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Abstract— Electrical Impedance Tomography (EIT) calcu-
lates the internal conductivity distribution within a body
from current simulation and voltage measurements on the
body surface. Two main technical difficulties of EIT are its
low spatial resolution and sensitivity to measurement errors.
Image reconstruction using ℓ1 norms allows addressing both
difficulties, in comparison to traditional reconstruction using
ℓ2 norms. A ℓ1 norm on the data residue term reduces the
sensitivity to measurement errors, while theℓ1 norm on the
image prior reduces edge blurring. This paper proposes and
tests a generallagged diffusivity type iterative method for EIT
reconstructions.ℓ1 and ℓ2 minimizations can be flexibly chosen
on the data residue and/or image prior parts. Results show the
flexibility of the algorithm and the merits of the ℓ1 solution.

I. INTRODUCTION

Electrical Impedance Tomography (EIT) images the
impedance distribution within a body from electrical stim-
ulation and measurements on the body surface. One of key
limitations of EIT is its relatively poor image resolution,
which, for 16 electrodes is less than 10% of the body
diameter. EIT is a soft field tomography modality, due to
the diffusive propagation of electrical current. Thus, the
reconstruction of an internal conductivity distribution from
boundary data is severely ill-conditioned [1]. In order to
calculate a “reasonable” image, regularization techniques
are required. Such regularized image reconstructions can
be statistically formulated in terms ofa priori information
about image element values and the correlations among
them. These correlations are often expressed as generalized
Tikhonov regularization; the zeroth order Tikhonov [2],
discrete Laplacian filter [3] and weighted diagonal (NOSER)
priors [4], [5], etc. Another limitation to the quality of EIT
images is measurement errors, which arise from multiple
sources, such as RF coupling onto signal wires, electrode
malfunction, and subject movement. While it is common
to model such measurement noise as Gaussian, such noise
sources introduce many more outliers than the the Gaussian
model would predict. Most image reconstruction algorithms
for EIT search for an image solution,̂x, which minimizes
an error expression based on theℓ2 norm,e.g.,one-step GN
method. However, these algorithms are known to blur image
regions and be sensitive to data outliers.
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It is widely recognized that the Total Variation (TV)
(ℓ1 norm of image spatial gradient) regularization is good
at recovering discontinuities in the image while the Least
Squares (LS, orℓ2 norm) solution is prone to smooth
out edges. This is because penalty terms usingℓ2 norm
penalize smooth transitions less than sharp transitions, while
ℓ1 norms penalize only the transition amplitude, and not its
slope. Similarly, theℓ2 penalty for a data outlier is larger
(the difference is squared) than for theℓ1. This means the
ℓ1 solution is less perturbed by outliers. However, theℓ1

solution involves the minimization of a non-differentiable
objective function, and thus cannot be efficiently solved
by the traditional optimization methods that minimize a
differentiable objective function such as the Steepest Decent
and GN method.

In this paper we propose an image reconstruction algo-
rithm based on the lagged-diffusivity method in which the
ℓ1 norm is applied to both the image prior and data fidelity
term. This preserves image edges and provides enhanced
resistance against data errors. This algorithm has a general
iterative structure which enables flexibly choosing different
norm strategies, and termination criteria.

II. METHODS

An EIT system withnE electrodes is considered. Elec-
trodes are applied to a body in a single plane and adjacent
current stimulation and voltage measurement are performed.
nE current stimulation patterns are sequentially applied and
nV differential measurements are made for each stimulation.
Difference EIT calculates difference datay = v2−v1, where
y,v ∈ R

nM , nM = nE ×nV , andv1 andv2 are the vectors
or measurements before and after a conductivity change
of interest. To improve precision,v1 is typically averaged
over many data frames, at a time when the conductivity
distribution may be assumed to be stable; thus.v1 is assumed
noise free.

The model under investigation is a circular finite element
model (FEM) which hasnN piecewise elements represented
by a vectorσ ∈ R

nN . Difference EIT calculates a vector
of conductivity change,x = σ2 − σ1 between the present
conductivity distribution,σ2, and the reference measure-
ment, σ1. In this paragraph,σ represents conductivity;
elsewhere in this paper,σ is the standard deviation. For small
variations aroundσ1, the relationship betweenx andy can
be linearized as:

y = Jx + n (1)

whereJ ∈ R
nM×nN is the Jacobian or sensitivity matrix;

n ∈ R
nM is the measurement noise which is assumed to



be uncorrelated white Gaussian.J is calculated from the
FEM as Jij =

∂y
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. This system is underdetermined

sincenN > nM , and regularization techniques are needed to
calculate a conductivity change estimate,x̂, which is faithful
to both the measurements,y, and toa priori constraints on
a “reasonable” image.

A. Least Squares (ℓ2 norm) solution

The LS solution of (1) can be obtained using GN method
which seeks a solution̂x by minimizing
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where‖ · ‖2 is the ℓ2 norm, and the norm subscript is the
weight matrix, such that‖x‖2

W
=

∑

i

∑

j xiWijxj . x0 is the
a priori mean conductivity change.Σn ∈ R

nM×nM is the
covariance matrix of the measurement noisen. Sincen is un-
correlated,Σn is a diagonal matrix with[Σn]i,i = σ2

i , where
σ2

i is the noise variance at measurementi. Σx ∈ R
nN×nN

is the expected image covariance. LetW = σ2
nΣ

−1
n and

R = σ2
xΣ

−1
x . W andR are heuristically determineda priori.

Hereσn is the average measurement noise amplitude andσx

is thea priori amplitude of conductivity change.
By solving (2) and defining a hyperparameterλ = σn/σx,

a linearized, one-step inverse solution is obtained [6]

x̂ =
(

J
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WJ + λ2R

)
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J
T
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where B =
(

J
T
WJ + λ2R

)

−1

J
T
W is the linear, one-

step inverse.λ controls the trade-off between resolution and
noise attenuation in the reconstructed image.

If image elements are assumed to be independent with
identical expected magnitude,R becomes an identity matrix,
I, and (3) uses zeroth-order Tikhonov regularization. For EIT,
such solutions tend to push reconstructed noise toward the
boundary, since the measured data is much more sensitive to
boundary image elements. Instead,R may be scaled with the
sensitivity of each element, so thatR is a diagonal matrix

with elements[R]i,i =
[

JTJ

]p

i,i
. This is the NOSER prior

[4] for an exponentp, wherep ∈ [0, 1]. The TV prior is
the discretization of the gradient operator. the TV of a 2D
image is the sum of the variation across each mesh edges,
with each edge weighted by its length [7]. In this paper, the
TV prior is used to calculate the matrixR.

B. ℓ1 norm solution

When applied to the image prior‖x − x0‖, ℓ2 norm
solutions tend to give “smoothed” images, because the prior
applies strong penalties to edges. However, strong edges
are physiologically realistic, and are desired in the images.
Although edge blur can be decreased using a small hyper-
parameter,λ, this dramatically decreases noise performance.
Another method is to carefully define a prior witha priori
knowledge of edge locations [8]. However, this approach can
result in image artefacts that appear plausible, and thus hard
to detect (e.g., [9]), if the prior information is too detailed,
but does not describe the actual image.

The Total Variation (TV) of theℓ1 norm is known to work
well to preserve intrinsic edges in original images. However,
ℓ1 norm solutions are difficult because the objective function
is non-differentiable and cannot be efficiently solved with
traditional linearization techniques. Minimization of func-
tions of TV norms normally uses iterative methods. The
primal dual interior point method (PD-IPM) was proposed
[10] to solve the TV minimization problem by removing the
singularity points which caused non-differentiability before
applying the linearization method. A mixed norm TV solu-
tion [7] for EIT was formulated as:

x̂ = argmin
x

‖y − Jx‖2
2 + ‖x− x0‖

1 (4)

where‖·‖2 is theℓ2 norm and‖·‖1 is theℓ1 norm weighted
by the TV prior.

Another attractive property ofℓ1 solution is its resistance
to data outliers. For the data residue term,y − Jx, the ℓ2

norm is highly sensitive to data outliers, because it assumes
a Gaussian distribution, which over weights the significance
of large outliers. Theℓ1 solution is inherently more robust
against outliers in measurements because it does not square
each measurement misfit. This property ofℓ1 regularization
is promising, especially for EIT, because measurement errors
constitute one of primary technical obstacles of clinical EIT,
where erroneous electrodes introduce severe artefacts [11].

We propose applyingℓ1 regularization to both the data
residual and the image prior; the optimization problem
becomes

x̂ = argmin
x

‖y − Jx‖1 + ‖x− x0‖
1 (5)

A well known algorithm to the sum ofℓ1 norms is Iteratively
Reweighted Least Squares (IRLS) [12]. The IRLS method
iteratively solves a weighted least squares problem which
begins as anℓ2 norm, and converges to theℓ1 norm solution.

C. Generalized ℓ1 and ℓ2 regularization with iterative
method

A weighted and regularized inverse may be generally
formulated as

x̂ = argmin
x

‖y − Jx‖pn
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wherepn andpx are the data and image norms and must be
≥ 1 for stability. The norm subscript is the weight matrix,
such that‖x‖p

W =
∑

i

∑

j x
p/2
i Wijx

p/2
j . A weighted p

norm Withpn = px = 2, both term useℓ2 norms, equivalent
to (2), and denotedℓ2-ℓ2. With pn = 2, px = 1 it models the
implementation of (4), and is denotedℓ2-ℓ1. In this paper, a
general iterative algorithm for (6) is developed, which allows
flexible choice of combinations of norms by simply choosing
differencepn and px. A similar ℓk norm choosing method
can be found in [13].

(6) is reformulated in quadratic forms:

x̂ = argmin
x

(y − Jx)tD
t
nΣ

−1
n Dn(y − Jx) + (7)
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t
xΣ

−1
x Dx(x − x0)



whereDn is a diagonal matrix in which

[Dn]i,i = ([|y − Jx|]i)
1

2
pn−1

. (8)

here | · | is the absolute value. Similarly,Dx is a diagonal
matrix with

[Dx]i,i = ([|x − x0|]i)
1

2
px−1 (9)

Note that for pn = 2 or px = 2, Dn or Dx will be
the identity matrix. Whenpn = 1 or px = 1, [Dn]i,i =

([|y − Jx|]i)
−

1

2 or [Dx]i,i = ([|x− x0|]i)
−

1

2 . In order to
remove singular points where[|y−Jx|]i or [|x−x0|]i equal
zero, (8) and (9) are modified as follows

[Dn]i,i = ([|y − Jx|]i + β)
1

2
pn−1 (10)

[Dx]i,i = ([|x − x0|]i + β)
1

2
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whereβ is a small positive scalar.
This formulation leads to an iterative update expression

for calculation ofx̂; the k + 1 iteration x̂
(k+1) is calculated

from x̂
(k) using
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III. SIMULATIONS

Four EIT reconstruction types were tested on the proposed
algorithm:ℓ2 norms on both the data residue and the image
prior parts (ℓ2-ℓ2); ℓ2 norm on the data residue part andℓ1

norm on image prior (ℓ2-ℓ1); ℓ1 on the data residue part
and ℓ2 norm on image prior (ℓ1-ℓ2); ℓ1 norm on both parts
(ℓ1-ℓ1).

Algorithms were implemented for evaluation of 2D EIT
problems using the EIDORS software [9]. Numerical sim-
ulations were conducted using an FEM model with 576
elements. Illustrated as Fig. 1: 16 electrodes (marked as
green dots) were simulated surrounding the medium, using
an adjacent stimulation and measurement pattern. Inside this
model, there were two inhomogeneous areas with conductiv-
ity 2.0, while the background had conductivity1.0. The noise
performance of the algorithms was tested by adding pseudo
random, zero mean Gaussian noise with a fixed random seed.
NSR = 1% where NSR is the ratio of noise to signal
power. Images were reconstructed on a1024 element model
which differs from the simulation model to avoid theinverse
crime [14].

The proposed algorithm was tested with ten iterations.
The TV prior was used for all algorithms. Hyperparameters
were chosen empirically for the best comprise between image
resolution and noise performance. If theℓ1 norm was applied
on data residue,λ = 1.0, elsewhere,λ = 0.01.
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Fig. 1. Simulation finite element model with 576 elements. Electrodes
are indicated by green dots. The background and inhomogeneities have
conductivities1.0 and2.0, respectively.

IV. RESULTS

Images were calculated from simulation data using the
algorithms discussed in this paper. Fig. 2, compares the
reconstructed images from the various choices ofℓ1 and ℓ2

prior. (a) is equivalent to the conventional GN method by
choosing theℓ2-ℓ2 norm combination. When applied to the
image prior, theℓ1 norm obtains better edge sharpness and
less artefacts than theℓ2 norm.

In order to evaluate the data error robustness of the
different norm types, data errors (outliers) were deliberately
introduced. Assuming that for certain electrode malfunction,
the measurement failure rate was5% where electrodes cannot
sense voltages. The measurement failure happens randomly.
In this simulation, this erroneous effect was implemented
by randomly choosing10 (out of 208) data and set them
as zeros. By repeating the same reconstructions as Fig. 2,
the corresponding “electrode-error” images are generated,
and shown in Fig. 3. Whenℓ2 norm is used for the data
residue term, the reconstructed image shows only noise (Fig.
3(a)(b)); however, with theℓ1 norm on the data residue (Fig.
3(c)(d)) the reconstructed images are very similar to the error
free case. This shows high resistance ofℓ1 solutions against
data errors.

V. DISCUSSION

EIT images reconstructed using anℓ1 norm formulation
give two distinct advantages: edge preservation (whenℓ1

norm is applied to the image priors term), and error ro-
bustness (when applied to the data residue term). However,
the disadvantage is that theℓ1 norm formulation cannot be
computed as a linear one-step reconstruction due to non-
differentiability. Thus,ℓ1 norm image reconstruction requires
an iterative algorithm which is computationally efficient.In
this paper, an efficient iterative method for EIT reconstruc-
tion is proposed, which allows, arbitrary choice of data and



Fig. 2. Images reconstructed using differentℓ1 and ℓ2 norms: (a)pn =

2, px = 2 (ℓ2-ℓ2), (b)pn = 2, px = 1 (ℓ2-ℓ1), (c)pn = 1, px = 2 (ℓ1-ℓ2),
(d)pn = 1, px = 1 (ℓ1-ℓ1).

image prior norms (pn andpx) to be implemented. Results
suggest thatℓ1 norms on both terms provide the best images
in terms of image resolution and robustness to data noise.
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