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Abstract— Electrical Impedance Tomography (EIT) calcu- It is widely recognized that the Total Variation (TV)
lates the inter_nal cpnductivity distribution within a body (¢, norm of image spatial gradient) regularization is good
from current simulation and voltage measurements on the 4 yacovering discontinuities in the image while the Least

body surface. Two main technical difficulties of EIT are its S LS y uti . t h
low spatial resolution and sensitivity to measurement errcs. quares (LS, or/; norm) solution is prone to smoo

Image reconstruction using¢; norms allows addressing both Out e_dges. This is b(_epause penalty terms uﬂggmrm
difficulties, in comparison to traditional reconstruction using penalize smooth transitions less than sharp transitiohdew

2 norms. A/, norm on the data residue term reduces the ¢, norms penalize only the transition amplitude, and not its
sensitivity to measurement errors, while the/; norm on the slope. Similarly, the/, penalty for a data outlier is larger

image prior reduces edge blurring. This paper proposes and . . .
tests a generallagged diffusivity type iterative method for EIT (the difference is squared) than for the This means the

reconstructions. ¢, and ¢ minimizations can be flexibly chosen ¢1 solution is less perturbed by outliers. However, the
on the data residue and/or image prior parts. Results show th  solution involves the minimization of a non-differentiabl
flexibility of the algorithm and the merits of the ¢; solution. objective function, and thus cannot be efficiently solved
by the traditional optimization methods that minimize a
differentiable objective function such as the SteepestEbec
. INTRODUCTION and GN method. . .

, ) In this paper we propose an image reconstruction algo-
~ Electrical Impedance Tomography (EIT) images thiim hased on the lagged-diffusivity method in which the
impedance distribution within a body from electrical st|m—€1 norm is applied to both the image prior and data fidelity
ulation and measurements on the body surface. One of key -\  This preserves image edges and provides enhanced
limitations of EIT is its relatively poor image resolution, yegistance against data errors. This algorithm has a denera

which, for 16 electrodes is less than 10% of the bodyerative structure which enables flexibly choosing difer
diameter. EIT is a soft field tomography modality, due tq,q,m, strategies, and termination criteria.

the diffusive propagation of electrical current. Thus, the

reconstruction of an internal conductivity distributioror Il. METHODS
boundary data is severely ill-conditioned [1]. In order to An EIT system withng electrodes is considered. Elec-
calculate a “reasonable” image, regularization techréqudrodes are applied to a body in a single plane and adjacent
are required. Such regularized image reconstructions canrrent stimulation and voltage measurement are performed
be statistically formulated in terms @f priori information ng current stimulation patterns are sequentially applied and
about image element values and the correlations among differential measurements are made for each stimulation.
them. These correlations are often expressed as gendralit¥ifference EIT calculates difference data= vo—v1, where
Tikhonov regularization; the zeroth order Tikhonov [2],y,Vv € R™™, ny; = ng xny, andv; andv, are the vectors
discrete Laplacian filter [3] and weighted diagonal (NOSERYr measurements before and after a conductivity change
priors [4], [5], etc. Another limitation to the quality of EI of interest. To improve precisiony; is typically averaged
images is measurement errors, which arise from multiplever many data frames, at a time when the conductivity
sources, such as RF coupling onto signal wires, electrodéstribution may be assumed to be stable; thyss assumed
malfunction, and subject movement. While it is commomoise free.

to model such measurement noise as Gaussian, such nois&€he model under investigation is a circular finite element
sources introduce many more outliers than the the Gaussiaedel (FEM) which has.y piecewise elements represented
model would predict. Most image reconstruction algorithm®y a vectore € R"~. Difference EIT calculates a vector
for EIT search for an image solutio, which minimizes of conductivity changex = o2 — o, between the present
an error expression based on thenorm, e.g.pne-step GN conductivity distribution,o;, and the reference measure-
method. However, these algorithms are known to blur imagwent, o;. In this paragraphgo represents conductivity,

regions and be sensitive to data outliers. elsewhere in this paper,is the standard deviation. For small
variations aroundry, the relationship betweex andy can
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be uncorrelated whijte Gaussiad.is calculated from the  The Total Variation (TV) of th&; norm is known to work
FEM asJ;; = g%‘ . This system is underdeterminedwell to preserve intrinsic edges in original images. Howgve
J . cppe . . .

to both the measurementﬁn and toa prlorl Constralnts on trad'tlonal |Ineal’lzatIOI’l teChanues M'nlmlzatlon Ofrlﬁlil-

a “reasonable” image. tions of TV norms normally uses iterative methods. The

primal dual interior point method (PD-IPM) was proposed

A. Least Squares4 norm) solution [10] to solve the TV minimization problem by removing the
The LS solution of (1) can be obtained using GN methodgingularity points which caused non-differentiabilityfées

which seeks a solutiof by minimizing applying the linearization method. A mixed norm TV solu-

) ) tion [7] for EIT was formulated as:

Iy — 312+ [x — %02 @ A | 2 1
. o x = argmin [ly — Jx|[3 + [|Ix — xol| 4)

where || - ||? is the ¢, norm, and the norm subscript is the X

i i 2 _ i . . .

weight matrix, such thatx |, = >_; >2; xiWi;X;. X0 isthe  \yhere||- |2 is thel, norm and] -||! is the?; norm weighted

a priori mean conductivity changé:, € R™*" is the py the TV prior.

covariance matrix of the measurement nais&incen is un- -~ Another attractive property of; solution is its resistance

cgr.relatedz,} is a diagonal matrix wittiX, )i = o7, where 15 data outliers. For the data residue teyn;- Jx, the £,

oi 1S the noise variance at m_easuremen}jm EQRTIXM norm is highly sensitive to data outliers, because it assume

is the 2exgtlected image covariance. 8t = 0, %,," and 3 Gaussian distribution, which over weights the signifieanc

R =03, W andR are heuristically determinelpriori.  of |arge outliers. The/; solution is inherently more robust

Hereo, is the average measurement noise amplituderand against outliers in measurements because it does not square

is thea priori amplitude of conductivity change. each measurement misfit. This property/pfregularization
By solving (2) and defining a hyperparametes on/0z,  is promising, especially for EIT, because measurementsrro
a linearized, one-step inverse solution is obtained [6] constitute one of primary technical obstacles of clinicl,E
. T PR where erroneous electrodes introduce severe artefads [11
x= (J WI+A R) J*Wy =By (3) We propose applying; regularization to both the data

1 residual and the image prior; the optimization problem
whereB = (JTWJ + \?R) J'W is the linear, one- becomes

step inverse controls the trade-off between resolution and
noise attenuation in the reconstructed image.

If image elements are assumed to be independent wi . . )
g b H1well known algorithm to the sum of; norms is Iteratively

identical expected magnltudB., becomes an |Qent!ty matrix, Reweighted Least Squares (IRLS) [12]. The IRLS method
I, and (3) uses zeroth-order Tikhonov regularization. Far, EI . X . )
eratively solves a weighted least squares problem which

such solutions tend to push reconstructed noise toward tﬁe . :
. . itivelgains as ari; norm, and converges to tife norm solution.
boundary, since the measured data is much more sensitive't

boundary image elements. Inste&®imay be scaled withthe C. Generalized¢; and ¢, regularization with iterative
sensitivity of each element, so thRt is a diagonal matrix method

p
with elementsR}; ; = {JTJLZ.- This is the NOSER prior A weighted and regularized inverse may be generally
[4] for an exponentp, wherep € [0,1]. The TV prior is formulated as
the discretization of the gradient operator. the TV of a 2D
image is the sum of the variation across each mesh edges,

Pn

X,
with each edge weighted by its length [7]. In this paper, the .
TV prior is used to calculate the matrR. Wherep,, andp, are the data and image norms and must be

> 1 for stability. The norm subscript is the weight matrix,
B. /; norm solution such that|x[liy = >3, >, xf/QWijxé’/g. A weighted p
When applied to the image pridfx — xo||, f> norm norm Withp,, = p, = 2, both term usés norms, equivalent

solutions tend to give “smoothed” images, because the pri,B? (2), and denoted,-f,. With p,, = 2, p, = 1 it models the

applies strong penalties to edges. However, strong edgjgéoleme_ntatic_)n of (4)'_ and is den_otégi—él. In this paper, a
are physiologically realistic, and are desired in the insage9eneral iterative algorithm for (6) is developed, whictoat

Although edge blur can be decreased using a small hypépxible choice of combinations of norms by simply choosing

parameter), this dramatically decreases noise performancéifferencep, andp,. A similar £, norm choosing method
Another method is to carefully define a prior withpriori can b? found in [13]. . .

knowledge of edge locations [8]. However, this approach can (6) is reformulated in quadratic forms:

result in image artefacts that appear plausible, and this ha  x — 4 gmin(y — Jx)'D! 7D, (y — IJx) + @)
to detect €.9.,[9]), if the prior information is too detailed, X

but does not describe the actual image. (x —x0)'DLE ' D, (x — x0)

X = aTg;ninlly—JXHl +[Ix — xol|* (®)

L x =%l (6)

x

X = argmin ||y — Jx||
X



whereD,, is a diagonal matrix in which

1, _
Dol = (ly = Ix[]:)* . ®) =R
0.8 hge
here| - | is the absolute value. Similarljp,. is a diagonal 0k ISR
matrix with ' TS
<~
L . 041 ""ggg
[Da]ii = ([Jx — xol]i) 2"~ ©) Y gaggn
Note that forp, = 2 or p, = 2, D,, or D, will be or g%
the identity matrix. Wherp,, = 1 or p, = 1, [D,]i; = 0.2} s’a‘uu'
1 1
([ly = Ix[];)"2 or [Du]ii = ([|x —xol]s)"2. In order to -0a4f Eganv‘u
remove singular points whefey — Jx|]; or [|x — x|]; equal ~06h sﬁﬂanﬂ
o S
zero, (8) and (9) are modified as follows 08 Sga
1o ' S
[Dn]i,i (lly = Ix[]; + B3) abn (10) il »
lp.—1 -1 -05 0 0.5 1
[Dz]i,i = (HX_XO”i + )2 (11)

where 5 is a small positive scalar. !
. . . . . Fig.
This formulation leads to an iterative update expressiog,
for calculation ofk; the k + 1 iterationx*+1)
from £*) using

1. Simulation finite element model with 576 elementsecEbdes
X ndicated by green dots. The background and inhomdgEndiave
is calculated conductivities1.0 and 2.0, respectively.

S(k+1) (k) t (k) 2 (k)
K00 = x® 4 (FW()T + 2R (xY)) (12) V. RESULTS
JW(xM) (Y_Jx(k)) Images were calculated from simulation data using the
where algorithms discussed in this paper. Fig. 2, compares the
reconstructed images from the various choiceg,0énd /5
W(x) = 0.D,(x)'S;, 'Dy(x) (13)  prior. (a) is equivalent to the conventional GN method by
R(x) = o02D,(x)'S;'D,(x) (14) choosing thel>-f2 norm combination. When applied to the

image prior, the/; norm obtains better edge sharpness and
less artefacts than th& norm.
In order to evaluate the data error robustness of the
[1l. SIMULATIONS different norm types, data errors (outliers) were delitedya

Four EIT reconstruction types were tested on the propos&groduced. Assuming that for certain electrode malforgti
algorithm: £, norms on both the data residue and the imag€ measurement failure rate wigs where electrodes cannot
prior parts (2-f2); £> norm on the data residue part ahd S€NSe vo_ltages_. The measurement failure happens randomly.
norm on image prior %-¢,); ¢, on the data residue part In this simulation, t_hls erroneous effect was implemented
and ¢, norm on image priorf-f»); ¢, norm on both parts by randomly choosmgo (out of 208) data anq set ther_n
(61-01). as zeros. By repeating the same reconstructions as Fig. 2,

Algorithms were implemented for evaluation of 2D EITthe corresponding “electrode-error” images are generated
problems using the EIDORS software [9]. Numerical sim@&nd shown in Fig. 3. Whei; norm is used for the data
ulations were conducted using an FEM model with g7gesidue term, the reeonstructed image shows only n0|se_(F|g
elements. lllustrated as Fig. 1: 16 electrodes (marked #62)(b)); however, with thé, norm on the data residue (Fig.
green dots) were simulated surrounding the medium, usirg§¢)(d)) the reconstructed images are very similar to therer
an adjacent stimulation and measurement pattern. Insigle tff€€ case. This shows high resistance/pbolutions against
model, there were two inhomogeneous areas with conducti¢ata errors.
ity 2.0, while the backgroqnd had conductivity0. The noise V. DISCUSSION
performance of the algorithms was tested by adding pseudo
random, zero mean Gaussian noise with a fixed random seedEIT images reconstructed using &n norm formulation
NSR = 1% where NSR is the ratio of noise to signal give two distinct advantages: edge preservation (when
power. Images were reconstructed oh0&4 element model norm is applied to the image priors term), and error ro-
which differs from the simulation model to avoid theverse  bustness (when applied to the data residue term). However,
crime [14]. the disadvantage is that tlfe norm formulation cannot be

The proposed algorithm was tested with ten iteration&omputed as a linear one-step reconstruction due to non-
The TV prior was used for all algorithms. Hyperparameterdifferentiability. Thus/; norm image reconstruction requires
were chosen empirically for the best comprise between image iterative algorithm which is computationally efficient.
resolution and noise performance. If thenorm was applied this paper, an efficient iterative method for EIT reconstruc
on data residue) = 1.0, elsewhere) = 0.01. tion is proposed, which allows, arbitrary choice of data and



(a) (b)
(c) (d)
Fig. 2. Images reconstructed using differéntand ¢2 norms: (ap, =

2,pz = 2 (2-€2), (D)prn = 2,pz = 1 (€2-£1), (Cpn = 1,pz = 2 (€1-£2),
(Dpn =1,pz =1 (£1-£1).

image prior normsg, andp,) to be implemented. Results [12]
suggest thaf; norms on both terms provide the best images
in terms of image resolution and robustness to data noisey 3
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