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Abstract. Electrical Impedance Tomography (EIT) is an attractive method for
clinically monitoring patients during mechanical ventilation, because it can provide
a non-invasive continuous image of pulmonary impedance which indicates the
distribution of ventilation. However, most clinical and physiological research in lung
EIT is done using older and proprietary algorithms; this is an obstacle to interpretation
of EIT images because the reconstructed images are not well characterized. To
address this issue, we are developing a consensus linear reconstruction algorithm for
lung EIT, called GREIT (Graz consensus Reconstruction algorithm for EIT). This
paper describes the unified approach to linear image reconstruction developed for
GREIT. The framework for the linear reconstruction algorithm consists of: 1) detailed
finite element models of a representative adult and neonatal thorax; 2) consensus on
the performance figures of merit for EIT image reconstruction; and 3) a systematic
approach to optimize a linear reconstruction matrix to desired performance measures.
Consensus figures of merit, in order of importance, are: a) uniform amplitude response,



GREIT: linear EIT image reconstruction 2

b) small and uniform position error, c) small ringing artefacts, d) uniform resolution,
e) limited shape deformation, and f) high resolution. Such figures of merit must be
attained while maintaining small noise amplification and small sensitivity to electrode
and boundary movement. This approach represents the consensus of a large and
representative group of experts in EIT algorithm design and clinical applications for
pulmonary monitoring. All software and data to implement and test the algorithm
has been made available under an open source license which allows free research and
commercial use.

Keywords : Electrical Impedance Tomography, Lung Function Imaging, Image

Reconstruction,

1. Introduction

Electrical Impedance Tomography (EIT) measures conductivity changes within a body,

by measuring the voltages at electrodes on the body surface caused when a number of

different currents are passed through the body. One of the most promising applications

of EIT is for description of physiologic events in the thorax, since the thorax contains

several organs which undergo large changes in conductivity during normal functioning.

Indeed, lung function measurement was among the first physiological applications of this

technology (Barber and Brown 1984). EIT is unique in that it is able to non-invasively

measure chest impedance to give a continuous image of the distribution of ventilation.

Based on these advantages, there is significant interest in EIT to monitor patients with

respiratory compromise (Frerichs et al 2003, Victorino et al 2004, Wolf et al 2007).

One limitation is that most clinical and physiological research on lung EIT is being

done using proprietary variants of older image reconstruction algorithms, such as the

backprojection algorithm as implemented in the Sheffield (Brown and Seagar 1987) or

Göttingen (Hahn et al 2002) EIT systems. The algorithms, although very successful

for the time, do not incorporate advances that have been made over the last 20 years.

The reconstructed images show spatial non-uniformity in image amplitude, position and

resolution, which make interpretation of regional ventilation difficult and error prone.

For example, because of position errors, changes near the skin can appear as contrasts in

the lung regions. Many other approaches to the reconstruction of EIT images have been

proposed, incorporating many advances (Lionheart, 2004); however, such approaches

have not been widely used clinically and experimentally because there was a lack of an

agreement on which approaches were best (and how they could be combined).

To address this issue, we are developing a consensus linear reconstruction algorithm

for lung EIT, called GREIT (Graz consensus Reconstruction algorithm for EIT), since

early discussions took place at the 2007 ICEBI conference in Graz, Austria. Our aim

is to develop a standard which has broad agreement from experts in the mathematical,

engineering, physiological, and clinical EIT communities. Such an approach is feasible

because there is general consensus amongst experts in lung EIT applications on the

“ingredients” that should be part of a robust and high performance linear algorithm
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for 2D EIT of the lungs. This paper describes the unified approach to linear image

reconstruction developed for GREIT, and the tools and evaluation methodology for

clinical and experimental testing of the algorithm.

The current work is limited to the reconstruction algorithm. At this stage, we do not

propose calibration tests, data formats or phantoms, standards for image interpretation

or EIT based lung parameters; we do not feel there is sufficient experience yet to reach

consensus in these areas. It is important to clarify that there is no financial goal to

the development of this algorithm. All developed algorithms, software models and

simulation and experimental test data used in this algorithm have been made available

under an open source license as part of the open source EIDORS distribution (Adler and

Lionheart 2006); this license permits royalty free use in both research and commercial

applications. Additionally, due to space constraints in this paper, only a limited set

of results could be included. The complete algorithms, results, and source data are

available on the internet at eidors.org/GREIT.

The following specifications have been defined for GREIT:

• single ring electrode configurations with Sheffield-type EIT systems, using adjacent

current injection and measurement.

• linear (i.e. real-time) reconstruction of a 2D conductivity change image, based on

a 3D forward model.

• quantitative difference reconstructions for which units can be assigned to EIT

images.

• reconstruction onto a 32×32 pixel array for a single ring of 16, 12 and 8 electrodes,

for the shapes: a) neonatal chest, b) male and female adult chest, and c) cylindrical

tank.

These specifications represent, in our opinion, the limits to areas sufficiently well

understood in the EIT community to reach consensus. We do not suggest that such

limits are ideal; in fact, we actively encourage work to overcome them, such as the

single ring placement of electrodes and the consequent lack of 3D image information.

2. Methods: performance figures of merit

In this section, we elaborate a set of criteria which characterize the performance of

an ideal reconstruction algorithm. Clearly, there is an inherent trade-off between

the criteria, such that it is not possible to simultaneously optimize all measures.

Instead, we proceed as follows. First, we establish the desired performance measures

of an ideal algorithm; subsequently, we describe a unified methodology to calculate a

reconstruction matrix which is an optimized compromise of criteria weighted by the

consensus importance of each.

We consider an EIT system using the following notation. Using nE electrodes,

nE current stimulation patterns are sequentially applied and nV differential voltage

measurements are made in parallel for each stimulation. For an adjacent drive EIT
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system, voltages are typically not measured at driven electrodes, and nV = nE−3. Each

data frame measures a vector, v ∈ RnM , of nM = nEnV data points (some of which are

redundant if the medium is not changing). Difference EIT calculates difference data y,

([y]i = [v]i − [vr]i); or the normalized difference data [y]i = ([v]i − [vr]i)/[vr]i), where

vr is a reference set of measurements corresponding to the background conductivity

distribution, σr. To improve its precision, vr is typically averaged over many data

frames; such ensemble averaging reduces random noise, and we assume that vr is noise

free.
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Figure 1. Performance figures of merit for evaluation of GREIT images. Based on a
reconstructed image (x̂, left), an image (x̂q, centre) is constructed of all image pixels
which exceed 1

4 the maximum amplitude. From these images, figures of merit at right
are calculated as described.

An outline of the calculation of performance figures of merit is given in Fig. 1.

Given a vector of EIT difference or normalized difference data, y (length nEnV ), we

calculate a reconstructed EIT image x̂ = Ry based on an EIT linear reconstruction

algorithm represented as a matrix R. x̂ is a column vector representing the 32 × 32

pixel grid of the images.

We define figures of merit based on small “point” conductivity changes, where small

indicates a diameter of less than 5% of the medium diameter, and thus much smaller

than the inherent resolution of EIT with 16 electrodes. To evaluate this image, we first

calculate a 1
4
–amplitude set, x̂q, which contains all image pixels [x̂]i greater than 1

4
of

the maximum amplitude:

[x̂q]i =

{
1 if [x̂]i ≥ 1

4
max(x̂)

0 otherwise.
(1)

For targets with a conductivity decrease, the definition of the 1
4
–amplitude set is inverted.

A threshold of 1
4

represents a compromise which detects most of the visually significant

effects; however, the exact value of the threshold has little effect on the final algorithm

parameters. The centre of gravity (CoG) of x̂ and x̂q are calculated, and the distance

from the CoG to the medium centre is then calculated, as rt and rq respectively.

Based on images of point targets, we define the following figures of merit:
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• Amplitude Response (AR) measures the ratio of image pixel amplitudes in the

target to that in the reconstructed image. For a spherical target of volume Vt

in the electrode plane with conductivity σt in a body of homogeneous reference

conductivity σr

AR =

∑
k[x̂]k

Vt
∆σ
σr

(2)

where ∆σ = σt − σr.

AR allows units to be assigned to the reconstructed conductivities. For this,

we require that reconstruction matrices, R, be scaled such that AR= 1 for a small

spherical target with ∆σ/σr ≈ 1 in the centre of the body. With this normalization,

reconstructed EIT images have units as follows:

– Normalized Difference EIT: in this case, measurements y are unitless, and the

EIT image will be in units of fractional conductivity change, ∆σ/σr.

– Difference EIT: in this case, measurements y must be in units of transfer

conductance (Ω−1), and the EIT image will be in units of conductivity change

(in Ω−1·m) scaled by the ratio or the measurement geometry to the FEM

geometry.

Desired behaviour: AR should be constant for any target position. We

consider constant AR to be the most important figure of merit, since, without

constant amplitude response, the same volume of air in different parts of the lung

will contribute differently to the image, introducing serious difficulties in image

interpretation.

• Position Error (PE): measures the extent to which reconstructed images

faithfully represent the position of the image target. Based on the target position,

rt, and the CoG of x̂q, rq, we define:

PE = rt − rq (3)

where positive values of PE indicate reconstructed images “pushed” to the medium

centre. This measure is similar to that of Adler and Guardo (1996).

Desired behaviour: PE should be small and show small variability for targets

at different radial positions. We consider small and constant PE to be the second

most important figure of merit. If PE is variable, interpretation of a distribution

of air in the lungs becomes unreliable. Sheffield backprojection has large PE near

the electrodes, and this has resulted in cases where changes at the electrodes are

misinterpreted as being inside the body.

• Resolution (RES): measures the size of reconstructed targets as a fraction of the

medium; this is equivalent to a measure of point spread function (PSF) size.

RES =

√
Aq

A0

(4)

where Aq =
∑

k[x̂q]k, the number of pixels in x̂q and A0 is the area (in pixels) of

the entire reconstructed medium. The square root is used so that RES measures
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radius ratios rather than area ratios. This measure is modelled on the one proposed

by Wheeler et al (2002).

Desired behaviour: RES should be uniform and small, in order to more

accurately represent shape of the target conductivity distribution. We consider

uniformity of RES to be the fourth most important figure of merit, but small

size of RES to be less important (sixth). A non-uniform RES can result in an

incorrect reconstructed position of a larger target. Low RES serves primarily to

distinguish nearby targets. Since EIT is understood to be a low resolution medium,

this application is less important.

• Shape Deformation (SD): Reconstruction algorithms typically create circular

images for targets in the centre, but often display strangely shaped artefacts for

targets near the medium boundary. The Sheffield backprojection algorithm tends to

show “streak” artefacts in this case. SD measures the fraction of the reconstructed
1
4
–Amplitude set which does not fit within a circle of equal area.

SD =
∑
k 6∈C

[x̂q]k/
∑

k

[x̂q]k (5)

where C is a circle centred at the CoG of x̂q with an equivalent area to Aq. This

figure is similar to that of Oh et al (2007).

Desired behaviour: SD should be low and uniform. Large SD may result in

incorrect interpretation of images, although this effect is less important than other

artefacts. We consider SD to be the fifth most important figure of merit.

• Ringing (RNG): measures whether reconstructed images show areas of opposite

sign surrounding the main reconstructed target area. Fig. 1 shows an arc of

ringing around the image centre. Ringing is typical of linear filters; for second-

order systems the effect may also be called “overshoot”. RNG measures the ratio

of image amplitude of the opposite sign outside circle C to image amplitude within

C.

RNG =

 ∑
k 6∈C&[x̂]k<0

[x̂]k

 /

(∑
k∈C

[x̂]k

)
(6)

Desired behaviour: RNG should be low and uniform. Overshoot may easily

result in incorrect interpretation. For example, the negative ringing between non-

conductive lungs will produce a conductive pattern which may be misinterpreted

as a heart. We consider RNG to be the third most important figure of merit.

• Noise Amplification (NF): measures the extent to which random measurement

noise is amplified in the reconstructed images. Noise amplification is measured by

the noise figure (NF) as illustrated in Fig. 2, based on the definition by Adler and

Guardo (1996). The NF is the ratio of the output to input signal to noise ratio

(SNR) for a filter. We define SNR =
mean | signal |

std noise
in terms of image amplitude,

rather than in terms of image energy, since linear image reconstruction tends to
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Figure 2. Schematic representation of the Noise Figure (NF) parameter. NF
represents the amplification of noise through the reconstruction process as the ratio of
SNRx to SNRy.

conserve amplitude rather than energy. Thus

NF =
E[mean |x̂t|]/E[std x̂n]

E[mean |yt|]/E[std yn]
(7)

For regularized algorithms, the value of NF is normally set by selection of the

value of a hyperparameter. For GREIT, the value of NF is set by the weighting

associated with the training noise. There is an inherent trade-off betneen good

noise performance and fidelity to the other figures of merit.

Desired behaviour: NF should be low, and, ideally, should be tuned to the noise

level present in the EIT hardware used. Several studies have looked into strategies

to select appropriate noise performance (eg. Graham and Adler 2006). At this

time, we do not have consensus on the best way to choose NF. Instead, we note

that noise performance of Sheffield Backprojection (NF=0.5 in the medium center)

has generally been considered to be satisfactory. Therefore, as an interim measure,

we recommend NF=0.5 for GREIT algorithms.

3. Methods: Reconstruction algorithm framework

This section describes the GREIT framework to calculate a linear image reconstruction

matrix which is optimized to a set of performance requirements. This approach is based

on experience with a large number of linear regularized EIT reconstruction approaches

(such as Adler and Guardo 1996, Adler and Lionheart 2006, Barber and Brown 1988,

Cheney et al 1990, Cohen-Bacrie et al 1997, Polydorides and Lionheart 2002, Soleimani

et al 2006, Vauhkonen et al 1998). The key difference is that this framework is based on

a set of performance requirements, whereas previous reconstruction algorithms are based

directly on the underlying mathematical models and do not express the performance

requirements explicitly. The value of this approach is that it allows these performance

requirements (established in our case via consensus) to be directly encoded into the

reconstruction algorithm.
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The body under investigation is modelled using a finite element model (FEM)

which discretizes the conductivity onto nN piecewise smooth elements, represented

by a vector σ ∈ RnN (To clarify use of symbols, σ represents a vector conductivity

distribution, while σ is the standard deviation). Difference EIT calculates a vector

of conductivity change, x = σ − σr between the present, σ, and the reference, σr,

conductivity distributions. x may also represent a parameter log σ
σr

, which matches the

conductivity change in the linear approximation.

Image reconstruction in EIT is a non-linear problem; however, linearized

approximations have proved to be very useful. This is largely because the measurement

noise and geometric uncertainty present in clinical and experimental EIT data are

sufficiently large to prevent stable results with iterative algorithms. Linear algorithms

also have the benefit of producing images in which the effects of data artefacts can

be more readily identified. Finally, linear reconstruction can be implemented as a

fast matrix multiplication. We represent linear EIT image reconstruction as a matrix,

R ∈ RnN×nM which maps measurements y to a reconstructed image x̂:

x̂ = Ry (8)

3.1. Sheffield Backprojection

The backprojection algorithm was developed by Barber and Brown (1984) for the

original Sheffield EIT system, and has seen numerous variants and improvements

(Barber, 1989). While the original technique was based on an analogy to the

backprojection algorithm for CT, this model was clearly inadequate, because electric

current propagates diffusely, and thus differently to X-ray photons. Therefore,

improvements were developed to the backprojection algorithm (e.g. Barber and Brown

1988). Such strategies can be shown to regularize the reconstructed images. A good

mathematical characterization is given by Santosa and Vogelius (1990).

While many variants of Sheffield backprojection exist, clinical and experimental

EIT has largely used only the one which was distributed in the Sheffield Mark I EIT

system (Brown and Seagar 1987). The Göttingen Goe MF II EIT system (Hahn et al

2002) has also been widely used for such clinical and experimental work, and uses a very

similar reconstruction algorithm.

Unfortunately, it appears that the exact formulation of this algorithm has been

lost. To regenerate it, we proceeded as follows. Since image reconstruction is linear,

there exists a mapping which can explain the transformation of measurements into

images. From a Sheffield Mark I device, we obtained a large set of measurements, yk,

and the associated reconstructed images, x̂k, and formed matrices Y = [y1, · · · , yk, · · ·]
and X = [x̂1, · · · , x̂k, · · ·] by concatenation. The Sheffield backprojection matrix,

was calculated as the least squared fit to YRSBP = X. In order to permit

testing of EIT data against this algorithm, it has been made available online

eidors.org/data_contrib/db_backproj_matrix under the following license: “This

matrix is copyright DC Barber and BH Brown at University of Sheffield. It may be
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used free of charge for research and non-commercial purposes. Commercial applications

require a license from the University of Sheffield.”

3.2. One step linear Gauss-Newton solvers

In this section, we elaborate the Gauss-Newton (GN) EIT reconstruction approaches,

which have been widely used in EIT since the late 1980’s (Yorkey et al 1987, Cheney et al

1990). This approach allows use of sophisticated regularized models of the EIT inverse

problem, able to represent this solution as a linear reconstruction matrix, which can then

allow rapid, real-time imaging. For small variations around the reference conductivity

σr, the relationship between x and y can be linearized (giving the difference EIT forward

model):

y = Jx + n (9)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix and n ∈ RnM is the measurement

noise, which is assumed to be uncorrelated white Gaussian. J is calculated from the

FEM as [J]ij =
∂[y]i
∂[x]j

∣∣∣
σr

, and depends on the FEM, the current injection patterns, the

reference conductivity, and the electrode models. This system is underdetermined since

nN > nM . Regularization techniques are required in order to calculate a conductivity

change estimate, x̂, which is both faithful to the measurements, y, and to a priori

constraints on a “reasonable” image.

The GN inverse problem seeks to calculate a solution, x̂, to the EIT inverse problem

in terms of a generalized Tikhonov regularization expressed as the minimum of a sum

of quadratic norms

‖y − Jx̂‖2
Σ−1

n
+ ‖x− x◦‖2

Σ−1
x

(10)

where x◦ represents the expected value of element conductivity changes, which is zero

for difference EIT. Σn ∈ RnM×nM is the covariance matrix of the measurement noise n.

Since n is uncorrelated, Σn is a diagonal matrix with [Σn]i,i = σ2
i , where σ2

i is the noise

variance at measurement i. Σx ∈ RnN×nN is the expected image covariance.

It is worth noting that many other regularized approaches to EIT have been used,

such as the TSVD (truncated singular value decomposition; Bayford et al 2008) and

SIRT (simultaneous iterative reconstruction technique; Hahn et al 2006). All linear

approaches are structurally similar; however, the formulation in (10) explicitly exposes

the selection of the image reconstruction parameters.

Typically, covariance matrices Σn and Σx are not calculated directly, but are

modelled heuristically from a priori considerations as V = σ2
nΣn and P = σ2

xΣx, where

σn is the average measurement noise amplitude and σx is the a priori amplitude of

conductivity change. V models the measurement accuracy. For uncorrelated noise,

each diagonal element is proportional to the signal to noise ratio. For difference EIT

with identical channels, V = I. The regularization matrix P may be understood to

model the likelihood of image elements and their interactions.
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By solving (10), a linearized, one-step inverse solution is obtained as

x̂ =

(
JT 1

σ2
n

V−1J +
1

σ2
x

P−1

)−1

JT 1

σ2
n

V−1y

=
(
JT V−1J + λ2P−1

)−1
JT V−1y (11)

where parameter λ = σn/σx is often called the “regularization hyperparameter” and

controls the trade-off between resolution and noise attenuation in the reconstructed

image. The matrix, R =
(
JT V−1J + λ2P−1

)−1
JT V−1 is the linear, one-step inverse.

In (11), the term in the inverse is of size nN × nN . To save computational time, and

improve inverse accuracy and stability, matrix R may be rewritten using the data form,

or Wiener filter form as:

R = PJT
(
JPJT + λ2V

)−1
(12)

In (12), the size of the term in the inverse is reduced to nM × nM .

If image elements are assumed to be independent with identical variance, P becomes

an identity matrix I and (11) uses zeroth-order Tikhonov regularization. For EIT, such

solutions tend to push reconstructed noise toward the boundary, since the measured

data are much more sensitive to boundary image elements. Instead, P may be scaled

with the sensitivity of each element, so that each diagonal element i, [P−1]i,i =
[
JT J

]
i,i

.

This is the NOSER prior of Cheney et al (1990). Many other prior matrices have been

proposed: to model image smoothness as a penalty for non-smooth image regions, P

may be set to the discrete Laplacian filter (Vauhkonen et al 1998), a discrete high

pass Gaussian filter (Adler and Guardo 1996), or based on variance uniformization

constraints (Cohen-Bacrie et al 1997). In this paper, we compare results from the

GREIT approach with those of GN image reconstruction using the NOSER prior. This

algorithm is representative of a broad group of structurally similar algorithms that have

been widely implemented in EIT; it is considered to generally perform well.

3.3. GREIT image reconstruction approach

In this section, we elaborate the GREIT procedure from which the reconstruction

matrix, R is calculated. The procedure depends on definition of a forward model, a

noise model, and desired performance metrics.

3.3.1. Forward model A forward model allows calculation of EIT measurement data

y(k) from a conductivity change distribution x(k). The model represents the details

of the body geometry, the electrode size and contact impedance, and the reference

conductivity, σr, around which conductivity changes occur. In this paper, the forward

problem is solved using a 3D FEM using the complete electrode model (Cheng et al

1989). However, it is worth noting that any forward model, physical or numerical, is

suitable for this procedure.

One other requirement for the forward problem model is an estimate of the

amplitude of conductivity changes x(k) encountered in the modelled EIT application.
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Based on the forward model, conductivity changes, x, result in a measurement variance

σ2
y = var y = E[‖y‖2]. The mean y is assumed to be zero, which implies that positive

and negative conductivity changes are equally likely. This assumption is reasonable for

a general purpose EIT reconstruction algorithm, although specific EIT applications may

not match it exactly. For lung images, we may calculate σ2
y using either a simulation

model of the amplitude of conductivity changes due to breathing, or from a sample of

EIT measurements in representative applications.

3.3.2. Noise model A noise model allows calculation of representative noise (or

undesired signal) samples in EIT measurements. For GREIT, we consider two sources

of noise: electronic measurement noise, and electrode movement artefacts. In general,

for each source of noise ns, we have noise samples y
(k)
ns , and an estimate of the noise

amplitude variance σ2
ns

= var yns
= E[‖yns

‖2]. The mean noise is assumed to be zero

in this formulation; if necessary, a non-zero noise mean should be accounted for by

pre-processing of EIT measurements. Note that for normalized difference EIT, noise

samples are normalized by the reference measurements by [y]i = [n]i/[vr]i.

Electronic measurement noise is typically modelled to be uniform and Gaussian

in EIT image reconstruction. This assumption is reasonable for a generic GREIT

algorithm designed for general EIT reconstruction. However, for a specific EIT system,

measurement noise is a function of the EIT hardware and patient connection. If

different gain settings are used for each channel, these settings will alter the noise.

Calibrated measurements of EIT noise show that it is non-Gaussian and varies between

channels (Hahn et al 2008). We suggest GREIT algorithms be tuned to the hardware

implementation. This may be implemented using a calibration protocol before the start

of measurements, or by integrating a model of the hardware imperfections into the

forward model (Hartinger et al 2007).

Electrode movement artefacts occur when the electrodes move, either with posture

change or with chest movements due to breathing. Several reports have demonstrated

the significant impact of such movements on EIT images (Adler et al 1996, Zhang and

Patterson 2005, Coulombe et al 2005). In order to reduce the contribution of such

movement on EIT reconstruction, Soleimani et al (2006) showed that it is possible to

create an augmented forward model based on both the conductivity change and electrode

movement, which resulted in reduced movement artefacts in the reconstructed images.

In order to use this capability in GREIT, we specify that a set of “noise” measurements

due to electrode movement be incorporated. This is currently implemented from

deformations of the FEM (Gómez-Laberge and Adler 2008), but may be based on a

calibration protocol in an implemented system.

3.3.3. Desired performance metrics. Based on the performance metrics defined in

section 2, we create a training set of “desired images”, x̃t. For training set member

(k), each image, x̃
(k)
t , corresponds to the position of a conductivity target, x

(k)
t , in the

forward model, as illustrated in Fig. 3. The desired image, x̃t, is located at the same
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Figure 3. Training data for GREIT. Two sets of training data are used, based on
conductivity targets and noise or artefact sources. For each type data, a set of training
inputs (EIT measurements) and desired outputs (reconstructed images) are calculated.
Rectangles represents a matrix in which each column (k) represents a training sample.
The circle represents corresponding desired image pattern.

centre as the conductivity target, xt. However, x̃t is defined to be a circle with a circular

area corresponding to the blurring inherent in EIT, while xt is essentially a point target.

It is this definition of a larger “desired image” which allows GREIT to achieve a more

uniform resolution. Since most EIT reconstruction algorithms achieve better resolution

near the boundary than in the medium centre, this definition of x̃t forces a trade-off of

boundary resolution for a lower resolution that can be achieved uniformly throughout

the image. Note that it would possible to set x̃
(k)
t = x

(k)
t ; however, this would be

equivalent to a standard GN solution without tuning the algorithm to the performance

metrics. We recommend, for a 16 electrode EIT system, that the diameter of x̃t be 20%

of the medium diameter.

Corresponding to each “desired image”, is an image weighting w(k) which represents

the weight given to each pixel in x̃
(k)
t . The weighting allows “tuning” of the relative

importance of the performance metrics, as illustrated in Fig. 4. For each desired image,

x̃
(k)
t , there is an inner circular zone centred at the target position where the amplitude

is required to be flat to meet the AR and PE performance metrics. There is another

circular zone outside the boundary of the specified contrast, where the desired image is

zero, to meet the RNG and SD performance metrics (illustrated as the circles on Fig.

4 bottom left). In these zones, w(k) is large in order to provide a substantial penalty

for images outside the specifications. Between the circles we have a “transition zone”

in which the reponse gradually decreases from the specified amplitude to zero. In the

transition zone, w(k) is small to allow the reconstruction algorithm flexibility to meet

the other specifications.

In addition to the conductivity targets, noise training samples, yn are generated

for data noise and electrode movement. For noise samples, the “desired image”, x̃n,

is clearly zero; we wish for noise input to produce no output. For these images, the

weighting, w(k) is uniform across the image area. The magnitude of w(k) controls NF

and the overall noise performance of GREIT. A large value of w(k) results in a large

penalty for image noise and a low NF, and vice vera.



GREIT: linear EIT image reconstruction 13

  

A
m

pl
itu

de

x t
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Figure 4. Illustration of the training data and weighting. left: Training target (x(k)
t )

centre: Reconstructed image (x̂(k)) right: Desired image (x̃(k)
t ) The bottom row shows

the image, while the top row plots the amplitude across a row through the centre of the
simulation target. x̃(k)

t is larger than x(k)
t in order to establish a uniform resolution.

The weighting w(k) is illustrated on the image of x̃(k)
t by two circles. Inside the inner

circle and outside the outer circle, w(k) is larger, illustrated by the small error bars
on the upper graph. Between the circles, in the “transition zone”, w(k) is smaller,
illustrated by the larger error bars.

Based on the forward model, noise model, and desired performance metrics. we are

able to formulate a set of training data and define the GREIT reconstruction matrix

in terms of these data. We can show that for a linear reconstruction, this approach is

equivalent to a generalized Tikhonov regularization (section 3.2) in which the prior

distributions Σx and Σn correspond to the selection strategy for the training data

(section 3.4). The GREIT reconstruction matrix R (later referred to as RGR) which

best fits the requirements may be expressed as minimization of an error ε2

ε2 =
∑

k

‖x̃(k) −Ry(k)‖2

W(k)

=
∑

k

∑
i

(
[x̃(k)]2i [w

(k)]2i − 2[x̃(k)]i[w
(k)]2i

(∑
j

Rij[y
(k)]j

)
+ [w(k)]2i

(∑
j

Rij[y
(k)]j

)2
)

(13)

where the sum k is over all training measurement and noise samples, and W(k) =

(diag w(k))2, is a diagonal matrix representing the weighting corresponding to each

measurement. The 2-norm is used as it allows a linear expression for, and faster

computation of, R; however, other norms may result in improved performance.

Based on (13), we develop an expression for R = arg min ε2, by setting the matrix
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derivative ∂ε2

∂Rij
to zero.

−1
2

∂ε2

∂Rij

=
∑

k

[x̃(k)]i[w
(k)]2i [y

(k)]j −
∑

k

[w(k)]2i

(∑
l

Ril[y
(k)]l

)
= 0

=
∑

k

[x̃(k)]i[w
(k)]2i [y

(k)]j −
∑

l

Ril

(∑
k

[y(k)]l[w
(k)]2i [y

(k)]j

)
= Aij −

∑
l

RilBijl (14)

where matrix A ∈ RnN×nM and tensor B ∈ RnN×nM×nM are defined as A =∑
k[x̃

(k)]i[w
(k)]2i [y

(k)]j and B =
∑

k[y
(k)]l[w

(k)]2i [y
(k)]j. Based on these expressions, RGR

solves

Aij =
∑

l

[RGR]ilBijl (15)

If the weights, w, are the same for each training data set, then B does not depend

on i, and (15) can be written in terms of matrices A and B as A = RGRB; the

reconstruction matrix is calculated and RGR = AB−1. The results for this paper are

calculated using this expression for uniform w, since the best selection of weights has

not been established.

If w varies for each element, then RGR is solved using block diagonal matrix based

on B: 

R11

...

R1M

...

RN1

...

RNM


=



B111 · · · B11M · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

B1M1 · · · B1MM · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · BN11 · · · BN1M

...
. . .

...
. . .

...
. . .

...

0 · · · 0 · · · BNM1 · · · BNMM



−1 

A11

...

A1M

...

AN1

...

ANM


(16)

The calculation of the GREIT reconstruction matrix may be shown to be equivalent

to a scaled generalized Tikhonov solution of the form of section 3.2. In order to illustrate

this equivalence, consider a GREIT reconstruction algorithm formulated with uniform

weighting W for each sample, k. A training set of size nT training conductivity targets,

y
(k)
t , are drawn from a distribution with covariance Σx. For this example, we consider

nN samples of only the electronic measurement noise, y
(k)
n , which is modelled as zero-

mean Gaussian, and samples are drawn from a distribution with covariance Σn. The

reconstruction matrix R minimizes the norm

‖[X̃t|0]−R[Yt|Yn]‖2

W (17)

where [·|·] represents horizontal matrix concatenation and Yt = 1
nT

[y
(1)
t · · ·y(nT )

t ],

X̃t = 1
nT

[x̃
(1)
t · · · x̃(nT )

t ], and Yn = 1
nN

[y
(1)
t · · ·y(nN )

t ]. In this case, the matrix R which
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minimizes the norm is

R = [X̃t|0][Yt|Yn]T
(
[Yt|Yn][Yt|Yn]T

)−1

= X̃tY
T
t

(
YtY

T
t + YnYT

n

)−1

= X̃tY
T
t

(
JΣxJ

T + Σn

)−1
(18)

where samples Yt may be approximated from the Jacobian assuming the body is linear

for small targets. This formulation has the same generalized Tikhonov regularization

term as that of eqn. (12).

3.4. Selection of training data

Training data are selected as small, conductivity contrasting targets spread randomly

and uniformly in the plane of 3D model between electrodes. Vertical offsets above and

below the plane of 0.25×diameter of medium are allowed.

The computational cost of calculating RGR does not change dramatically with the

size of the training data set. We therefore use a large number of training samples to

avoid any training bias. The minimum training set is much smaller, because, since the

model is linear, the key requirement is that the range of RGR be adequately represented,

and it is limited to the number of independent measurements, 1
2
nE × nV (which, for a

16 electrode system is 104).

4. Methods: forward models

Training data for GREIT requires a forward model which maps conductivity contrast

targets, xt, to difference measurements, y. Forward models are built using 3D first order

tetrahedral finite elements, and solved using preconditioned linear solvers (Polydorides

and Lionheart 2002). Finite element models have been developed for four different

geometries: male and female adult chests, a neonatal chest, and a cylinder. The

cylindrical form may be used for phantom studies, and to image a pig thorax (which has

a roughly circular cross section). Clearly, it is possible to design optimized models for

a given patient geometry, and this will offer improved reconstructed images, with the

added complexity of designing patient specific FEM meshes. Based on our experience

with time-difference EIT, we feel that the four models provided offer most of the accuracy

of adaptive meshing.

In the design of FEM models of the thorax, the following issues need to be

considered.

• Electrode placement: Several configurations of electrode types and placement are

currently used. GREIT considers electrodes placed in a plane at a defined chest

height perpendicular to the patient long axis. In the most common configuration,

Electrode #1 is placed on the sternum. Subsequent electrodes are placed on

subject left, spaced equidistantly around the chest. When viewing the EIT image,

electrodes are numbered clockwise from the top centre, and the subject is oriented
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so the feet would point out of the image. Another common configuration places

electrodes #1 and #16 on either side of the sternum, and rotates the remaining

electrodes accordingly.

Electrodes placed at a mid-thoracic level show a good approximation of the

global lung behaviour (Yang and Patterson 2007). There are two main strategies

to select the electrode level. One practice is to place electrodes at a defined

distance (a few centimeters in adults and millimeters in infants) below the nipple

line, although this anatomical marker is somewhat variable for some female and

larger or older male subjects. The other approach is to place the electrodes at the

level of the 6th − 7th intercostal space at the parasternal line (which corresponds

approximately to the nipple line). Other vertical placements have been reported:

the 10th intercostal space (Coulombe et al 2005), and the upper chest at the 3rd

intercostal space to measure lung perfusion (Smit et al 2004). Placing electrodes

too low may result in a large contribution of mediastinum or abdominal impedance

changes in the center of the EIT image.

• Electrode size: Electrode size varies between applications. Lung EIT applications

typically use standard Ag/AgCl ECG electrodes. For applications with custom EIT

electrodes, it is common to use larger electrodes, in order to decrease variability in

contact impedance. For infants, ECG type electrodes are often trimmed so that

they can fit on the small size chest. FEM models of the electrodes on the neonatal

thorax must be adapted to account for the changes in contact impedance due to

electrode trimming. The FEM models described in this paper use rectangular

electrodes, but may be modifed for other electrode geometries.

• FEM model size and refinement: Increasing the density of elements in the FEM

model increases the accuracy of simulations. However, the simulation accuracy is

limited by the boundary shape accuracy. We recommend that a minimum FEM

model size of 25,000 elements be used for simulation of GREIT training sets. The

FEM mesh should be refined in the region of the electrodes, since the highest current

densitites occur here. Electrode models should use the complete electrode model

(Cheng et al 1989). We also stress the importance of using 3D forward models,

since 2D models cannot account for the true distribution of current in the body.

• Conductivity simulations: Simulated targets are created at random positions which

uniformly fill the medium in the electrode axis, and a vertical range of 1
4

of the

medium diameter. One important parameter is the use of an appropriate reference

conductivity distribution σr. The most common assumption for time difference

EIT is that the σr is a uniform, homogeneous distribution. However, in a patient,

the non-conductive lungs mean a smaller part of the stimulated current penetrates

the body centre than would be predicted by an homogeneous distribution. The

consequence is that lung contrasts are reduced and “pushed” toward the medium

centre. We suggest that simulations be made using σr taken from a realistic model

of subject conductivity distributions, which models the lower lung conductivity in
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the central region.

4.1. Adult models

Adult FEM models were generated from the visible human body dataset (Ackerman,

1998) which provides radiological and photographic images. The photographic images

were used to generate the surface models from which the finite element meshes were

generated. The surface models were created using AliasStudio (Autodesk) from the

photographic images of the thorax spaced 20 mm apart. The method used is similar to

that used to generate models of the human head for EIT of brain function (Tizzard et

al 2005). Rectangular electrodes of 20×40 mm were specified. Fig. 5 shows an example

of the B-Spline curves generated for one slice of the male subject.

Figure 5. left: One slice of the male photographic visible body dataset showing the
modelled B-Spline curves of the boundary. There are two curves, modelling the left and
right sides of the boundary, tangentially blended. right: The finished surface model of
the male thorax ready for exporting to the FE meshing software.

The final set of curves are used to generate the body surfaces which are then capped

top and bottom to form a closed volume. The finished surface model is exported to the

mesh-generating software which, in this case, is I-DEAS (Integrated Design Engineering

Analysis Software). I-DEAS has the tools to define electrode geometry easily prior to

meshing, although any meshing software could be used to achieve this, e.g. NETGEN

(Schoberl 1997). The meshes generated in I-DEAS were of similar resolution. The

resulting FEM models are shown in Fig. 6. For the male, the model comprised

27,170 elements and 5,548 nodes. For the female, these figures were 27,073 and 5,346

respectively. These data show that for the male, stretch values were between 0.160 and

0.976, with a mean and SD of 0.698 and 0.109 respectively; for the female, stretch values

were between 0.198 and 0.982, with a mean and SD of 0.702 and 0.101 respectively.

The models generated represent a high degree of accuracy of boundary shape to

a male and female subject. One limitation is that the source dataset from the visible
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human project was generated from cryogenically frozen cadavers and will therefore be

subject to any anatomical inconsistencies arising from the process.

Figure 6. Finite element models of adult thoraces with rectangular electrodes. A wire
frame mesh of the surface finite elements is shown. Electrodes are shown in green, with
a lighter colour electrode #1. left: Female subject right: Male subject

4.2. Neonate models

The neonatal mesh (Fig. 7) was generated with the surface modelling technique used

for the adult models. The images were from X-Ray CT, based on a dataset of an infant

with exomphalus. Due to the risks, CT data of healthy infants are not available. The

modelling was therefore subject to some assumptions regarding the boundary shape of

a healthy subject. Circular electrodes of 8 mm diameter were specified. The model,

which consists of 23,747 elements and 5025 nodes was that used for initial algorithm

evaluation in Bayford et al. (2007).

4.3. Cylindrial models

A cylindrical FEM model was generated which is suitable for simulations, phantom

tank experiments and is also a reasonable model for the thorax shape of common EIT

experimental animals, such as pigs. The FEM is generated using NETGEN (Schoberl,

1997). The medium diameter and height are 30 cm with a maximum element size of

1 cm. Circular electrodes are defined by the intersection of the main cylinder with

radial cylinders, and electrode mesh refinement is implemented by specifying a smaller

maximum mesh size for each radial cylinder. Fig. 7 shows an image of the resulting mesh

(with 124052 tetrahedral elements) as well as the positions of conductivity targets.
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Figure 7. Left: Finite element models of a neonatal thorax with rectangular
electrodes. The figure shows a wire frame mesh of the surface finite elements (in
green). Right: Cylindrical FEM used for calculation of the main stimulation results of
this paper. Image shows boundary elements below a cut plane. The turquoise circles
indicate the positions of conductivity targets, xt, used in sec. 5.1.

5. Evaluation

Evaluation is performed in two stages. First algorithm performance is evaluated against

the figures or merit in section 2. Next, we compare to a representative set of data

from simulations and experimental. All evaluation is performed on a 16 electrode EIT

configuration using adjacent current stimulation and voltage measurements.

We compare three algorithms for normalized difference EIT: 1) Sheffield

Backprojection (RSBP ), 2) Gauss-Newton Reconstruction using a NOSER prior (RGN),

and 3) GREIT (RGR). RGN is chosen as representative of typical GN difference EIT

solutions. In order to standardize noise performance, each algorithm is set to NF= 0.5

at the medium centre. This property is inherent to the implemented version of RSBP .

For RGN , NF is set by adjusting the hyperparameter λ, while for RGR, NF is set by

adjusting the weighting w(k) of noise training data yn. The value of λ is chosen using a

bisection search.

5.1. Evaluation: performance figures or merit

We test each reconstruction matrix, R, for normalized difference EIT against against

the figures of merit (sec. 2). Simulation data are generated from the cylindrical phantom

as shown in Fig. 7. Five hundred non-conductive targets with a diameter of 5% of the

medium diameter are simulated, in the plane of the electrodes, starting at the medium

centre and progressing radially outward. The simulated target is rotated by a fixed

angle around the centre for each sample in order to sample the entire FEM geometry.

Fig. 8 shows representative images at three different radial positions. Several effects

can be seen from these images. First, Sheffield Backprojection performs well for targets
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Figure 8. Examples of simulated reconstructed images (red indicates conductive, while
blue indicates non-conductive changes) as a function of the simulated target position
(left column, in units of radius fraction). Each row shows images reconstructed from
the same small conductivity target, xt, shown as a small turquoise circle. left: Sheffield
Backprojection (RSBP ), center: Gauss-Newton (RGN ), right: GREIT (RGN ).

that are not too close to the medium boundary; near the boundary, it produces smearing

artefacts. GN reconstruction produces clear ringing artefacts, but otherwise shows good

performance with good resolution. GREIT gives slightly lower resolution than GN, but

gives more constant resolution with very little ringing artefacts, matching the consensus

requirements.

Fig. 9 shows algorithm performance for each parameter as a function of radial

position. The “noise” that appears on each line is due to the discreteness of the

FEM mesh for simulation. There are larger oscillations near the boundary; this reflects

variability in performance as the target passes in front of and between the electrodes.

Overall, all algorithms perform well in the centre of the medium with poorer performance

near the boundary. In comparison to SBP and GN, GREIT shows either an equivalent

or an improved ability to meet the desired performance requirements.

5.2. Evaluation: representative data

In order to illustrate EIT image reconstructions with these algorithms, we calculate

images using RSBP , RGN , and RGR for two experiments in which the physiology

corresponding to the EIT images is well understood. Due to space constraints, other

tests of GREIT are given on the internet at eidors.org/GREIT.

• Recruitment manoeuvre in acute lung injury: These data were measured in an

anesthetized ventilated supine piglet as part of the study of Frerichs et al (2003)
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RNG

Figure 9. Algorithm performance against simulated tests as a function of radial
position. Radial position on each graph is from centre (left) to the body boundary
(right). Each column shows results from a different reconstuction algorithm: left:
Sheffield Backprojection (RSBP ), center: Gauss-Newton (RGN ) right: GREIT (RGR)
Each row shows a different parameter. From top to bottom: Amplitude Response
(AR), Position Error (PE), Resolution (RES), Shape Deformation (SD) and Ringing
(RNG)

using the Goe MF II system, and performed at the University of Göttingen,

Germany. Acute lung injury was created by repeated bronchoalveolar lavage. EIT

data were measured during a recruitment manoeuvre during which PEEP was raised

and then lowered from 0 to 30 cmH2O in steps. Images are reconstructed of tidal

ventilation at a PEEP of 10 cmH2O on the inflation and deflation segments of a

recruitment manoeuvre. Measurements vr and v were calculated from average end-

expiratory and end-inspiratory measurements, respectively, at the specified PEEP.

• Regional pneumothorax / pleural effusion: These data were measured in

anesthetized ventilated supine pigs as part of the study of Hahn et al (2006) using

the Goe MF II EIT system and performed at the University of Göttingen, Germany.

Unilateral pleural effusion and pneumothorax was induced by injecting up to 300 ml

of air or 300 ml of Ringer solution into the right side via a small incision made in the

chest wall and a plastic canula and fixed by a suture and sealed by cyanoacrylate

glue. Images are reconstructed of pneumothorax and pleural effusion. Measurement

vr is calculated from an average signal at end-expiration before the intervention,

while v is calculated at end-expiration during injection of air and fluid, respectively.
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Figure 10. Images of ventilation in a pig with acute lung injury at a PEEP of
10 cmH2O shown (top row) on the inflation and (bottom row) deflation segment of a
stepwise recruitment and derecruitment manoeuvre (data from Frerichs et al 2003).
left: GREIT (RGN ). center: Gauss-Newton (RGN ), right: Sheffield Backprojection
(RSBP ),

Figure 11. Images of localized (top row) pneumothorax, and (bottom row) pleural
effusion in an anesthetized, ventilated pig (data from Hahn et al 2006). left: GREIT
(RGN ). center: Gauss-Newton (RGN ), right: Sheffield Backprojection (RSBP ),

6. Discussion

This paper describes a unified approach to 2D linear EIT reconstruction of lung images,

which we call GREIT. This approach represents a consensus of a large and representative

group of experts in EIT algorithm design and clinical applications for pulmonary

monitoring. The goal of this work is to address the concern that most clinical and

physiological research in lung EIT is done using older and proprietary algorithms, which

is an obstacle to interpretation of EIT images because the reconstructed images are not
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well characterized.

The approach consists of: 1) detailed 3D finite element models of the thorax; 2)

consensus on the performance figures of merit; and 3) an approach to fit the linear

reconstruction matrix, R, to the performance figures. In order of importance, figures

of merit are: a) uniform amplitude response, b) small and uniform position error, c)

small ringing artefacts, d) uniform resolution, e) limited shape deformation, and f)

high resolution. Such figures of merit are to be achieved with small noise amplification

and small sensitivity to electrode and boundary movement. The current work leaves

several parameters of the algorithm unspecified, including details on the selection of

training data and required noise parameters. We are currently undertaking clinical

and experimental validation of the GREIT algorithm to establish recommendations for

these parameters. It is worth clarifying one disadvantage of the regularized approach

presented: Sheffield backprojection tend to map measurement artefacts to “streaks”,

while GREIT maps the same artefacts to “blobs”. It is easier for an operator to notice

such streaks, and identify the presence of data errors.

All contributions from this work (algorithms, software, models and test data) have

been made available (eidors.org/GREIT) under an open source license which allows

gratis commercial and non-commercial use. Software to implement this algorithm is

made available under the GNU LGPL (Free Software Foundation, 2007), which requires

the source code of any distributed modifications to be made available. FEM models,

GREIT reconstruction matrices (RGR) and experimental and clinical data provided for

evaluation of GREIT, are made available under the Creative Commons Attribution

License (Creative Commons, 2007). Users are permitted to copy, distribute, transmit

and adapt the works, under the condition of attribution by citing the papers as indicated.
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