
Abstract – Factor analysis (FA) has been pursued as a means to 

decompose dynamic cardiac PET images into different tissue types 

based on their unique physiology. Each tissue is represented by a 

time-activity profile (factor) and an associated spatial distribution 

(structure). Decomposition is based on non-negative constraints of 

both the factors and structures; however, additional constraints are 

required to achieve a unique solution. In this work we present a 

novel method that combines physiological models of factor 

relationships into the decomposition process. Preliminary results are 

evaluated, suggesting that model-based FA decomposition results in 

physiologically accurate factors and structures. 

I. INTRODUCTION 

actor analysis (FA) techniques have been explored as a means 

to improve cardiac function quantification. An image series is 

decomposed into a finite number of temporal factors and their 

corresponding spatial distribution (structures) which, ideally, 

should correspond to the physiology of the imaged tissue [1]. The 

decomposition may be expressed in matrix form as 

Y = FS+E, 

Where Y is the dynamic image sequence (the pixels of each time 

frame in a row), the columns of F contain the time-activity 

profiles of the factors, the rows of S contain spatial distribution 

(structure) of the factor, and E is error, or residual signal not 

accounted for by the factors.  

Decomposition is non-unique, requiring constraints that model 

the physical imaging process. In cardiac PET, these have 

historically been decomposition into non-negative factors and 

structures, which is representative of the physics and imaging 

process. In addition, Poisson statistics have been used to model 

the imaging process, but these constraints still do not ensure a 

unique solution. 

In 2006 El Fahkri et al. [2] introduced an additional constraint 

that minimizes structure overlap in order to ensure a unique 

solution. And in 2007 we [3] proposed a constraint that 

minimizes factor overlap. However, both approaches do not 

completely agree with our knowledge of the physical model.  In 

this work we propose an alternative approach that couples the 

factors using models that describe their physiological relationship 

over time. Specifically, these models relate the three main 

components of the heart – right cavity blood, left cavity blood, 

and myocardium. 

The right ventricle cavity (RV) blood factor is a free variable 

with n-1 time points (due to unity area of each factor), where n is 

the number of frames. The left ventricle cavity (LV) blood is 

modeled by convolution of the RV blood with a shifted gamma-

variate function (having 3 free parameters) that accounts for 

transport delay and dispersion [4] during transport of blood from 

the RV to the LV via the lungs. This is expressed as, 
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where t1 is the time delay to first activity, tp is time delay to peak 

activity, and β controls the broadness of dispersion. 

The myocardium factor is modeled by convolution of the LV 

blood factor with a compartmental response function assumed for 

the specific tracer. In the case of 
82
Rb we assumed a one 

compartment model which is defined by a single free parameter 

k2 (tracer washout) and shown in eq. 2. 
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Once again, since the factors are scaled to unity area, there is no 

need for scaling factors in either equations (1) or (2). The model 

parameters are optimized as part of the decomposition process. 

 

II. METHODS AND MATERIALS 

Two sets of data were analyzed: 

1. Simulated: Factors were created using an arbitrary RV blood 

time activity curve, RV to LV transfer model, and a rubidium-

one-compartment model. These factors were cross multiplied 

with respective structures as shown in the top row of figure 1. 

Each time frame of the simulated image sequence was 

smoothed with a 12mm FWHM Gaussian and summed with 

varying degrees (0 and 10%) Gaussian distributed random 

noise. Two subsets of images were used in order to assess the 

solution’s robustness to tracer uptake characteristics: 

a. Blood activity clearing entirely 

b. Non-zero residual blood activity 

2. Canine: A single dog underwent a series of dynamic PET 

scans with varying 
82
Rb (150 MBq) infusion durations (15, 

30, 60, 120, 240, 240, 120, 60, 30, 15 seconds) with a 

Siemens ECAT ART scanner. The images were iteratively 

reconstructed to 12 mm resolution. 

These data sets were analyzed using the following steps: 

1. Semi-automated cropping of field-of-view to include regions 

of high signal intensity. 

2. Optimization of Model-based factor analysis (automatic 

determination of number of factors). 

III. RESULTS 

A. Simulation 

The structures and factors of the simulated data were recovered 

with good accuracy regardless of the noise levels. For all factors 

the root-mean-squared-error (RMSE) was below 6% with an 

average of 3.6%. The majority of variation appears in the 

magnitude of blood factor peaks, which relates to blood peaks 

that are overly sharp (large β), as seen in figure 1. The resolved 

structures correlated very well (R
2
>0.966 with an average 

R
2
=0.991) with the simulated data (smoothed structures, shown 

in lower row of table 1). 

 
TABLE 1 – Short Axis Slices of Simulated Structures Before and After 

Smoothing 

 RV Blood LV Blood Myocardium 

U
n
sm
o
o
th
e
d
 

S
tr
u
c
tu
r
e
s 

   

S
m
o
o
th
e
d
 

S
tr
u
c
u
tr
e
s 

   

Model-Based Factor Analysis of Dynamic Sequences of Cardiac Positron 

Emission Tomography 

R. Klein, R.S. Beanlands, A. Adler, R. deKemp 

F 



 

0 1 2 3 4 5 6 7 8
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Factor Comparison

Time (min)

N
o
rm
a
liz
e
d
 A
c
ti
v
it
y

 

 

RV Blood
Sim

RV Blood
FA-No Noise

RV Blood
FA-10% Noise

LV Blood
Sim

LV Blood
FA-No Noise

LV Blood
FA-10% Noise

Myo
Sim

Myo
FA-No Noise

Myo
FA-10% Noise

 

0 1 2 3 4 5 6 7 8
-0.05

0

0.05

0.1

0.15

0.2
Factor Comparison

Time (min)

N
o
rm
a
liz
e
d
 A
c
ti
v
it
y

 

 

 

Figure 1 – Comparison of resolved RV blood (green), LV blood (red), and 

myocardium (blue) factors without noise (o) and with 10% noise (x) to the 

original profiles (lines) used in simulating the dynamic image sequence. Top 

figure represents total blood clearance and bottom figure represents residual 

blood activity. 

B. Canine Model 

The number of resolved factors varied between 2 for long tracer 

infusions and 3 for short infusions (30s or less). Where 3 factors 

were resolved, distinct RV and LV structures were observed as 

shown in Table 3.  

Factors were representative of the infusion duration with blood 

factors having a more gradual rise with prolonged infusions. 

Likewise myocardial uptake was more gradual. In all cases, blood 

activity dropped to near zero values over time (after decay 

correction), which agrees with observations made in rats using 

arterial blood sampling, as illustrated in figure 2. 

 
Figure 2 – Example comparison of resolved LV blood (red) and myocardium 

(blue) factors using model-based FA in a dog with 15 and 60 second constant 

activity rate 82Rb infusion. The gray line demonstrates decay corrected blood 
82Rb concentration measured in a rat using carotid artery sampling (injection 

interval was 30 seconds). 

TABLE 3 – Example of Resolved Structures 

 (same cases 15s and 60s examples as in figure 2) 

Infusion 15s 60s 120s 240s 
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Reproducibility of structures was excellent. In all correlation 

combinations (n=45) R
2
-values were >0.866 for myocardium and 

>0.964 for blood structures with mean values 0.943 and 0.975 

respectively. 

 

IV. DISCUSSION 

A. Model Parameters 

Although the factors resolved from the simulated data agreed 

closely with the original data, the RV-LV model parameters did 

not. This suggests that the model function is over-determined 

which may lead to non-unique solutions. Simplification of the 

model (removal of one or more parameter), may aid in resolving 

this issue. Likewise, longer tracer infusions may mitigate the need 

for resolving 3 factors without compromise to quantification of 

cardiac function, thus simplifying the modeling further. 

B. Computation Complexity 

Model based factor analysis benefits from reduced computational 

complexity over traditional factor analysis methods due to a 

reduced number of free variables. In the case of a one 

compartment model and three factors (RV blood, LV blood, and 

myocardium) an image with n time frames has (n-1)+3+1 free 

parameters to optimize as opposed to 3(n-1) for traditional factor 

analysis. As a result computation times may be shortened, even if 

the algorithm is more complicated. 

 

V. CONCLUSION 

Constraints must be placed on dynamic cardiac PET image 

decomposition in order to resolve physiologically accurate 

factors. Model-based FA may be a suitable an alternative that 

incorporates a-priori information of the physical model. Further 

investigation is required to assess the effect on cardiac function 

quantification. 

 

REFERENCES 
[1] I. Buvat, H. Benali, R. Di Paola, Statistacal distribution of factors and 

factor images in factor analysis of medical image sequences, Phys. Med. 

Biol. 1998;43;1695-1711  

[2] G. El Fahkri, A. Sitek, B. Guerin, M. F. Kijewski, M.F. Di Carli, S. C. 

Moore, Quantitative Dynamic Cardiac 82Rb PET Using Generalized 

Factor and Compartment Analyses, J. Nuc. Med., 2005;46(8);1264-71 

[3] R. Klein, M Bentourkia, R. Beanlands, A. Adler, R.A. deKemp, A Minimal 

Factor Overlap Method for Resolving Ambiguity in Factor Analysis of 

Dynamic PET, NSS Conf. Rec, 2007;5;3268-72 

[4] M. T. Madsen, A Simplified Formulation of the Gamma Variate Function, 

Phys. Med. Biol. 1992;37;1597-1600 

M
y
o
. 

S
tr
u
c
tu
r
e
 

    

Normalized  

Activity 

  
RV Blood 

15s 
LV Blood 

15s 
Myocardium 

15s 
Blood 

60s 
Myocardium 

60s 

0 1 2 3 4 5 6 7 8 9 
0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 
Factor Comparison 

Time (min) 
  

Blood Activity sample 

in Rat 


