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Abstract. There is emerging evidence that the ventilation strategy used in acute

lung injury (ALI) makes a significant difference in outcome and that an inappropriate

ventilation strategy may produce ventilator-associated lung injury. Most harmful

during mechanical ventilation are lung overdistension and lung collapse or atelectasis.

Electrical Impedance Tomography (EIT) as a non-invasive imaging technology may

be helpful to identify lung areas at risk. Currently no automated method is

routinely available to identify lung areas that are overdistended, collapsed or ventilated

appropriately. We propose a fuzzy logic based algorithm to analyse EIT images

obtained during stepwise changes of mean airway pressures during mechanical

ventilation. The algorithm is tested on data from two published studies of stepwise

inflation-deflation manoeuvres in an animal model of ALI using conventional and

high frequency oscillatory ventilation. The timing of lung opening and collapsing

on segmented images obtained using the algorithm during an inflation-deflation

manoeuvre are in agreement with well known effects of surfactant administration and

changes in shunt fraction. While the performance of the algorithm has not been verified

against a gold standard, we feel that it presents an important first step in tackling this

challenging and important problem.
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1. Introduction

We present an automated method to analyse Electrical Impedance Tomography (EIT)

images obtained during stepwise changes of mean airway pressures during mechanical
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ventilation. This method may be useful in determining changes in lung conditions, such

as atelectasis or overdistension.

There is emerging evidence that the ventilation strategy used in acute lung injury

(ALI) makes a significant difference in outcome and that an inappropriate ventilation

strategy may produce ventilator-associated lung injury. In a retrospective study, 24% of

patients who did not have ALI at the onset of ventilation developed ALI after a mean of

2.5 days of mechanical ventilation (Gajic et al. 2004). Most harmful during mechanical

ventilation are lung overdistension (causing disruption of alveoli) and lung collapse or

atelectasis (leading to hypoxia and atelectrauma by repeated opening and closing of

lung units). Both overdistension caused by excessively high airway pressures (Imai &

Slutsky 2005) as well as cyclic recruitment and derecruitment (Chu et al. 2004) caused by

insufficient end expiratory pressures add to the development of ventilator induced lung

injury. Current lung protective strategies of ventilation are targeted towards reducing

overdistension and achieving adequate lung opening.

As ALI is a heterogeneous disease, and regional differences in lung compliance

are associated with distinct regional differences in lung opening and closing (Gattinoni

et al. 2006), EIT as a non-invasive imaging technology may be helpful to identify lung

areas at risk. No other method can provide non-invasive assessment of regional lung

volumes in real time at the bedside. Other methods to assess lung volumes such as

respiratory inductive plethysmography provide only global, not regional, assessment of

lung volume. Advanced imaging techniques such as positron emission tomography and

computed tomography are not feasible to be used as a continuous bedside monitor.

However, no automated method is routinely available to identify from EIT tomograms

lung areas that are overdistended, collapsed or ventilated appropriately.

Regional changes in air content of the lungs (ventilation) produce large changes

in the conductivity distribution which can be imaged with EIT. Several studies

have shown that EIT is able to map regional differences in lung behaviour. For

example, Frerichs et al. (2003) showed in an animal model of acute lung injury

during conventional ventilation that the dependent lung regions respond more slowly to

recruitment manoeuvres, and this effect was ameliorated with exogenous surfactant.

In an animal model of acute lung injury during HFOV, non-dependent lung areas

showed significantly decreased regional ventilation-induced impedance changes at higher

mean airway pressures (MAP), suggesting overdistension, whereas dependent lung areas

showed increased impedance changes, suggesting recruitment (Wolf et al. 2010).

While EIT shows exciting potential as a tool to measure the regional information

necessary to help optimize lung ventilation, little work has been done to develop a

strategy to summarize and present the most relevant clinical information. Consider

the common scenario where the physician chooses to change the PEEP (positive end-

expiratory pressure) level for a patient. A modern ventilator will show immediately the

change in global lung compliance, and within several minutes, the effect of the change

can be seen on arterial blood gasses. However, the questions that one would like to

answer are: have new lung regions opened? are some regions now overdistended? have
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any parts of the lung collapsed? Using the term “lung state” to refer to lung which

is normal, collapsed, etc., we are looking for a technique to identify lung states and in

particular the changes in state.

In this paper, we propose a method to generate images of the changes in lung states

from EIT images during stepwise changes in mean airway pressure. We propose a fuzzy

logic based algorithm to classify the images, and show its performance for images from

conventional and high frequency oscillatory ventilation. In the context of EIT, fuzzy

logic has previously been used to distinguish the lungs and the heart in EIT images

during ventilation and apnea in an animal model (Tanaka et al. 2008).

The objective of this study is to propose a theoretically-derived lung tissue state

classification algorithm to be used with the current mainstream EIT technology. As

such, validation against a gold-standard technique such as CT is outside the scope of

this study. In the rest of the paper, we describe our method, show its performance, and

discuss the applications in which it performs well and the remaining challenges with

such classification approaches.

2. Methods

2.1. EIT data and algorithms

The algorithm designed in this study is tested on data from previous published studies

by Frerichs et al. (2003), a conventional ventilation study, and Wolf et al. (2010), a

similar study with high-frequency oscillatory ventilation (HFOV). Both studies used the

Göthingen Goe-MF II system during a stepwise recruitment-derecruitment manoeuvre

in a porcine model of lung injury. Sixteen electrodes were applied circumferentially

around the animal’s chest. Table 1 summarises the design of these studies.

For the purpose of this paper, the raw data from both studies were reconstructed

into EIT images with the GREIT algorithm using the cylindrical model (Adler

et al. 2009). Prior to reconstruction, surface electrode readings were normalised to

a reference recording. Thus, the reconstructed conductivity images are unitless. For the

study by Frerichs et al. (2003) the reference was a short period at the end of a 30 second

apnea (disconnection from the ventilator) before the onset of the manoeuvre and after

the induction of lung injury. This is in contrast with the data from our study (Wolf

et al. 2010), where a recording of ventilation prior to the induction of injury was used

as reference.

Short recordings of ventilation at each pressure step of the recruitment-

derecruitment manoeuvre in both studies were selected for analysis. Functional EIT

(fEIT) images were calculated for each step. For conventional ventilation, fEIT images

were obtained by calculating the amplitude of the strongest ventilation-related frequency

component of the time-course signal in each pixel. For HFOV, due to the small

amplitude of ventilation-induced changes relative to those caused by the heartbeat,

rather than using the amplitude of the relevant peak on the spectrum, the average power
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Table 1: Summary of data sources.

Study Animal Intervention Reference EIT

Frerichs

et al.

(2003)

Newborn piglet

(body weight:

2kg); lung injury

induced with

lavage

Conventional ventilation

at 10 ml/kg with PEEP

between 0 and 30 cm H2O

increased and then de-

creased in steps of 5

cm H2O over 120 seconds.

Measurements recorded

after induction of lung

injury and following

surfactant administration.

End of a 30 seconds

period of apnea.

Goe-MF II, acquisi-

tion rate: 13 Hz, 16

electrodes

Wolf

et al.

(2010)

Yorkshire swine

(body weight:

15kg); lung injury

induced with

lavage

HFOV ventilation at 10

Hz with MAP between 15

and 40 cm H2O increased

and then decreased in

steps of 5 cm H2O in 15

minutes intervals.

Conventional

ventilation prior to

lung injury

Goe-MF II, acquisi-

tion rate: 44 Hz, 16

electrodes
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Figure 1: (a) Idealized pressure-volume curve using the equation of Venegas et al.

(1998) and (b) the corresponding compliance (as first derivative of volume) vs. pressure

relationship. Inflection points were calculated using the method described in Grychtol

et al. (2009).

within a 1 Hz band around the peak was calculated to construct the fEIT image. This

method avoids some of the problems caused by spectral leakage and is fully described

in Wolf et al. (2010).
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2.2. Lung tissue states

We previously demonstrated that lung volumes corresponding to individual pixels of

EIT images exhibit the same basic pressure-volume characteristic as the lung as a whole

(a sigmoidal pressure-volume/impedance curve) (Grychtol et al. 2009). The inflection

points divide the pressure-volume curve into three distinct areas (c.f. figure 1). At

low pressures, and below the lower inflection point (LIP), the lung is predominantly

collapsed and is characterized by low volume and compliance. Conversely, above the

upper inflection point (at high pressures), the lung is predominantly in the overdistended

state characterized by high volume and low compliance. Between the LIP and the UIP

lung is in its normal, open state with medium volume and moderate to high compliance.

In this study, we apply these definitions to lung volumes corresponding to individual

pixels of EIT images.

2.3. Effect of a change in pressure

The main challenge in classifying lung tissue states from EIT data is to distinguish

between collapsed and overdistended areas without performing a pressure-volume

manoeuvre. Recent reports show that functional EIT (fEIT) imaging can provide

reliable information regarding the distribution of ventilation (e.g. Frerichs et al. 2002,

Hinz et al. 2003, Victorino et al. 2004). Areas of low compliance exhibit little ventilation-

induced change, and are thus easy to identify on fEIT images. However, absolute

impedance, and hence air volume, information would be required to distinguish areas

that are overdistended from those that are collapsed. In normalised difference EIT,

absolute impedance information is not available, and the unitless value of “relative ∆Z”

is generally not informative. A different feature is therefore required to distinguish

collapsed and overdistended areas.

Because fEIT images reflect local compliance, comparing ventilation recordings

before and after an adjustment in the baseline pressure during mechanical ventilation

(peak end-expiratory pressure, PEEP, for conventional ventilation, or mean airway

pressure, MAP, for HFOV) should reveal the sign of the pressure-compliance

relationship. This, in turn, will allow distinguishing the two “inactive” states. As

depicted on figure 1(b), below the LIP, an increase in pressure leads to increased

compliance as more units within a given region of lung open up. Above the UIP,

the relationship is reversed — an increase in pressure leads to decrease in compliance.

Conversely, when the pressure is decreased, compliance increases in overdistended areas

and diminishes in collapsed ones.

While additional features (discussed below) are required for adequate performance,

this idea is central to the algorithm presented here. The data from stepwise recruitment-

derecruitment manoeuvres conducted by Frerichs et al. (2003) and Wolf et al. (2010)

provide ample opportunity to test the performance of this algorithm.
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Figure 2: (a)Fuzzy membership functions for the three fuzzy sets. The membership of a

pixel r depends on its value with respect to the mean, r̄ROI, and the extreme values, rmin

and rmax, within the ROI; (b) A typical fEIT image (data from Frerichs et al. (2003),

conventional ventilation PEEP 15 cm H2O); and (c) the corresponding image of fuzzy

set membership.

2.4. Constructing features

The ventilation-induced impedance changes that constitute fEIT images are unitless and

ultimately depend on the choice of reference recording used for reconstruction. As such,

it is impossible to define meaningful thresholds for normal values. Hence, the ventilation-

induced impedance change in a volume of lung corresponding to an individual EIT pixel

can only be assessed by comparison with the values in the rest of the lung.

This necessitates the ability to distinguish lung from other tissues in EIT images.

Several approaches to defining such regions of interest (ROI) have been used to date

(see Pulletz et al. 2006). In this study, we employ the technique based on comparing

linear regression coefficients of individual pixel’s impedance signal against the average

signal of the entire image. To achieve maximum fidelity, for the analysis of the data

from the study of Wolf et al. (2010) a recording of a pressure-volume manoeuvre before

induction of lung injury was used for ROI definition, as described therein. For the

study of Frerichs et al. (2003), only data recorded after lung injury is available and

thus an entire recording was used to derive the ROI. As recommended by Pulletz et al.

(2006), a threshold value of 20% of the maximum regression coefficient found was used

to delineate the lung ROI.

To facilitate assessment, fEIT images are normalized with respect to the mean of

the lung ROI. After normalization, values in individual pixels are assigned a degree of

membership, µ(x), to the fuzzy sets Low, Hi, and Average (abbreviated Lo, Hi and Avg

respectively) through the process of fuzzification according to figure 2(a). We chose to

use fuzzy sets rather than predicate inference rules in the algorithm presented here due

to the ability of the former to formalize linguistic reasoning in a form that is both easy

to understand and suitable for use in situations where crisp thresholds are difficult to

define. Fuzzy sets can easily be extended or incorporated into fuzzy logic control systems
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(see Mendel 1995 for a comprehensive tutorial), such as that reported by Luepschen

et al. (2007). We adopted the following definitions for fuzzy set intersection, union and

complement:

µA∩B(x) = min(µA(x), µB(x)) (1)

µA∪B(x) = max(µA(x), µB(x)) (2)

µ
A{(x) = 1− µA(x) (3)

where µA is the membership function for the fuzzy set A, A{ denotes the complement

of A, and x belongs to the domain of the function. It follows from the membership

functions defined in figure 2(a) that

µLo(x) + µAvg(x) + µHi(x) = 1 (4)

for all x in [−1, 1]. With A, B and C representing any combination of Low, Average

and High, it also holds that

µ
C{(x) = 1− µC(x) = µA(x) + µB(x) , (5)

which, in this case, is a more intuitive equivalent of the linguistic “A or B” than the

fuzzy union defined above. Thus, the algorithm presented here is defined in terms of

intersection and complement only.

Figure 2(c) shows a typical fEIT image (figure 2(b)) after fuzzification. Each pixel

in the image is colored according to the values of its membership in the three sets, such

that pixels belonging to the set Average are green, and those belonging to the sets Hi

and Low are coded as red and blue, respectively. Note the smooth transition between

the differently coloured areas.

After normalization and fuzzification, the fEIT images are ready for use as features

in a classification algorithm. In the same fashion, we have extracted features from

the difference between fEIT images at consecutive pressure steps (∆fEIT images).

Images of mean conductivity (for HFOV) and PEEP conductivity (for conventional

ventilation) over the same time periods as the fEIT images were also computed and

processed analogously. Additionally, a fuzzy version of the sign function (sgn) has

been developed, such that the sign (direction) of change in either ventilation-induced

conductivity change or mean conductivity can be used as a feature. For simplicity the

same fuzzy set abbreviations will be used for the sign function with the understanding

that High values are positive, Low — negative, and Average — close to zero. Thus, for

each step change in pressure, eight features are derived from EIT data, as summarised

in table 2. One additional feature is the direction of change in pressure (increase or

decrease).

For the sake of simplifying notation, from this point on we will treat Lo, Hi and Avg

(and their complements) as unary operators acting on features, such that Hi[fEIT(n)]

and Lo{[fEIT(n)] will denote the fuzzy set of pixels in ROI whose value of ventilation-

induced conductivity change at the n-th pressure step is High and not Low, respectively.
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Table 2: Summary of features used for classification.

Feature Description

fEIT(n) Functional image at n-th pressure step. Computed based

on spectral analysis of a short recording of ventilation (see

subsection 2.1 for details).

fEIT(n− 1) Functional image one step before n.

∆fEIT(n) fEIT(n)−fEIT(n−1). Change in ventilation induced conductivity

change caused by a change in pressure

sgn(∆fEIT(n)) Sign of change in magnitude of ventilation induced conductivity

changes

σ(n) Baseline conductivity (mean for HFOV and PEEP level for

conventional ventilation) at n-th pressure step.

σ(n− 1) Baseline conductivity one step before n.

∆σ(n) σ(n)−σ(n−1). Change in conductivity induced by a step change

in pressure.

sgn(∆σ(n)) Sign of change in conductivity.

sgn(∆p) p(n)− p(n− 1) Sign of change in pressure, p, between steps n− 1

and n.

2.5. Event detection

Using the features described above, we defined four events of interest that reveal the

state of the volume of lung corresponding to a particular EIT pixel. For a positive change

in pressure, these are the opening of collapsed areas and overdistending of previously

perfectly functional areas. Conversely, when pressure is decreased, previously ventilated

areas could be collapsing, while overdistended regions could be recovering. In general,

the events concern either an inactive pixel becoming active, or an active pixel becoming

inactive (i.e. not ventilated). We define not ventilated pixels as those whose value of

ventilation induced conductivity change belongs to the Low fuzzy set, and all others as

active. When an inactive pixel becomes active (more ventilated) as a result of a positive

change in pressure and its conductivity decreases, it is recognised as a previously not

ventilated area of the lung that is opening. Hence, the fuzzy set Opening is defined as:

Opening(n) = Lo[fEIT(n− 1)] ∩ Lo{[fEIT(n)] ∩ Hi[sgn(∆fEIT(n))]

∩ Lo[sgn(∆σ(n))] ∩ Hi[sgn(∆p)] . (6)

The other three events are defined in a similar fashion as an intersection of several

features and are summarised in table 3.

2.6. Event resolution and image segmentation

Because the definitions of events are not mutually exclusive, at times more than one

event is detected (i.e. has a nonzero fuzzy membership value) in a given pixel. In these

instances, the event with the highest membership value is preserved, and the rest are

ignored. This is the simplest form of defuzzification.



Towards lung EIT image segmentation 9

Table 3: Event definitions. Each event is a fuzzy intersection of the feature

sets listed.

Feature Opening Collapsing Overdistending Recovering

fEIT(n) Lo{ Hi{ Hi{ Lo{

fEIT(n− 1) Lo Lo Lo{ Hi{

∆fEIT(n) Lo

sgn(∆fEIT(n)) Hi Lo Lo Hi

sgn(∆σ(n)) Lo Hi Lo Hi

sgn(∆p) Hi Lo Hi Lo

Once all events associated with a given pressure step are recognised, two images are

produced — one for each pressure value — such that pixels recognised as representing

overdistended areas are red, collapsed areas — blue, those in normal state are green,

and those that are inactive, but cannot be classified, are magenta. The “severity” of

each recognised pathological state is determined by the degree of membership in the

Lo[fEIT] fuzzy set and is reflected by the intensity of the corresponding color. Thus, in

essence, the resultant images are segmented functional EIT images.

3. Results

The classification algorithm described above has been applied to data sets from stepwise

inflation-deflation manoeuvres performed in a porcine model of lung injury during

conventional (Frerichs et al. 2003) and high frequency oscillatory ventilation (Wolf

et al. 2010). We present classifications obtained from each pressure step in isolation,

as well as comprehensive reconstructions of the state of the lung throughout the

manoeuvres integrating classification results from all pressure changes.

3.1. Conventional ventilation

The study of Frerichs et al. (2003) compared the changes in distribution of ventilation

during an inflation-deflation manoeuvre before and after surfactant treatment. The

events detected during both manoeuvres are presented in figure 3. After surfactant

treatment, the majority of the lung opens between PEEP of 5 and 15 cm H2O while

before surfactant administration, the bulk of the lung opens up only at PEEP of 20

cm H2O.

For the first manoeuvre, the classification made possible by information from each

pressure change individually is presented in figure 4. In most cases, areas that remain

not ventilated after the change cannot be classified correctly. In particular, at lower

pressures during the inflation limb, lung areas which later open up and hence must be

collapsed are initially classified as overdistended. During the deflation limb, areas that

have been previously identified as collapsed (during the change in PEEP from 15 to 10

cm H2O) are later difficult to assign to a specific lung state and are marked as ventilated.
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Figure 3: Events detected during a stepwise PEEP recruitment and derecruitment

manoeuver in a piglet with ALI before (top) and after (bottom) surfactant treatment,

as described in Frerichs et al. (2003). Arrows indicate direction of transition between

two levels of PEEP expressed in cm H2O.
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Figure 4: Lung state classification in a piglet with ALI based on the events presented

in figure 3. Classification was performed separately for each pressure change using only

information from EIT recordings before and after the change.
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Figure 5: Reconstruction of the state of the lung integrating classification results from

all PEEP changes (c.f. figure 3).

This indicates the need to keep previous classification results in memory and

integrate them with information from the current step change in pressure. In figure 5,

results of integrating information from all pressure steps are presented. In an attempt

to reconstruct the state of the lung at each pressure, in addition to remembering states

recognised earlier, classification at previous pressure steps is retrospectively updated.

Thus, areas of lung that only open during a change of PEEP from 15 to 20 cm H2O are

marked as collapsed for all PEEP values up to 20 cm H2O despite the algorithm not

being able to classify them at earlier steps.

The reconstructed results show that before surfactant treatment the lung requires

higher PEEP levels to recruit and maintain in that state. In comparison, after surfactant

treatment, the lung opens up (during the inflation limb) and collapses (during deflation)

at lower PEEP levels. Additionally, at each PEEP level, a smaller fraction of lung is in

the collapsed state. This is consistent with the observations of Frerichs et al. (2003) and

reflects well known physiological effects of surfactant administration in ALI (Whitsett

& Weaver 2002).

3.2. High frequency oscillatory ventilation

Figure 6 presents the events detected during a stepwise inflation-deflation manoeuvre in

a porcine model of ALI during HFOV (Wolf et al. 2010). During inflation, at lower values

of MAP, lung opening in dependent areas of the lung is accompanied by overdistention

in the nondependent part of the left lung. However, this only becomes visible in the

reconstructed state of the lung throughout the manoeuvre (figure 7) at higher MAP

values (MAP 25–30 cm H2O) due to the initially high values of ventilation-induced
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Figure 7: Images: Reconstruction of the state of the lung integrating classification

results from all MAP changes (c.f. figure 6). Graphs: Fraction of lung classified as

collapsed and overdistended compared with the shunt fraction.

changes in this area.

The amount of collapsed and overdistended lung (calculated as average membership

value for the respective classes within the ROI) is compared against the shunt fraction

in the plots in figure 7. According to the classification results, a significant part of the

lung is collapsed at MAP 15 cm H2O and most of it is recruited at MAP 25 cm H2O.

This is confirmed by the shunt fraction which falls from 0.83 to 0.23 between MAP 15

and 25 cm H2O. During the deflation part most of the lung remains recruited and only

a small fraction is classified as collapsed at MAP 15. Corroborating this, the shunt

fraction rises only slightly from 0.06 at MAP 40 to 0.10 at MAP 15.
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4. Discussion

We present an algorithm that attempts to identify collapsed and overdistended lung

tissue by analyzing changes in EIT recordings induced by adjusting pressure settings

during mechanical ventilation. This is the first attempt at segmentation of the fEIT

images of the lungs. The results of applying the algorithm to data sets from inflation-

deflation manoeuvres match expectations in terms of amount and timing of lung collapse

and opening. The fact that the algorithm performs reasonably well for both conventional

and high frequency oscillatory ventilation, demonstrates that the chosen features are

not specific to the type of ventilation. While we recognize that the performance of the

algorithm has not been verified and requires further work, we feel that it presents an

important first step in tackling this challenging and important problem.

The algorithm assumes that overdistention and opening can only occur during a

positive change in pressure, while lung collapse or recovery from overdistention only

occur during a negative change. This causes the algorithm to misinterpret changes in

ventilation distribution that result from re-balancing of pressures and volumes within

the lung (“Pendelluft”), e.g. the non-dependent area of the left lung during the change

from PEEP 25 to 30 before surfactant administration (figure 3). This assumption should

be relaxed in order to capture the full dynamics of re-distribution of air content and

tidal volume as a result of change in pressure. This, in turn, will necessitate a more

sophisticated defuzzification procedure than employed here (see 2.6).

Changes in poorly ventilated areas appear to be particularly challenging to classify

correctly. An example of that can be seen on figure 4 at lower values of PEEP during

inflation, where dependent part of the left lung is incorrectly identified as overdistended.

The overdistending event was detected because the area exhibited a small increase in

conductivity while its ventilation-induced conductivity changes decreased. This problem

could be resolved if static air volume information was available on top of the functional

EIT images. As mentioned before, in normalized difference imaging, conductivity values

are in general not informative due to their strong dependence on the reference recording.

However, if the entire lung could be assumed to be in the same state during the reference

recording, the conductivity values could become informative. The reference recordings

used in this study do not satisfy this condition. During apnea, parts of the lung

collapse completely while others remain open. Similarly, in healthy lung not all units

are recruited at atmospheric pressure. We speculate that using a reference recording

obtained during a short period of maximal recruitment could be helpful in distinguishing

collapsed and overdistended areas even when they remain not ventilated.

Cardiopulmonary interactions may influence lung EIT measurements. High mean

airway pressures can compromise pulmonary blood flow, and may decrease venous

return to the right side of the heart. We reduced the influence of heart filling on

the EIT data by excluding the heart region from the ROI. Increase in air volume and

reduction of pulmonary blood flow both lead to decreased lung conductivity (increased

lung impedance). Superposition of these effects can lead to a larger decrease in
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local conductivity than could be explained by change in air volume alone, potentially

decreasing the sensitivity of a classification algorithm to lung overdistention. We try to

avoid this pitfall by not using the magnitude of conductivity change as a feature in the

algorithm described here. Instead, we use features derived from functional EIT images

and only the sign of the conductivity change — sgn(∆σ(n)).

Using a single change in pressure, the algorithm can only provide information about

the areas of the lung where events were detected (figure 3). As demonstrated by the

reconstructions in figures 5 and 7, retaining information from previous classifications

and incorporating it into the algorithm could help produce more complete images at

each pressure step.

The process of fuzzification used in the current algorithm compares the value of

each pixel to the mean and range of the values within the ROI for that image. At times,

this leads to counter-intuitive results, such as the “collapsing” event detected in the

non-dependent part of the right lung during decrease of PEEP from 15 to 10 cm H2O in

an animal with ALI (figure 3). It would be better if magnitude of ventilation-induced

changes in each pixel could be assessed with respect to the range of previously observed

values in that pixel, especially if EIT was used for long term monitoring of mechanical

ventilation.

4.1. Limitations

The classification algorithm requires a priori knowledge of which pixels on the EIT image

correspond to the lungs. In the animal study using HFOV, the ROI was obtained from

data during a PV manoeuvre before lung injury. In the clinical context, and for the

conventional ventilation study, there is no guarantee that all regions of the lung recruit

during such manoeuvres, and hence the resulting ROI may be incomplete.

We used no secondary confirmation technique to verify the observed findings, but in

previous studies relative impedance changes have been highly correlated with changes

in air content seen on CT in animals (Frerichs et al. 2002) and humans (Victorino

et al. 2004).
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