosing the hyper-parameter

value: the Morozov distinguishability criteria and the L-curve method.[41, 42] These

methods both strive to set the hyper-parameter in a rigorous and repeatable manner,

so no more regularization is applied than is strictly necessary to overcome the noise

in the measurements.

The Morozov discrepancy principle asserts that regularization should be limited

to a level where the solution fits the data no more tightly than the noise level.

||Jcλ − z|| ≤ ε (4.18)

Morozov requires prior knowledge or some estimate of the norm of the measurement

noise ε which is not necessarily available. For tank studies, it is possible to char-

acterize the system, but in biomedical scenarios, this is frequently not possible due
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issues such as electrode movement and posture change. With knowledge of the norm

of the measurement noise, the appropriate hyper-parameter value can be found by

solving for the hyper-parameter λ in the regularized solution when the error norm

equals the noise norm.

The L-curve, on the other hand, explores the solution space by plotting the norm

of the regularized solution ||Lcλ|| versus the norm of the residual ||Jcλ − z||. The

ideal hyper-parameter, using this plot, is at the “L” in the curve where the norm

of the regularized solution falls drastically with respect to the norm of the residual

and represents the point at which the regularization is suppressing the noise without

hiding image features. (Figure 4.2)

The L-curve method relies on a reasonably smooth plot of the norms, but for EIT,

this plot can be irregular resulting in error-prone results.[43] The L-curve method also

requires many solutions to form the plot of the norms which can be time consuming.

A similar technique is Generalized Cross-Validation (GCV) which uses error curves

to estimate when an appropriate level of regularization is being applied.

For the purposes of this thesis, the hyper-parameter is set through trial-and-error;

though, this is not the most rigorous possible technique.
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Figure 4.2: Hyper-parameter selection with the L-curve: back-projection algorithm
on CT scan simulation with partial data; for the simulated noise level, the hyper-
parameter corresponding to the reconstructions at the corner of the curve where
||Lcλ|| ' 1 and ||Jcλ − z|| ' 1 is the optimal one for this scenario



Chapter 5

Boundary Movement

Boundary shape uncertainty has been a problem since the inception of Electrical

Impedance Tomography (EIT). Electrode positioning errors have been recognized as

one of the major factors preventing in vivo, absolute conductivity reconstructions.[44]

In biomedical EIT, imaging of the chest immediately encounters these problems due

to chest expansion in subjects during breathing and posture change.[45, 46, 47] The-

oretically, it has been shown that, given an isotropic conductivity and complete

boundary data, a three-dimensional reconstruction of both electrode position and

conductivity is possible.[48] The lungs represent an isotropic conductivity if the re-

gions near the boundary containing muscle and other anisotropic material are ig-

nored.

Various electrode positioning algorithms have been implemented previously in-

cluding [49, 50]. This thesis focuses on [51] where electrode position is directly

manipulated.

In practical EIT of objects with fixed boundaries, it would be unusual to use

40
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the electrical measurement to recover the boundary shape, as one could employ

mechanical or optical measurement devices to determine the external shape of the

body and the position of the electrodes.[52, 53] In the case of the chest, however, the

boundary shape changes with breathing, so it is desirable to correct the boundary

shape using the EIT data so that a consistent isotropic conductivity can be fitted to

the data. This should result in a distorted image due to the anisotropic nature of

chest muscle yet still preserve useful features of the lungs.

5.1 An Electrode Movement Algorithm

This section summarizes material from [51] and [54].

This formulation takes the conductivity changes and electrode movement from

difference EIT data and forms a regularized inverse with an augmented Jacobian.

The augmented Jacobian takes into account the regular conductivity change and an

additional factor: electrode movement. Rephrasing the inverse problem with this

new electrode movement variable r gives

z = T [x(σ2, r2)− x(σ1, r1)] (5.1)

where T selects the electrode voltages from the full Finite Element Method (FEM)

mesh voltages and z is the change in measured voltages on the boundary of the

domain.

The additional factor in this algorithm is the variable position of electrodes.

They must be accounted for in the inverse problem. To do this, the Maximum

A Posteriori (MAP) estimate cMAP is used where the Jacobian J and regularization



5.1. AN ELECTRODE MOVEMENT ALGORITHM 42

covariance matrix inverse R are expanded to add a section that represents movement

along the coordinate axis for each electrode. (Figure 5.1) The MAP estimate of

conductivity is

cMAP = arg min
MAP
||Jc− z||2P−1

n
+ ||c− c0||2P−1

x
(5.2)

which closely resembles the generalized Tikhonov formulation. The regularization

covariance matrix
∑−1

x = R can be seen to be the smoothing norm in generalized

Tikhonov regularization where R = LTL. The measurement covariance matrix
∑−1

n

corresponds to the generalized Tikhonov measurement noise estimate W.

The columns k of the Jacobian J can be approximated by repeated calculations

of the forward model as each of the FEM’s electrode positions and mesh element

conductivities k is individually perturbed by a small amount.

Jk ' T

[
x(σ0 + ∆σk)− x(σ0)

∆σk

]
(5.3)

The regularization covariance matrix has an additional block on the diagonal added

to enforce a smoothing criteria on adjacent electrodes with a small positive cost

function to penalize solutions that translate all electrodes. Also, the regularization

covariance matrix assumes no correlation between conductivity and electrode move-

ment, though this is not strictly true, rather than assign an incorrect correlation

that may bias the image and introduce unexpected artifacts.

The inverse problem, when formulated using the Tikhonov generalized form, has

a hyper-parameter λ to control how much regularization is applied to the solution for

conductivity. Similarly, the regularization of the electrode movement is controlled

via a new hyper-parameter µ.
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Jc Jm

(a) Jacobian J

Rc 0

0 Rm

(b) Covariance Matrix R

Figure 5.1: Jacobian and regularization matrices for electrode movement; the con-
ductivity Jacobian Jc has a row per measurement and a column per element (or node
if first-order conductivity discretization is used) of the FEM mesh, the movement Ja-
cobian Jm has two (or three in three dimensions) columns per electrode one for each
coordinate axis, the covariance matrices are square where the conductivity Rc has a
row/column per element/node and movement Rm has two (or three) rows/columns
per electrode

Soleimani, et al. [51] implemented a discrete Laplacian for the conductivity reg-

ularization; though, there are many choices available. A discrete Laplacian was also

selected for the electrode movement regularization because it was thought reasonable

to require that the boundary deformation be “smooth”. The regularization matrix

in the generalized Tikhonov formulation (4.16) takes the form

LTL =



nD + 1 if i = j and i ≤ nN

−1 if element i is adjacent to j and i ≤ nN

2.1µ2 if i = j and i > nN

−µ2 if electrode i is adjacent to j and i > nN

0 otherwise

(5.4)

where nD is the number of dimensions: two for two-dimensional and three for three-
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dimensional reconstructions. For the indices of the regularization matrix, nN in-

dicates the delineation between the conductivity regularization and the electrode

movement regularization.

The movement hyper-parameter µ is the relative weighting in the regularization

matrix between conductivity change and electrode movement. The conductivity

changes for breathing are on the order of the initial conductivity estimate σ0, and

chest expansion has been found to be approximately 5% of medium diameter. This

gives an initial estimate for the movement hyper-parameter of µ = 1/0.05 = 20.

For the purposes of this thesis, the movement hyper-parameter µ is set through

trial-and-error; though, this is not the most rigorous possible technique.

The Jacobian calculation (5.3) can be made more efficient by using a rank-one

matrix perturbation as shown in [54]. The electrode movement rank-one pertur-

bation optimization has been observed to reduce the calculation time required for

image reconstructions that account for electrode movement by two to three orders

of magnitude. The scheme creates a separable product of the system matrix in the

forward problem As into a connectivity matrix C, an unconnected shape matrix S,

and conductivity matrix D.

As = CTA(r, σ)eC → As = CTS(r)D(σ)C (5.5)

To determine the conductivity related portion of the Jacobian, the partial deriva-

tive of the node voltages with respect to conductivity is manipulated as follows:

∂x0

∂σ
=
∂(A−1

0 b)

∂σ
= A−1

0

∂A0

∂σ
A−1

0 b = A−1
0

∂A0

∂σ
x0 (5.6)
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where

∂A0

∂σ
= CTS

∂D

∂σ
C (5.7)

and ∂D/∂σ is approximated using the regular conductivity perturbation technique.

To determine the electrode movement related components of the Jacobian, an anal-

ogous manipulation of the equations is performed as follows:

∂x0

∂r
=
∂(A−1

0 b)

∂r
= A−1

0

∂A0

∂r
A−1

0 b = A−1
0

∂A0

∂r
x0 (5.8)

where

∂A0

∂r
= CT∂S

∂r
DC (5.9)

For first-order linear interpolatory expansion functions in two dimensions, the

FEM expansion functions are defined with a block matrix Se for each element of

the mesh, and the blocks are arranged on the diagonal into the unconnected shape

matrix S. The element shape matrix Se is

Se =
2

nD!

1

det(M)
NTN (5.10)

where the number of dimensions nD is two and the matrix M, in two dimensions, is

defined as

M =


1 rx,1 ry,1

1 rx,2 ry,2

1 rx,3 ry,3


−1

(5.11)

The coordinates of the triangular element vertices are (rx,n, ry,n) for the n-th vertex.

The matrix N is the matrix M but removing the first row.
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The rank-one perturbation of the electrode positions requires the derivative of

the Sherman-Morrison formula for a small perturbation α

(X + αuvT)−1 = X−1 − αX−1uvTX−1

1 + αvTX−1u
, α 6= −(vTX−1u)−1 (5.12)

∂

∂α
(X + αuvT)−1 = − X−1uvTX−1

1 + αvTX−1u

α→0' −X−1uvTX−1 (5.13)

The rank-one perturbation also uses the derivative of the matrix determinant lemma

for a small perturbation

det(X + αuvT) = 1 + αvTX−1u det(X) (5.14)

∂

∂α
det(X + αuvT) = vTX−1u det(X) (5.15)

Knowing that the FEM’s structural equations (5.10) are first-order, the partial

derivative with respect to electrode movement can be expanded such that

∂Se
∂r

=
2

nD!

(
∂

∂r

(
1

det(M)

)
NTN +

1

det(M)

∂NT

∂r
N +

1

det(M)
NT∂N

∂r

)
(5.16)

where there are now three partial derivative terms to solve.

The first term involves the inverse absolute value of a determinant. The sign

function sgn(x) is used to resolve the absolute value of x and gives +1 if greater

than 0, −1 if less than 0, and 0 if x = 0. Using the property of inverse determinants

det(X−1) = 1/ det(X), the perturbation approximation X−1 ' (X + αuvT)−1 for

small perturbations α → 0, and the derivative of the matrix determinant lemma
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(5.15) provides the following solution:

∂

∂r

1

| det(M)|
=

∂

∂r

−sgn(det(M))

det(M)
= −sgn(det(M))

∂

∂r
det(M−1)

= −sgn(det(M))vTMu det(M−1)

=
vTMu

| det(M)|

(5.17)

The second derivative term is a transpose of the third derivative term.

∂NT

∂r
=

(
∂N

∂r

)T

(5.18)

The third derivative term is manipulated using the matrix N, which is the matrix

M with the first row removed N = M|/row1, the perturbation approximation X−1 '

(X + αuvT)−1 for small perturbations α → 0, and the derivative of the Sherman-

Morrison formula (5.13) to obtain the following:

∂N

∂r
=
∂M

∂r

∣∣∣∣
/row1

M=P−1

=
∂

∂α
(P + αuvT)−1

∣∣∣∣
/row1

' −(P−1uvTP−1)
∣∣
/row1

= −(MuvTM)
∣∣
/row1

(5.19)

The vectors u and v are applied to select the direction of perturbation for each

electrode node by selecting the node in the matrix M−1 which is to be perturbed.

The vector u selects the row, and the vector v selects the column when each vector

has a single 1 and is zero in all other entries. Thus, a perturbation of an electrode that

exists at local node 1, along the y-axis, would require the vectors u = [ 1 0 0 ]T

and v = [ 0 0 1 ]T.
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This boundary movement algorithm and the rank-one matrix perturbation op-

timization are implemented in the Electrical Impedance and Diffuse Optics Recon-

struction Software (EIDORS) package and used extensively throughout this work.

5.2 Conformal Motion

As shown later in this thesis, conformal motions are relevant to the boundary move-

ment problem. Conformal motions are angle preserving. They maintain the angular

relationship between intersecting curves while not constraining changes in the length

of those curves.

Adding or multiplying conformal motions results in a new conformal motion that

is a linear combination of the two. This allows the construction of complicated defor-

mations in two dimensions from four basic types of conformal motion: translation,

rotation, dilation, and inversion. With the first three, translation, rotation, and

dilation, it is straight forward to visualize how an infinitesimally small triangle will

have the lengths of its sides change while the angles of the corners remain fixed.

Inversions are more challenging to visualize, but in the extreme, they are a means

of turning our triangle “inside-out.” Combining a translation and inversion gives a

conformal motion that may be familiar to engineers: the Joukowski transformation.

This deformation distorts a circle into an airfoil-like shape. It allows the application

of closed form analytic solutions for potential flow around a circular object to be

applied to a “Joukowski airfoil”.[55] (Figure 5.2)

The inversions provide the most interesting set of conformal deformations for EIT

since EIT is invariant under translation and rotation. Centered dilations provide a
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simple, symmetric conformal deformation. Combinations of conformal deformations

can result in deformations that are not intuitively conformal in their appearance.

(Figure 5.3)

The focus of this thesis is upon two-dimensional conformality, but there are three-

dimensional conformal deformations. The set of conformal deformations in three

dimensions is significantly restricted when compared to the two-dimensional case

but it is not clear whether similarly complex effects can occur in three-dimensional

reconstructions.

-1

0

1

-1 0 1

(a) circle

-1

0

1

-2 0 2
(b) airfoil

Figure 5.2: The Joukowski transform is a well known conformal mapping; a circle (a)
with radius 1.121 and center (−0.117, 0.048) is transformed into an idealized airfoil
(b) via the Joukowski transform z 7→ z + 1/z
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(a) circle
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(b) transformation

Figure 5.3: A less intuitive conformal motion; a circle (a) with radius 1.121 and
center (0.1, 1.233) is transformed into new shape (b) via the conformal transform
z 7→ 1/(z + 1)2/3(z − 1)2/3
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Chapter 6

Phantom

The material in this chapter was presented at the 9th International Conference on

Biomedical Applications of Electrical Impedance Tomography, Dartmouth, USA (EIT

2008).[8]

In biomedical Electrical Impedance Tomography (EIT), it has long been sus-

pected that errors in the knowledge of the boundary shape are an important factor

in the accuracy of reconstruction. This effect is most important in chest EIT where

the chest shape deforms as the patient breathes and changes posture[46][56].

An algorithm has previously been developed that assumes, given an isotropic

conductivity distribution, that a boundary movement will result in an anisotropic

distribution.[48, 51] The result is that a deformation of the boundary can be detected

by a change in the boundary measurements. This additional information has been

used to implement an algorithm that perturbs electrode positions in an attempt to

better fit the measurement data for small changes in the boundary.

The following describes a deformable phantom, used to obtain in vitro EIT mea-

51
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surements and evaluate the performance of the electrode perturbation algorithm on

arbitrary boundary deformations obtained using this phantom.

6.1 Construction

The phantom is constructed of a sponge rubber plumbing gasket placed in a shallow

pan. The gasket forms a thick rubber ring that is easily compressed yet rigid enough

to return to its original shape easily.

Sixteen electrodes were constructed from stainless-steel wire pressed into the gas-

ket and then looped over the edge of the gasket such that they lay along the inner

wall of the gasket in a vertical orientation. An additional stainless-steel electrode

placed roughly in the geometric center of the gasket formed the ground connection.

A shallow layer of saline solution was employed to limit conductivity in the vertical

direction, thereby presenting an approximately two-dimensional section in the exper-

imental measurements. The electrodes were each wired to a terminal that was bolted

to the plastic pan which provided a good connection to the EIT system. (Figure 6.1)

The thickness of the gasket allowed the electrodes to be securely attached to

the phantom as it is deformed. The thickness of the gasket also provided electrical

insulation between the saline solution inside and outside the gasket.

6.2 Method

A 16 electrode Goe-MF II EIT system (Viasys Healthcare, Höchberg, Germany)

was used for taking measurements from the deformable phantom. The phantom

was submerged in a saline bath (0.68% NaCl salinity) such that the bottom of the
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Figure 6.1: Photograph of the phantom, built from a rubber gasket and stainless
steel electrodes. The yellow dish is filled with a saline solution.
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ring was in contact with the bottom of the container, and the top of the ring broke

the surface which provides insulation between the inside and outside of the ring.

Salinity was set such that a nominal electrical impedance of 250Ω was measured

between adjacent electrodes.

6.3 Deformations

Measurements were taken with the phantom in

• an approximately circular (relaxed) arrangement,

• with a side-to-side compression from two points, and

• with the ring under three points of compression. (Figure 6.2)

For each of these deformations, measurements were obtained with

• a conductive target,

• a non-conductive target, and

• no target.

An iron cylinder with a diameter of 6mm was used as the conductive target, and a

glass cylinder of 42mm was used for the non-conductive target.

6.4 Electrode Displacements

The true physical displacements of the electrodes were found by taking a digital

photograph from above the phantom. A piece of graph paper was placed under
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(a) (b) (c)

Figure 6.2: Compressions: none (a), 2 points (b), 3 points (c)

the phantom and was taped to the bottom of the pan. The locations of the elec-

trodes were measured from the photograph, in pixels, and then normalized using

the graph paper grid. This corrected scaling issues due to different camera altitudes

above the phantom as well as skew issues caused by the lens axis not being exactly

perpendicular to the phantom’s floor.

The norm of the error in initial electrode location relative to a circular model

of a radius matching the mean radius of the true electrode locations was found to

be 0.0662. (The norm, in this case, being the square root of the sum of squared

errors.) This indicated a fairly good match between the initial state of the phantom

and the circular model in the reconstruction. The majority of the error norm was

found to be related to errors in the angular location of the electrodes, rather than

the radial displacement. The mean of angular electrode error was found to be 1.3◦,

where electrodes were expected every 22.5◦: a 5.8% mean angular error.

The estimated electrode displacements were found using the electrode perturba-

tion algorithm as described earlier. Boundaries were fitted to both the estimated

and true electrode displacements using a radial Fourier series which allowed both
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rotation and the Fourier series radial displacements:

θ′ = θ + θk (6.1a)

r′ = r

N∑
n=0

an cos(nθ′) + bn sin(nθ′) (6.1b)

For the initial terms of the summation n = 0, note that cos(nθ′) = 1, and therefore,

a0 forms a radial scaling term while b0 disappears since sin(nθ′) = 0. With N = 5,

reasonable fits to the displaced electrode locations were obtained.

Figures 6.3, 6.4, 6.5 and 6.6 are examples of the fitting of boundaries to the true

and estimated electrode locations and comparison of the resulting boundary parame-

ters. In each case subfigure (a) shows the true electrode displacements (green arrows)

as measured from a digital photo with the fitted boundary (blue dashed line). The

boundary was fitted using the radial Fourier series (6.1a) (6.1b). Subfigure (b) shows

a näıve reconstruction without the electrode perturbation algorithm. Note in partic-

ular the significant artifacts around the boundary in the reconstruction in all cases.

Subfigure (c) shows the reconstructed electrode movement (green arrows) with fitted

boundary (blue dashed line). Subfigure (d) shows the a bar chart of the difference in

parameter values between the fitted boundary of the true and reconstructed images.

The “parameters” on the y-axis correspond to 1: θk, 2: a0, 3,4: a1,b1, 5,6: a2,b2, 7,8:

a3,b3, 9,10: a4,b4 from (6.1a) (6.1b).

Figures 6.3, 6.5 and 6.6 are examples of the boundary fitting working well. The

electrode movement algorithm significantly reduced the artifacts in the reconstructed

image. The conductive target did not show up very well when compared to the insu-

lating target which may be due to the small size of the conductive target. The most



6.5. SUMMARY AND DISCUSSION 57

significant difference in the fitted boundaries is the scaling parameter a0. Figure 6.5

shows the boundary fitting algorithm failing to fit the estimated electrode movement.

Using the fitted boundary, the norm of the error in the parameters was found.

(Figure 6.3) For most cases except where no deformation occurred, it was found that

the majority of the error was in the a0 term which corresponds to a simple dilation.

(Table 6.1)
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Figure 6.3: Boundary reconstruction from electrode movement for 3-point compres-
sion with a conductive target showing artifact reduction when accounting for elec-
trode movement and reasonable agreement between fitted boundaries.

6.5 Summary and Discussion

This work describes the construction of a deformable EIT phantom applicable for

testing two-dimensional deformations. Results with experimental data suggest that
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Table 6.1: Boundary Reconstruction Accuracy

Parameter Error Norm

Deformation Target Full Without a0
∗ Comment

None none 0.004 0.004
insulator 0.930 0.930
conductor 0.235 0.235

2-point none 0.276 0.239
insulator 0.561 0.530 Figure 6.4
conductor 0.139 0.121 Figure 6.5

3-point none 0.185 0.049
insulator 0.087 0.086 Figure 6.6
conductor 0.109 0.048 Figure 6.3

∗ a0 parameter from the Fourier series (6.1b)

some electrode movement and boundary distortions can be reconstructed based on

conductivity changes alone while reducing image artifacts in the process. The elec-

trode displacement errors were evaluated against photos of the true electrode posi-

tions. The error calculations show that the electrode perturbation algorithm does

not perfectly reconstruct the electrode movement. A significant class of deforma-

tions that is not accurately captured by this algorithm includes those that result in

dilation of the boundary.

With a number of the experiments, notably the two-point compressions, there

are visible errors in the “true” deformation where the phantom’s total circumference

should not be changing significantly. These errors are due to the coordinate normal-

ization where the graph paper grid beneath the phantom was measured and used

to correct for the varying altitudes above the phantom from which the true mea-

surement photographs were taken. A single grid unit of 2.5mm square was used as

the basis for normalizing coordinates. In retrospect, choosing a larger basis measure
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would have reduced the error margin in the normalization. An alternative would be

to fix the camera’s location with an armature such that there would be a common

unit length when measuring coordinates from the photographs.

The quality of results for the Fourier fitting algorithm are dependent on the elec-

trode movements. Movements that result in angular changes in electrode locations

are not well accounted for by the fitting algorithm since it only allows for a single

universal rotation. Potentially, an algorithm that allowed more freedom in the an-

gular direction could result in closer fits. Despite these shortcomings, the boundary

fits were generally found to be reasonable.

The data handling and reconstruction algorithms (both näıve and electrode move-

ment) were those implemented in the Electrical Impedance and Diffuse Optics Recon-

struction Software (EIDORS) package, version 3.3. Boundary fitting and associated

analysis was implemented as separate code.
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Figure 6.4: Boundary reconstruction from electrode movement: 2-point compression
with insulating target showing poorly fitted boundary in reconstruction (c); true
displacement scaled by 0.6 to correct for photo-scaling errors
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Figure 6.5: Boundary reconstruction from electrode movement: 2-point compression
with conductive target showing artifact reduction when accounting for electrode
movement and reasonable agreement between fitted boundaries; true displacement
scaled by 0.7 to correct for photo-scaling errors
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Figure 6.6: Boundary reconstruction from electrode movement: 3-point compres-
sion with insulating target showing artifact reduction when accounting for electrode
movement and reasonable agreement between fitted boundaries; true displacement
scaled by 0.8 to correct for photo-scaling errors



Chapter 7

Simulated Conformal Motion

The material in this chapter was also presented at the 9th International Conference

on Biomedical Applications of Electrical Impedance Tomography, Dartmouth, USA

(EIT 2008).[8]

The ability and limits of Electrical Impedance Tomography (EIT) to resolve con-

ductivity changes and reject boundary distortion are explored below. It is shown

that the theoretical results given in [48] still hold in the case of a finite number of

electrodes and a finite element discretization of the forward problem. Our example

simulations in two dimensions, using a linearization of the forward problem, sug-

gest that the boundary shape and electrode positions can be recovered up to an

infinitesimal conformal map. This provides an adequate and necessary correction for

acceptable reconstruction of the conductivity.

63
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7.1 Simulated Results

In order to explore the effect of reconstructing EIT images from media with confor-

mal and non-conformal conductivity changes, two-dimensional simulations using the

Electrical Impedance and Diffuse Optics Reconstruction Software (EIDORS) pack-

age were constructed.[10] Using a 576 element Finite Element Method (FEM) mesh

which filled the unit circle and using adjacent stimulation and measurement on 16

point electrodes, two distortion fields were simulated. Representing each boundary

point by a complex z = x+ iy, the distortions were as follows:

z →0.99x+ i1.01y Non-conformal (7.1)

z →z + 0.01z2 Conformal (7.2)

Additionally, one small conductive and one small non-conductive target were simu-

lated.

Using the approach of Soleimani et al [51], the time-difference conductivity and

movement images were reconstructed. An assumed movement to conductivity change

parameter µ = 0.01 was used. For comparison, an algorithm was used which assumes

no boundary movement.

Results are shown in Figure 7.1 illustrating that conformal distortion fields cannot

be distinguished from conductivity changes. When examining Figure 7.1 row-by-row,

the top subfigures (a), (b), (c) show a Non-conformal Distortion field z → 0.99x +

i1.01y. The middle subfigures (d), (e), (f) show a Conformal Distortion field z →

z+0.01z2. The bottom subfigures (g), (h), (i) show a combined Conformal and Non-

conformal Distortion field. When examining Figure 7.1 column-by-column, the left-
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most subfigures (a), (d), (g) show the simulation movement and conductivity changes

(the forward model). The middle subfigures (b), (e), (h) show the reconstruction

assuming only conductivity change. The right-most subfigures (c), (f), (i) show the

reconstruction of conductivity change and movement. The green arrows indicate

electrode movement (40× exaggeration).

For the case of non-conformal movements, there are dramatic artifacts in the

conductivity only reconstruction, and there is a clear benefit to movement recon-

struction. In the case of conformal movements, no such benefit is seen, and the

movement reconstruction is unable to detect movement. The combined distortion

shows reduced artifacts courtesy of the electrode movement reconstruction algorithm

but shows significant errors in the reconstructed electrode movement.

Following the same layout as Figure 7.1, the phantom deformations of Chapter 6

where simulated by applying the deformation as indicated by the fitted boundary pa-

rameters. The true boundary deformation (bottom row) was fitted from photographs

of the deformation, while the boundary resulting from the phantom reconstruction

(top row) were assumed to be similar to the non-conformal reconstruction of Fig-

ure 7.1. Finally, the difference between the two boundary parameters was used to

perform a final set of simulations (middle row). For all simulations in Figure 7.2 and

Figure 7.3, the interior conductivity changes were the same as those in Figure 7.2.

(Figure 7.2 and 7.3) Results were inconclusive and appear to be compromised by

the inability of the boundary fitting algorithm to match angular movement of the

electrodes.
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Figure 7.1: Images reconstructed from three different movement patterns illustrating
that conformal distortion fields cannot be distinguished from conductivity changes.
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7.2 Summary and Discussion

This work describes conformal and non-conformal vector fields applied to electrode

movement and boundary distortion in EIT. Results in simulation suggest that,

with non-conformal mappings, electrode movement and boundary distortions can be

reconstructed based on conductivity changes alone while reducing image artifacts in

the process, whereas conformal mappings remain undetected but do not introduce

artifacts.

The results of the phantom shape deformation parameter simulations do not

match the conformal and non-conformal simulations. This appears to be a result

of the boundary parameter fitting algorithm not allowing angular movement of the

electrodes except when the change is uniform amongst electrodes. Further work to

improve the boundary fitting algorithm could significantly improve the quality of

these results.

The forward models and reconstruction algorithms (both näıve and electrode

movement) were those implemented in the EIDORS package, version 3.3. The shape

deformations were implemented as separate code.



7.2. SUMMARY AND DISCUSSION 68

 

 

0.92

0.96

1

1.04

1.08

(a)

 

 

−0.08

−0.04

0

0.04

0.08

(b)

 

 

−0.08

−0.04

0

0.04

0.08

(c)

 

 

0.92

0.96

1

1.04

1.08

(d)

 

 

−0.08

−0.04

0

0.04

0.08

(e)

 

 

−0.08

−0.04

0

0.04

0.08

(f)

 

 

0.92

0.96

1

1.04

1.08

(g)

 

 

−0.08

−0.04

0

0.04

0.08

(h)

 

 

−0.08

−0.04

0

0.04

0.08

(i)

Figure 7.2: Simulation of two point deformation; images reconstructed from portions
of the approximated phantom deformation. No clear conclusions regarding conformal
movement can be drawn when comparing these reconstructions.
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Figure 7.3: Simulation of three point deformation; images reconstructed from por-
tions of the approximated phantom deformation. No clear conclusions regarding
conformal movement can be drawn when comparing these reconstructions.



Chapter 8

Finite Element Deformations

The material in this chapter is based on a conference paper presented at the 10th

International Conference on Biomedical Applications of Electrical Impedance Tomog-

raphy, Manchester, UK (EIT 2009).[9]

In the previous chapter, two-dimensional shape deformations where explored

through simulations. This exploration is extended into the theoretical realm by

exploring what occurs to the interior conductivity when a boundary deformation

occurs in Electrical Impedance Tomography (EIT).

8.1 Conductivity as a Tensor

When a boundary deformation occurs, how does the new conductivity have to change

to allow the voltages over the domain to remain the same? In this case, conductivity

σ is treated as a tensor; it is allowed to be either isotropic or anisotropic.

To explore this question, the weak form of EIT’s constitutive equation is examined

70
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as it is applied in the EIT Finite Element Method (FEM) model:

∫
Ω

u∇ · σ∇φdV = 0 (8.1)

and when a deformation occurs, it results in a new conductivity σ′ and potential

distribution over the domain φ′ as well as some change in the volume dV ′ over which

the integral is calculated. A new test function u′ is also introduced.

∫
u∇ · σ∇φdV =

∫
u′∇ · σ′∇φ′dV ′ (8.2)

In two dimensions, the deformation is defined by some transformation from (x, y)

coordinates to (x′, y′) coordinates:

(x′, y′) = f(x, y) (8.3)

This can be thought of as a transformation of the coordinate system from a euclidean

x- and y-axis to (x′, y′) in a new coordinate system. For notational consistency, the

initial x-axis is referred to as x1 and the y-axis as x2, and the new x′- and y′ axes are

X1 and X2. (Figure 8.1) The transformation can be represented by a set of partial

derivatives of the transformation function ∂
∂x1

∂
∂x2

 =

 a b

c d


 ∂

∂X1

∂
∂X2

 (8.4)

where a = ∂X1

∂x1
, b = ∂X2

∂x1
, c = ∂X1

∂x2
, and d = ∂X2

∂x2
. Taking the inverse of the transfor-
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x1

x2

(x, y)

x1

x2

X1

X2

f
(x′, y′)

Figure 8.1: A change of coordinate systems transforms the point (x, y) to the new
coordinates (x′, y′); the old coordinates (x, y) relative to the original x-, y-axis (the
x1- and x2-axis) are at the same location as the new coordinates relative to the new
axis (the X1- and X2-axis) where in this case, a translation and rotation have been
applied.

mation gives  ∂
∂X1

∂
∂X2

 =
1

ad− bc

 d −b

−c a


︸ ︷︷ ︸

T

 ∂
∂x1

∂
∂x2

 (8.5)

where T is the two-by-two matrix inverse (Appendix A.7) of the transformation

matrix in (8.4). The volume derivative scales by the transformation where that

scaling factor is given by the determinant (Appendix A.1).

dV ′ =
1

det(T)
dV (8.6)

Taking the equivalence equation (8.2), the new conductivity σ′ must be modified

in some way if the voltages on the domain are to be equal (φ = φ′). The test

functions can be chosen arbitrarily and are set equal (u = u′). Expanding (8.2) into
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its matrices gives

[
∂
∂x1

∂
∂x2

]
σ

 ∂
∂x1

∂
∂x2

φdV =

[
∂

∂X1

∂
∂X2

]
σ′

 ∂
∂X2

∂
∂X2

φ′dV ′ (8.7)

where potential is equal (φ = φ′) and applying the partial derivative (8.5) and volume

(8.6) transformations to (8.7) gives

[
∂
∂x1

∂
∂x2

]
σ

 ∂
∂x1

∂
∂x2

φdV =

[
∂
∂x1

∂
∂x2

]
TTσ′T

 ∂
∂x1

∂
∂x2

φ 1

det(T)
dV (8.8)

Simplifying (8.8), where the volume derivative dV , potential φ and partial derivatives

cancel, leaves

σ = TTσ′T
1

det(T)
(8.9)

and rearranging for the new conductivity σ′, gives

σ′ = T−TσT−1 det(T) (8.10)

This equation (8.10) shows that when conductivity σ is a tensor, for any trans-

formation T, the conductivity can be adjusted in some manner such that the new

boundary data will match the old data. However, there is no guarantee that an

initially isotropic conductivity will map to a new conductivity that is isotropic.
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8.2 Current Density

If the total current entering or leaving a given electrode does not change, the current

density must change when a deformation changes the surface area of the domain

connected to the electrode. In two dimensions, intuitively, the current density for

an electrode Jn must scale with the change in the length of the boundary associated

with the electrode 1/`.

This can be seen when taking the current density equation where the new and

old current for electrode n must be the same

In =

∫
JndS =

∫
J ′ndS

′ (8.11)

J ′n = Jn
dS

dS ′
(8.12)

which shows that the change in current density is proportional to the inverse of the

change in surface area over which the current is being applied.

I

`

J = I/`

I

`′

J ′ = I/`′

Figure 8.2: Electrode current density under deformation

8.3 Isotropic Conductivity

If the measurements φ remain constant when a deformation occurs and the initial

conductivity is isotropic, when is the new conductivity σ′ isotropic? Taking the
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conductivity equivalence (8.10) derived earlier and assuming isotropic conductivities

allows the new conductivity σ′ to be pulled out of the middle of the equation such

that

σ = σ′T−TT−1 det(T) (8.13)

where T−TT−1 det(T) must be isotropic such that kI = T−TT−1 det(T).

Expanding and then simplifying the equation gives

kI =

 a c

b d


 a b

c d

 1

ad− bc
(8.14)

kI =
1

ad− bc

 a2 + c2 ab+ cd

ab+ cd b2 + d2

 (8.15)

and solving for ab + cd = 0 and a2 + c2 = b2 + d2 results in a = ±d and c = ∓b.

Substituting these into (8.15) gives

kI =
1

a2 + b2

 a2 + b2 0

0 a2 + b2

 (8.16)

k = 1 (8.17)

The first solution a = +d and c = −b turns out to be the Cauchy-Riemann

equations, which indicates that conformal deformations, and only conformal defor-

mations, can result in a new isotropic conductivity if the original conductivity was

isotropic. The alternative solution a = −d and c = +b is the first solution multiplied
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by

 1 0

0 −1

, which corresponds to switching from a right-hand rule coordinate

system to a left-hand rule coordinate system. (Figure 8.3)

The solution with k = 1 shows that transformations that map an isotropic con-

ductivity to another isotropic conductivity will have boundary measurements that

match. There is no multiplicative constant k which need be applied to the conduc-

tivity to achieve identical boundary measurements.

x1

x2 X1X2

a

b

c

d

(a) a = d, b = −c

x1

x2 X1

X2

a

b

c
d

(b) a = −d, b = c

Figure 8.3: The two conformal solutions; (a) and (b) are solutions for conformal
transformations that will maintain an isotropic conductivity. Note that (b) is a
solution that flips the X2-axis.

8.4 Simulation

To test the behaviour of an isotropic conductivity when a conformal deformation is

applied, a convergence study was undertaken. The undeformed simulation consisted

of a rectangular domain with an electrode extending across either end. An L-shaped

non-conductive region existed in the middle, between the two electrodes (conductiv-
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ity σ = 0.01 S/m, background 1 S/m). To exactly control the boundary conditions,

a Complete Electrode Model (CEM) for each of the two electrodes was approxi-

mated using Point Electrode Models (PEMs) at individual nodes and current was

distributed across these to achieve the appropriate current density boundary condi-

tion. When the deformation was applied, the current density was adjusted by the

deformation, and no further manipulation of the PEM currents was required.

At each step, the forward simulation of the conductivity distribution shown in

Figure 8.4(a) was computed to find the voltage on the domain at the nodes. The

voltage at the FEM nodes was compared to the voltage after the FEM nodes were

conformally deformed such that

z → z − 20 + 80i

100
(z + 20i)(z − 10i), z = x+ yi (8.18)

(shown in Figure 8.4(b)).

The number of nodes in the simulations ranged from 217 nodes to 455 thou-

sand nodes. Throughout this range, the triangular elements remained approximately

equilateral. Convergence was measured as the 2-norm of the difference between the

original voltages and the voltages on the mesh after the conformal deformation was

applied, normalized against the average of the original voltages (||V2 − V1||/||V1||).

As the number of nodes increased and consequently, the element size was reduced,

convergence of the undeformed and deformed voltages was observed. (Figure 8.4(c))
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Figure 8.4: Conformal deformation convergence; (a) the original problem, (b) the
conformal deformation (c) plots of the error norm between the deformed and unde-
formed voltage distributions; (c) shows solution convergence for (b) as the number
of nodes in the FEM mesh increases

8.5 Summary and Discussion

This work describes conformal motions in two-dimensional EIT, as applied to the

FEM mesh. It is intended to provide a more accessible description of the behaviour

of conformal deformations for the engineering community. The results show how con-

formal motion affects the matrices describing conformal deformations. Simulations

show that the conformally deformed mesh converges on the undeformed solution as

the mesh size is reduced.

Considering the effect of a conformal motion on a single element of the FEM

mesh when using triangular two-dimensional linear expansion functions gives some
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insight into the behaviour of the entire FEM system under conformal motions. The

conformal motions, as previously mentioned, can be classified as translation, rota-

tion, dilation, and inversion. Translations and rotations on a single element result in

a geometry that is unchanged, and thus, when solving the FEM system as a whole,

the values found at transformed nodes of the mesh will be unchanged. Conformal

dilations change the geometry of the problem but still result in those same node

voltages. When a deformation is applied globally, the nodes in the FEM mesh are

displaced, and this can change the angles at the corners of the FEM mesh since the

elements themselves are not deformed. They remain strictly triangular. The result

is that, for simulations with large elements, the deformed and undeformed solutions

do not match. As the element size is reduced, the amount of discrepancy at a local

level between an idealized deformation of the element, where its sides are bent, and

the actual implementation, where the sides of the elements are always straight, ap-

proaches zero. In all conformal deformation cases, the resulting conductivity remains

isotropic.

These observations help to explain why the convergence study presented here

does not converge more rapidly. The convergence plot clearly shows a trend toward

convergence, but when the number of nodes is large, there is still a significant gap be-

tween the observed results (an error norm of 10−6) and the hypothetical convergence

towards machine precision (10−17) that might be explained by the strictly triangular

nature of the FEM elements.

The convergence studies used the forward solver implemented in the Electrical

Impedance and Diffuse Optics Reconstruction Software (EIDORS) package, version

3.3. The shape deformations and analysis were implemented as separate code.



Chapter 9

Conformal Motion

The material in this chapter is based on conference papers presented at the 9th

International Conference on Biomedical Applications of Electrical Impedance To-

mography, Dartmouth, USA (EIT 2008) and the 10th International Conference on

Biomedical Applications of Electrical Impedance Tomography, Manchester, UK (EIT

2009).[8][9]

This work describes, in a fundamental mathematical framework, how conformal

vector fields do not affect Electrical Impedance Tomography (EIT) images, and ex-

actly which deformations constitute those conformal motions.

In general terms, if a distortion is applied to a domain in two- or three-dimensional

space, the assumed isotropy of the conductivity distribution is not preserved.[48] If

the conductivity is assumed to be isotropic, generally, the boundary voltage and

current data on the distorted domain will not be consistent with an isotropic con-

ductivity. This means that, in the isotropic deformation case, the boundary data

contains information about both the conductivity and the boundary shape. This

80
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additional information has been used to implement an algorithm that perturbs elec-

trode position in an attempt to better fit the measurement data to the reconstruction

for small changes in the boundary.[51]

However, not all distortions lead to an anisotropic conductivity containing this

additional information. The exception is the distortions that are conformal maps.

In two-dimensional space, there are an infinite number of conformal maps, whereas

in three dimensions, there is only a finite set of conformal maps: the Möbius trans-

formations.

9.1 Conformal Maps

The following develops an understanding of what conformal maps mean in an EIT

context and shows that a known boundary deformation can be decomposed into its

conformal and non-conformal components.

Let X be a vector field which is assumed to be small in magnitude. A domain

Ω is distorted by the map x 7→ x + Xε. This vector field X indicates the velocity

of change in shape over time everywhere over the domain, where multiplying the

vector field by some small time ε will give a map that is a new geometry for the

domain.(Figure 9.1)

A conformal map is one that preserves the angles but not necessarily the lengths

between vectors on the domain. An example is Figure 9.2: a rectangular region with

electrodes across the ends and L-shaped inhomogeneity (top left) with a conformal

map z → exp((z − 20− i80)/100) · (z + i20) · (z − i10) applied to it (bottom left).

Note that simulated voltages at individual nodes appear to be the same despite the
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Ω
+Xε

Ω′

Figure 9.1: A mapping of the domain Ω to Ω′ by the vector field X in some small
amount of time ε
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Figure 9.2: A conformal mapping of a rectangular grid illustrating that lines still
intersect at 90◦ after deformation.

deformation (right-side, top and bottom).

If the map x 7→ x+Xε is a conformal map, the vector field X is referred to as an

infinitesimal conformal map, known classically as an infinitesimal conformal motion,

conformal Killing field or more simply a conformal vector field.

A conformal vector field is defined by the fact that, if the distorted domain is

to have an isotropic field (e.g. conductivity in EIT) consistent with the boundary

conditions, for a change in the boundary of the domain Ω, the vector field X must

be conformal and sufficiently smooth. Therefore, X is a conformal vector field if

and only if the conformal Killing field equation is satisfied (i.e. the symmetrized
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derivative of X is a multiple of the identity) (9.1). [57, §3.7] [58, §1.4]

∂Xi

∂xj
+
∂Xj

∂xi
= αδij (9.1)

where α is a scalar on the domain Ω.[57, (3.7.3)]

In two dimensions, summing over i and j, from taking the trace of (9.1), α must

be the divergence of X.

∂Xi

∂xj
+
∂Xj

∂xi
= (∇ ·X)δij

More explicitly, in two dimensions, (9.1) becomes:

∂Xi

∂xj
+
∂Xj

∂xi
=

(
∂X1

∂x1

+
∂X2

∂x2

)
δij (9.2)

Now setting i = j = 1 gives the first Cauchy-Riemann equation,

2
∂X1

∂x1

=
∂X1

∂x1

+
∂X2

∂x2

∂X1

∂x1

− ∂X2

∂x2

= 0 (9.3a)

And on the other hand, setting i = 1, j = 2 gives the second Cauchy-Riemann

equation,

∂X1

∂x2

+
∂X2

∂x1

= 0 (9.3b)

Thus, if a function X is differentiable, its derivative is continuous and it satisfies

the Cauchy-Riemann equations, it is complex analytic on the part of the plane that

satisfies the Cauchy-Riemann equations. With any complex analytic function the real

and imaginary parts are harmonic conjugate.[59] Specifically, since the components



9.1. CONFORMAL MAPS 84

of a conformal vector field X1 +iX2 are complex analytic and satisfy ∇X1 ·∇X2 = 0,

‖∇X1‖2 = ‖∇X2‖2, and Laplace’s equation ∇2X1 = ∇2X2 = 0, the components

of the vector field (X1, X2) are perpendicular, but furthermore, ∇X2 is 90◦ anti-

clockwise from ∇X1 and equal in magnitude. (Figure 9.3)

∇X2 · t̂

∇X1 · n̂

Figure 9.3: Derivatives of the components of a conformal vector field at the boundary

Recall the conductivity equation ∇ · σ∇φ = 0 and that a Dirichlet-to-Neumann

map Λσ takes a potential φ restricted to the boundary of the domain ∂Ω and maps

it to a current density J = σ∂φ/∂n̂ where n̂ is the outward unit normal on the

boundary. In particular, the Dirichlet-to-Neumann map Λ1 is a solution for Laplace’s

equation with conductivity σ = 1. In EIT, this map Λ1 : φ|∂Ω 7→ J is solved using

an Finite Element Method (FEM) over any arbitrarily shaped domain. This same

map can be used to solve Laplace’s equation such that Λ1 : φ|∂Ω 7→ X, where the

operator Λ1 is no longer acting as a transconductance operator but instead as a

voltage-to-movement operator.

The Dirichlet-to-Neumann operator Λ1 is used to convert Dirichlet data on the

boundary X1|∂Ω to Neumann data normal to the boundary (∇X1 · n̂) which is the
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same as the tangential Neumann boundary data for X2 (∇X2 · t̂).

Λ1φ
∣∣∣
∂Ω

= ∇φ · n̂ =
Jn
σ

(9.4)

Λ1X1

∣∣∣
∂Ω

= ∇X1 · n̂ = ∇X2 · t̂ (9.5)

where t̂ is the tangent vector and n̂ is the normal vector on the boundary ∂Ω.

Knowing the tangential derivative of X2 at the boundary is essentially the same

as knowing the Dirichlet data for X2 since it can be integrated along the boundary.

∇X2 · t̂ =
∂X2

∂s
(9.6)

where s is the anti-clockwise arc length along the boundary ∂Ω.

Combining (9.5) (9.6) and integrating along ds gives

X2 =

∫ s

0

Λ1X1ds+ const (9.7)

such thatX1 andX2, within the domain Ω, are determined by values on the boundary

∂Ω, and the boundary values of a conformal X are exactly those with

X2 −
∫ s

0

Λ1X1ds = const (9.8)

or

∂

∂s
X2 − Λ1X1 = 0 (9.9)
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and in matrix form [
−Λ1 L1

] X1

X2

 = 0 (9.10)

where L1 is the difference operator along the boundary ∂
∂s

.

Thus, X1 can be specified arbitrarily on the boundary, and its tangential deriva-

tive dX2/ds is determined. X2 is the solution of a Neumann problem for Laplace’s

equation and is determined up to a constant. Constants added to X1 and X2 corre-

spond to a translation, which would not be expected in EIT data.

This means that, in the discrete setting of the FEM, specifying a distortion on

the boundary nodes will give a unique conformal map. In the FEM setting, the

infinitesimal vector field X becomes a vector that translates each node of the finite

element mesh. Simply applying the vector field to the mesh will result in a globally

conformal transformation, but locally about the nodes, the angles between edges

joining elements will have changed. The vector field X is continuous, and therefore,

an accurate application of the field will “bend” the shape of the mesh elements to

maintain the local angles about each node.

9.2 Summary and Discussion

This work describes the mathematical constraints under which conformal motions

occur in isotropic EIT images. The results show that for any boundary deformation

a corresponding conformal map can be found, and hence, any boundary motion can

be decomposed into its conformal and non-conformal components.

This information would be useful when evaluating the performance of algorithms
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that correct for boundary movement when that change is known because these al-

gorithms can not detect the conformal component of the boundary movement and

therefore, should not be penalized for their lack of performance on the conformal

component of boundary movements.

This approach could be applied, rather than the one presented in Chapter 6,

to take the true deformation of the phantom’s boundary from the photographs and

decompose it into its conformal and non-conformal components. The work here

suggests that the conformal component should not match the reconstructed elec-

trode movement while the non-conformal component should match closely up to a

limit where the FEM mesh structure and boundary deformation near the translated

electrodes interferes with the free movement of the electrodes. This requires an im-

plementation of the conformal/non-conformal decomposition, which has not been

achieved at this time.

Figure 9.2 used the forward solver implemented in the Electrical Impedance and

Diffuse Optics Reconstruction Software (EIDORS) package, version 3.3. The shape

deformations were implemented as separate code.



Chapter 10

Applied Electrode Models

Electrical Impedance Tomography (EIT) applies current and measures the resulting

voltage on the surface of a target. In biomedical applications, this current is applied,

and voltage is measured through electrodes attached to the surface. Electrode models

represent these connections in the reconstruction of the conductivity image, but

changes in the contact impedance or boundary relative to the electrode area can

introduce artifacts in the reconstructed image. The effects of boundary deformation

and contact impedance variation are investigated here.

Mathematical proofs of solution existence and uniqueness for EIT initially em-

ployed a Continuum Model for the electrodes, which implied complete knowledge of

all boundary data.[30, 31] Effectively, it was an infinite set of infinitesimally small

electrodes without gaps between them. The proof was later extended to allow for reg-

ular gaps in the boundary data (Gap Model), but experimental data did not match

forward simulations using this model. The Gap Model was insufficient because sim-

plistically, electrodes are conductive, and thus, the boundary surface attached to

88



89

a single electrode might have a uniform voltage thus leading to the Shunt Elec-

trode Model (SEM). The mathematical model was further refined as the Complete

Electrode Model (CEM) which allows an additional complex impedance for each

electrode and models the metal electrode, conductive gel and chemical interaction

at the skin-electrode interface.[32, 33] (Figure 10.1)

Figure 10.1: Electrode models used in mathematical proofs: CM - Continuous Model,
GM - Gap Model, SEM - Shunt Electrode Model, CEM - Complete Electrode Model

As described in Chapter 3, the Finite Element Method (FEM) is used in the

numerical solution of EIT images. The simplest possible electrode model to imple-

ment in the FEM is the Point Electrode Model (PEM) which applies current and

measures voltage at single nodes on the boundary. The PEM does not consider the

geometry or contact impedance of an electrode. An alternative electrode model mir-

rors the mathematical SEM in forcing all nodes associated with an electrode to the

same voltage. The SEM is appropriate when contact impedances are so small that

the matrices become ill-conditioned (contact impedance is in the denominator), and

thus, forcing nodes to the same voltage is a reasonable means of making the problem

more tractable.[3] Finally, to reconstruct accurate images from real in vivo data, an

accurate electrode model is required, and thus, the CEM is generally preferred.[32]

(Figure 10.2, 10.3) In solving the inverse problem for contact impedance, previous

reconstructions of the CEM contact impedance under homogeneous conductivity
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conditions have been successful.[60, 61, 62]

Figure 10.2: Electrode models implemented in a Finite Element Model, viewed as
a resistor network: PEM - Point Electrode Model, SEM - Shunt Electrode Model,
CEM - Complete Electrode Model

Figure 10.3: Generalized electrode model and its relationship to the Complete Elec-
trode Model, adapted from [14, 63], Ehc electrode half-cell potential, Rd Cd electrode
impedance, Rs gel related impedance, Rs + (Rd||-i/ωCd) = Zc contact impedance.

10.1 Contact Impedance and Electrode Area

Electrode contact impedance is commonly defined in units of impedance and area

(Ω ·m in 2D, Ω ·m2 in 3D). In EIT, conformal movements of the boundary, such as

dilation, occur with no change in the reconstructed image when using a PEM [8].

For a CEM spanning multiple edges on the FEM mesh boundary, there must be

a distribution of the contact impedance amongst those edges. One method is to use
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a linear expansion function that assigns the contact impedance based on the length

between nodes in two dimensions or area of a boundary element in three dimensions

as in [64].

If contact impedance is specified in Ω · m2 or Ω · m, the location of the FEM

nodes for the electrode must accurately reflect the total area of the electrode to

achieve the correct overall electrode impedance. This is not trivial because the FEM

mesh’s node locations do not necessarily represent the physical boundary; conformal

deformations can be applied to the FEM mesh without affecting the voltage at the

nodes of the FEM.

An in vivo deformation could be decomposed into independent conformal and

non-conformal components, but the electrodes themselves are generally fabric or

plastic backed and thus, can not stretch as the deformation occurs. Therefore, it

is likely that, if a conformal deformation such as a dilation occurs, the area of the

electrodes will not change, and the result will be artifacts in the image due to the

change in the boundary definition. One would expect that an error in electrode area

is the inverse of an error in specifying the contact impedance because the overall

electrode impedance is a function of contact impedance over area. Figure 10.4 shows

this to be incorrect; increasing electrode area has the same effect as increasing contact

impedance.

Simulations were performed on a two-dimensional circular tank with homoge-

neous conductivity (33439 elements, 16 CEM 0.2m electrodes, background conduc-

tivity of 1 S/m) and circular and rectangular targets (conductivity 2 S/m). The

measurements were reconstructed using a course mesh (7207 elements, 16 CEM 0.2m

electrodes, Tikhonov single step inverse solver µ =1e-5, Tikhonov image prior). Im-
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Figure 10.4: Electrode area and contact impedance artifacts are quite similar: (left)
reconstruction, no noise; (middle) reconstruction, electrode areas reduced to 1/4,
AAMn = 5.5; (right) reconstruction, contact impedances reduced to 1/16 , AAMn =
7.04

age artifacts were quantified using the Artifact Amplitude Measure (AAM), the sum

of the squared normal error of an image’s conductivity elements c1, where error is

relative to a no-noise conductivity reconstruction c0.

AAMn =
∑[

c1 − c0

c0

]2

(10.1)

The behaviour of the PEM and CEM were explored under two types of conformal

deformation: a 10% dilation, and a more complex deformation defined in Figure 10.5.

The PEM was not affected by conformal changes, whether the electrode model fixed

the area or it changed to match the boundary. For the CEM, changes that were

symmetric, e.g. dilation, did not result in significant artifacts if the electrode de-

formed with the boundary change. When the area of the CEM was fixed and a

dilation occurred, “ringing” artifacts were observed. (Figure 10.4, middle image)

When the CEM was deformed in a complex conformal manner, deformation of the

reconstructed image was observed as a form of artifact.(Table 10.1)
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Figure 10.5: Complex conformal deformation used in electrode model deformation
simulations: z = x+ iy; z → z + 0.4z2

Table 10.1: Electrode Model Behaviour under Deformation

Deformation

Model Domain Electrode AAMn Comment

PEM dilation matching 0
complex 0.0807
dilation fixed 0

CEM dilation matching 0.0010
complex 2.013 artifacts (deformed)
dilation fixed 5.5 artifacts (ringing)

10.2 Contact Impedance Variation

Depending on current injection patterns, there can be a significant requirement for

correct specification of electrode impedance when an absolute image reconstruction

is to be attempted.[65] For difference imaging, two “frames” of data are subtracted

to form an image which removes the need to resolve the component of both contact

and internal conductivity common to the two “frames”. It is commonly assumed in

the reconstruction process that the contact impedance remains constant, and thus,

all measurement changes are due to internal conductivity changes. As electrodes

age, their contact impedance changes, but changes that are not correlated will be
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minimized by difference imaging with frames taken at short intervals. (Typical EIT

systems, such as the Goe-MF II EIT system, acquire at 13 frames-per-second.) It

was found that changes that were correlated did not affect the reconstruction with

PEMs; while for CEMs, ringing was observed when impedances decreased which

was analogous to the fixed area electrodes under a dilation deformation. Impedance

increases had a minimal effect. Independent of the electrode model, a large change

in contact impedance for a single electrode appeared in the reconstructed image as

an artifact near the electrode. The effects were less clear where contact impedance

changed in a manner that was uncorrelated amongst the electrodes. For the purposes

of this work, this will be termed “electrode noise.”

Simulations of the effect of uncorrelated electrode contact impedance changes, as

might be found with in vivo electrodes, were performed. For comparison, a recon-

struction with no electrode noise or measurement noise and a similar reconstruction

with only measurement noise (50dB SNR) were simulated. (Figure 10.6)
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Figure 10.6: Difference image of two targets illustrating the effect of measurement
noise on reconstruction quality: (left) forward model; (middle) reconstruction, no
noise, AAMn = 0; (right) reconstruction, 50dB SNR, AAMn = 7.0

These initial reconstructions were compared to reconstructions with only elec-

trode noise at various levels (Figure 10.7). Electrode contact impedance zc [Ω · m]
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(i.e. electrode noise) was assigned using an exponential Gaussian distribution

zc = 10N (µ, σ2
) (10.2)

where N is a Gaussian distribution with a given mean µ and variance σ2.

With minimal electrode noise µ = 0 and σ2 = 0.25 (' 1 Ω · m), no noticeable

reconstruction artifacts were observed, similar to the no noise reconstruction of Fig-

ure 10.6. With an increase in electrode contact impedance variability, µ = −0.75

and σ2 = 1.5, image artifacts resembling those seen in the presence of measurement

noise (50dB SNR) were observed. Electrode impedances varying such that µ = −1.5

and σ2 = 3 resulted in significant artifacts throughout the image.
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Figure 10.7: Difference image of two targets illustrating the effect of increasing
electrode noise on reconstruction quality; (left) µ = 0, σ2 = 0.25, AAMn = 5.9;
(middle) µ = −0.75, σ2 = 1.5, AAMn = 24.5; (right) µ = −1.5, σ2 = 3, AAMn =
74.1

It would be reasonable to expect that, as electrode contact impedance variability

increases, the magnitude and quantity of image artifacts increases whether the elec-

trode’s impedance has increased or decreased. To explore this supposition, the effect

of differing electrode noise distributions on mean artifact amplitude was simulated in

Figure 10.8. At each step, a specific mean and variance (−3 ≤ µ ≤ 3 and σ2 = |µ|)

were used to draw 100 electrode contact impedance configurations. These configura-
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tions were simulated and the mean and variance of the AAM in the reconstructions

was plotted (top). The contact impedance distribution was also plotted (bottom).

Somewhat unexpectedly, increases in contact impedances resulted in no observable

artifacts in the reconstructed image. This was confirmed by holding the variance

constant and varying the mean of the contact impedance distribution (−3 ≤ µ ≤ 3

and σ2 = 1). (10.9)
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Figure 10.8: Electrode noise distributions plotted versus artifact amplitude, illus-
trating that increasing contact impedance does not introduce artifacts.

10.3 Summary and Discussion

This work develops a method for understanding and quantifying the effect of errors in

electrode area and contact impedance that occur in two-dimensional reconstructions
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Figure 10.9: Electrode noise distributions plotted versus artifact amplitude, illus-
trating that increasing contact impedance does not introduce artifacts.
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when the boundary is deformed. Results show that the CEM produces artifacts when

conformal deformations are applied. The results obtained for contact impedance

variation simulations generally agree with previously published results [66] which

indicated that variation of as little as 20% can result in an image that has artifacts

significant enough to render the image “almost meaningless.”

In the context of electrode displacement correcting algorithms using PEM or

CEM electrodes, as in [51], where electrodes are translated without rotation, scaling

or other deformation, the elements of the FEM associated with the electrode maintain

their relative geometry, and no modification of the contact impedance distribution

is required to maintain the original current density across the electrode. Restrict-

ing the movement of the electrode to translation simplifies the electrode movement

algorithm but introduces unwanted boundary distortions on the elements adjoining

the electrode that restricts the range of detectable deformations as the size of the

mesh elements on the boundary are reduced. This represents a significant drawback

to this technique if finer FEM meshes along the boundary are to be implemented in

the future.

Typically, these electrode related image-reconstruction issues do not arise in sim-

ulation because a common electrode model is used in the forward problem and its

inverse solution. The electrode contact impedance is assumed constant throughout

and therefore, cancels in difference imaging. In vivo changes in contact impedance

due to electrode movement do occur to some degree, and simulations that do not

apply appropriate variation to the contact impedances are likely to get optimistic

results. The results show that, in most cases, applying some level of measurement

noise may have the same effect as contact impedance variation and should be an
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appropriate approximation.

The unexpectedly artifact free reconstructions when contact impedance increases

might be explained by considering the electrode model as a resistor network attached

to the FEM, itself a low impedance resistor network. Large contact impedances

mean that the voltage measured at the electrode is approximately the average of the

boundary voltage connected to the electrode; however, a small contact impedance

will result in an electrode voltage that is highly dependent on the surrounding con-

ductivity. In this environment, electrode voltages measured across small contact

impedances will be heavily affected by reconstructed conductivity artifacts near the

boundary and are therefore more likely to introduce these artifacts in the inverse

problem.

In general biomedical and industrial applications, achieving a minimal contact

impedance is desirable to maximize measurement sensitivity. The EIT simulations

described in Section 10.2 show that, with contact impedance variability, reconstruc-

tion artifacts can be a significant factor in image quality as contact impedance is re-

duced. Increasing the electrode contact impedance or simultaneously reconstructing

the contact impedance and interior conductivity through some form of regularization

may mitigate these effects. Further in vivo studies of electrode contact impedance

under boundary movement are required to determine if electrode impedances do in

fact vary by a sufficient amount to warrant further attempts at mitigating the effect

of impedance variability.

The electrode models, forward models and reconstruction algorithms were those

implemented in the Electrical Impedance and Diffuse Optics Reconstruction Software

(EIDORS) package, version 3.3. The shape deformations and analysis were imple-

mented as separate code.



Chapter 11

Conclusion and Future Work

This thesis explored the effect of specific shape deformations on two-dimensional

Electrical Impedance Tomography (EIT) through theoretical explorations and the

use of simulation and phantom studies. It describes conformal and non-conformal

vector fields and develops their application to electrode movement and boundary

distortion in EIT.

An EIT reconstruction technique that adapts to boundary deformation was eval-

uated in vitro through the construction of a two-dimensional, deformable phantom.

The algorithm was shown theoretically to be incapable of discovering a specific class

of deformations, the conformal motions. These conformal deformations were ex-

plored mathematically in an EIT context, and a differential interpretation of these

results was provided in a form more recognizable to the engineering community. The

effect of electrode models under these deformations was explored, and it was found

that the Complete Electrode Model (CEM) can cause significant artifacts when the

electrode does not deform in the same manner as the boundary as is likely to occur
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in vivo. It was also shown that contact impedance reductions resulted in significant

artifacts while contact impedance increases resulted in artifact free images.

Results, both in simulation and with experimental data, suggest that, with non-

conformal mappings, electrode movement and boundary distortions can be recon-

structed based on conductivity changes alone which reduces image artifacts in the

process.

These results have been published in the proceedings of the 9th International

Conference on Biomedical Applications of Electrical Impedance Tomography, Dart-

mouth, USA (EIT 2008) and the 10th International Conference on Biomedical Ap-

plications of Electrical Impedance Tomography, Manchester, UK (EIT 2009).[8][9]

Software modifications and updates supporting this work have been contributed to

the Electrical Impedance and Diffuse Optics Reconstruction Software (EIDORS)

package [10] under the GNU General Public License.

11.1 Recommendations

Some recommendations coming from this body of work are as follows:

• Be aware that conformal deformations are possible in two-dimensional EIT and

that, therefore, distortions of the reconstructed conductivities may not match

expected shapes while at the same time not introducing obvious artifacts into

the image by which the situation might be recognized. These distortions will

be due to the conformal element of a deformation. An exception to this occurs

with images reconstructed using a CEM where images containing

– ringing are indicative of symmetric errors in contact impedance or area
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which in turn may indicate dilation if the electrode area is fixed, or

– distortions are indicative of conformal inversions which may not be intu-

itive.

• Measurement noise is an appropriate method of approximating general dif-

ference errors between EIT frames for electrode area and contact impedance

changes in simulation studies.

• The two-dimensional reconstructions presented here are an approximation of

a three-dimensional problem. The fact that this work has focused solely on

two-dimensional reconstructions is not meant to imply that this is the best or

most appropriate technique. Three-dimensional reconstructions should be the

ultimate goal.

11.2 Future Work

There are a number of directions in which to further explore the themes of this work:

• Develop code to separate a known shape deformation into conformal and non-

conformal components. Using this technique, it would be possible to validate

electrode movement algorithms against a theoretical limit. The mathematical

background provided in Chapters 8 and 9 should be sufficient, but an imple-

mentation has not successfully been completed at this time. The phantom from

Chapter 6 could be used to find how closely the non-conformal component of

movement is reconstructed.
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• Use the phantom developed in Chapter 6 to investigate deformations that are

explicitly conformal. Determine if the expected change in isotropic conductiv-

ity occurs in vitro as indicated in Chapter 8.

• Improve the Fourier series boundary fitting algorithm to allow for angular

electrode movement.

• Extend this work into three dimensions. Conformal motions are significantly

limited in their degrees of freedom in three dimensions when compared to two

dimensions.

• Explore whether it is possible to detect conformal boundary changes

– given fixed size electrodes (Chapter 10), or

– by the change in conductivity related to the conformal motion (Chap-

ter 8).

• Create some form of regularized combination of contact impedance, conduc-

tivity, and electrode movement reconstruction. It may be possible to obtain

contact impedances without requiring a homogeneous medium. This would

be another key piece in reducing the artifacts in in vivo conductivity recon-

struction that may eventually allow in vivo three-dimensional nonlinear and

absolute reconstructions.

• Explore whether high impedance electrodes are a practical means to allow

reconstructions exhibiting fewer artifacts.

These studies were based on a linear approximation of the dependence of the

transfer impedance data on both the conductivity and shape. Most in vivo EIT
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studies assume a linear approximation and typically reconstruct time or frequency

difference images even though the forward problem is non-linear. One reason that is

given for why a non-linear forward solution gives improved images on in vitro tank

data but fails to deliver an improvement on in vivo reconstruction, is that the errors

caused by an inaccurate knowledge of boundary shape are greater than the error in

using a linear approximation. This work holds out the hope that, with the correction

of the boundary shape and electrode positions, using the EIT data will be sufficient

for non-linear and accurate absolute EIT reconstruction of clinical data at sometime

in the future.

A limitation of the method of detecting boundary movement used in this work is

that the subject is assumed to be isotropic. While this is a reasonable approximation

for the lung, it is not true of muscle tissue or flowing blood. The effect of parts of

the domain being anisotropic, possibly in a predictable orientation, is an interesting

topic for further investigation.
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Appendix A

Vector Calculus

A brief review of some relevant vector calculus is contained in this appendix, sum-

marized from [67]. In this section, F refers to a vector field (Fxî+Fy ĵ+Fzk̂), and f

refers to a scalar field f(x, y, z). î ĵ k̂ are the standard Cartesian unit vectors along

the x-, y-, and z-axes respectively. The vector fields themselves can be written as

matrices.

F =


Fx

Fy

Fz

 (A.1)

A.1 Determinant

The determinant can be found for any square matrix. If the matrix is taken as a linear

transformation matrix, the determinant is the scaling factor of the transformation.

A matrix is invertible if and only if the determinant of the matrix is non-zero.
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The determinant of a two-by-two matrix is

det(A) =

∣∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣∣ = ad− bc (A.2)

In two dimensions, the determinant is the area of a parallelogram where a corner

is anchored at the origin and the sides are defined by the corners (a, b) and (c, d).

(Figure A.1) This geometric meaning can be extended to three dimensions (resulting

in three-by-three matrix determinants) and beyond.

(0, 0)

(a, b)

(c, d)

Figure A.1: Parallelogram; corners at (a, b) and (c, d), anchored at (0, 0)

A.2 Vector Products

The dot-product (A ·B) and cross-product (A×B) are two common operators used

in vector calculus.

In three dimensions,

F ·G = FTG =

[
Fx Fy Fz

]
Gx

Gy

Gz

 = FxGx + FyGy + FxGy (A.3)
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F×G =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

Fx Fy Fz

Gx Gy Gz

∣∣∣∣∣∣∣∣∣∣
(A.4)

F×G = (FxGz − FzGy )̂i− (FxGz − FzGx)ĵ + (FxGy − FyGx)k̂ (A.5)

The Del operator ∇ is a vector of the partial derivatives of some unspecified

vector field

∇ =


∂
∂x

∂
∂y

∂
∂z

 (A.6)

and is used in the vector calculus notation for gradient, divergence and curl.

A.3 Gradient

Gradient is a vector field representing the slope of a scalar function.

In three dimensions, gradient of a scalar field f is

∇f =


∂
∂x

∂
∂y

∂
∂z

 f =
∂f

∂x
î+

∂f

∂y
ĵ +

∂f

∂z
k̂ (A.7)

A.4 Divergence

Divergence is a scalar field representing how much a vector field within a region is

behaving as a source or sink. Divergence has units of [·/m].
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In three dimensions, divergence of a vector field F is

∇ · F =

[
∂
∂x

∂
∂y

∂
∂z

]
Fx

Fy

Fz

 =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

(A.8)

A few identities with respect to divergence are as follows:

∇ · (∇× F) = 0 (A.9)

∇ · (F×G) = (∇× F) ·G− F · (∇×G) (A.10)

∇ · (gG) = (∇g) · F + g(∇ · F) (A.11)

A.5 Curl

Curl expresses the right-hand rule, finding the rotation of a vector field where the

axis of rotation is the direction of the curl vector and magnitude of rotation is the

magnitude of the curl vector. Curl has units of [·/m].

In three dimensions, curl of a vector field F is

∇× F =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣∣∣∣
(A.12)

∇× F = (
∂Fz
∂y
− ∂Fy

∂x
)̂i+ (

∂Fx
∂z
− ∂Fz

∂x
)ĵ + (

∂Fy
∂x
− ∂Fx

∂y
)k̂ (A.13)
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A pair of identities with respect to curl are as follows:

∇× (∇f) = 0 (A.14)

∇× (∇× F) = ∇(∇ · F)−∇2F (A.15)

In general, Stokes’ Theorem (A.15) relates a surface integral of the curl of F to

a line integral of F on the boundary. In two dimensions, this is Green’s Theorem.

A.6 Laplacian

The Laplacian is a second-order differential operator. It shows up as the diffusion of

a scalar field towards an equilibrium.

∇2f = ∇ · ∇f (A.16)

A.7 2× 2 Matrix Inverse

For a two-by-two matrix,

A =

 a b

c d

 (A.17)

where the matrix A is non-singular such that its determinant is non-zero (|A| 6= 0),

the inverse of the matrix is

A−1 =
1

ad− bc

 d −b

−c a

 (A.18)

where the denominator ad− bc is the determinant of the matrix A.



Appendix B

Generalized Tikhonov Derivation

This section presents the derivation of a solution for the single step Tikhonov regular-

ization scheme. The derivation is not new but is presented here as an application of

the level of matrix algebra required to understand the technical details of Electrical

Impedance Tomography (EIT) implementations.

A few basic matrix algebra identities are required in these solutions:

(Jc)T = cTJT, cTJTz = zTJc, (Jc)Tz = zTJc, yTz = zTy (B.1)

An excellent general resource for working with matrix algebra is [68].
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B.1 Least Squares Solution

The least squares solution is the minima of ||Jc− z||2,

||Jc− z||2 = (Jc− z)T(Jc− z) (B.2)

= cTJTJc−cTJTz− zTJc︸ ︷︷ ︸
−2cTJTz

+zTz (B.3)

arg min
c
||Jc− z||2 → ∂||Jc− z||2

∂c
= 0 (B.4)

∂||Jc− z||2

∂c
= 2JTJc− 2JTz (B.5)

6 2JTJc =6 2JTz (B.6)

c = (JTJ)−1JTz (B.7)

which is the Moore-Penrose pseudoinverse of the problem Jc = z → c = J†z for A

with linearly independent columns.

B.2 Adding Penalty Terms

To extend the least squares solution towards a generalized Tikhonov regularization

framework is a matter of substitution:

||Jc− z||2 → ||Jc− z||2 + ||λL(c− c0)||2 (B.8)
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λL

 c =

 z

λLc0

 (B.9)

J→

 J

λL

 , z→

 z

λLc0

 (B.10)

Substituting into (B.7), gives the following:

c =

[ JT λLT

]T

 J

λL



−1 [

JT λLT

]T

 z

λLc0

 (B.11)

Multiplied out, this gives

c = (JTJ + λ2LTL)−1(JTz + λ2LTLc0) (B.12)

B.3 Generalized Tikhonov Solution

The generalized Tikhonov solution extends the least squares solution to one using

an arbitrary norm W on the solution error term. This allows less reliable data to be

weighted differently.

||Jc− z||2W = (Jc− z)TW(Jc− z) (B.13)

= cTJTWJc−cTJTWz− zTWTJc︸ ︷︷ ︸
−2cTJTWz

+zTWz (B.14)

∂||Jc− z||2

∂c
= 2JTWJc− 2JTWz (B.15)
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c = (JTWJ)−1JTWz (B.16)

Performing the same substitutions as in Section B.2, but with the additional norm

W, gives

J→

 J

λL

 , z→

 z

λLc0

 , W→

 W 0

0 I

 (B.17)

and substituting it into (B.7), gives

c =

[ JT λLT

]T

 W 0

0 I


 J

λL



−1 [

JT λLT

]T

 W 0

0 I


 z

λLc0


(B.18)

Multiplied out, this gives

c = (JTWJ + λ2LTL)−1(JTWz + λ2LTLc0) (B.19)

This solution with a null prior (c0 = 0) is what is implemented as a single

step solver in the Electrical Impedance and Diffuse Optics Reconstruction Software

(EIDORS) package.[10]

B.4 Wiener Filter Form

A Wiener filter form [69] is useful because it allows isolation of the Signal-to-Noise

Ratio (SNR) where a Wiener filter takes the following form

c = J∗(JJ∗ + SNR)−1z (B.20)



B.4. WIENER FILTER FORM 115

The transformation of the generalized Tikhonov solution (B.19) to a Wiener filter

form requires rearranging the solution such that

c = (JTWJ + λ2LTL)−1(JTW(z− Jc0 + Jc0) + λ2LTLc0) (B.21)

c = (JTWJ + λ2LTL)−1(JTW(z− Jc0) + JTWJc0 + λ2LTLc0) (B.22)

c = (JTWJ + λ2LTL)−1(JTW(z− Jc0))

+ (JTWJ + λ2LTL)−1(JTWJ + λ2LTL)︸ ︷︷ ︸
I

c0 (B.23)

c = (JTWJ + λ2LTL)−1(JTW(z− Jc0)) + c0 (B.24)

c− c0 = (JTWJ + λ2LTL)−1JTW(z− Jc0) (B.25)

followed by the application of the so-called “PosDef” matrix identity [68, (173)]

(P−1 + BTR−1B)−1BTR−1 = PBT(BPBT + R)−1 (B.26)

where P and R are positive definite matrices that are invertable and

B = J, P = (LTL)−1, R = (λ−2W)−1 (B.27)

Applying this identity to the rearranged generalized Tikhonov solution (B.25) gives

c− c0 = (LTL)−1JT
(
J(LTL)−1JT + λ2W−1

)−1
(z− Jc0) (B.28)

c = (LTL)−1JT
(
J(LTL)−1JT + λ2W−1

)−1
(z− Jc0) + c0 (B.29)
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