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Abstract. Electrical impedance tomography (EIT) reconstructs a conductivity
change image within a body from electrical measurements on body surface; while
it has relatively low spatial resolution, it has a high temporal resolution. One key
difficulty with EIT measurements is due to the movement and position uncertainty
of the electrodes, especially due to breathing and posture change. In this paper,
we develop an approach to reconstruct both the conductivity change image and the
electrode movements from the temporal sequence of EIT measurements. Since both the
conductivity change and electrode movement are slow with respect to the data frame
rate, there are significant temporal correlations which we formulate as priors for the
regularized image reconstruction model. Image reconstruction is posed in terms of a
regularization matrix and Jacobian matrix which are augmented for the conductivity
change and electrode movement, and then further augmented to concatenate the d

previous and future frames. Results are shown for simulation, phantom and human
data, and show that the proposed algorithm yields improved resolution and noise
performance in comparison to a conventional one-step reconstruction method.

Keywords : Electrical Impedance Tomography, regularization, image reconstruction,

electrode movement, temporal correlation.

1. Introduction

Electrical Impedance Tomography (EIT) calculates an estimate of the conductivity

distribution within a body based on current stimulations and voltage measurements

on the body surface. EIT imaging has low spatial resolution, however, EIT can

have excellent temporal resolution. Some recent systems have frame rates up to

1000 fps (Wilkinson et al 2005). Such high temporal resolution makes EIT a

promising technology to monitor fast physiological events which affect the conductivity

distribution.

For cardiac activities, EIT can locally determine impedance variations in ventricular

or atrial regions during the cardiac cycle (Eyuboglu et al 1989) and calculate cardiac

parameters such as stroke volume (Vonk-Noordegraaf et al 2000). For pulmonary

function monitoring, EIT has been demonstrated as an effective tool due to the
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conductivity variation of lungs is highly related to the air ventilation (Dijkstra et al

1993), blood infusion (McArdle et al 1988), and intrathoracic fluid volumes (Campbell

et al 1994). EIT is helpful for imaging rapid conductivity changes due to brain

neuronal activity, which occur within a timescale of milliseconds, such as acute blood

infusion/exfusion from visually evoked responses (Holder et al 1987 and Tidswell et al

2001).

Due to the diffusive propagation of electrical current in the human body, EIT

is a soft field tomography modality. Compared with the number of pixels/voxels to be

reconstructed, the amount of electrodes that can be applied on body surface is relatively

small. Thus, the reconstruction of an unknown internal conductivity distribution from

boundary data is severely ill-conditioned (Lionheart et al 2005). In order to calculate

a “reasonable” image, regularization techniques are required. Such regularized image

reconstructions can be statistically formulated in terms of a priori information about

image element values and the correlations among them. In many EIT algorithms, the

zeroth order Tikhonov (Vauhkonen et al 1998a), discrete Laplacian filter (Polydorides

and Lionheart et al 2002) and the NOSER priors (Cheney et al 1990, Graham and Adler

2007) are commonly used. Those regularization priors treat all images independently

from each other. However, it is clear that images within a certain temporal distance are

not independent but do contain useful temporal correlations, especially for high speed

EIT. This type of temporal correlation was exploited by Adler et al (2007) to improve

EIT image noise performance and resolution.

The position uncertainty of electrodes is a principle source of artefacts and

reconstruction errors. Difference EIT is less sensitive to electrode position uncertainty

assuming the electrodes do not move during measurement (Barber and Brown 1988).

However, this assumption is not valid in medical applications, such as cardiopulmonary

imaging, in which the chest moves during breathing and/or posture change. Harris et

al (1988), Adler et al (1996) and Zhang and Patterson (2005) showed the electrode

movement introduced by thoracic variation had a significant effect on EIT imaging.

In this paper, we address two issues in EIT, the electrode position uncertainty

and data noise, by taking advantage of the high frame rate of modern EIT systems.

Previously, we developed an approach to reconstruct conductivity change and electrode

movement from a single frame of EIT data using an augmented Jacobian and prior

matrix (Soleimani et al 2006). One limitation of this approach is that reconstructed

electrode movements can often be noisy. This paper develops an algorithm to improve

reconstructions of both electrode movements and conductivity changes by considering

correlations between reconstructions in successive data frames. We take advantage of

the fact that with fast EIT systems, the boundary shape and internal conductivities

change relatively slowly, and may be formulated as a priori constraints in the image

reconstruction model. This paper proposes to reconstruct EIT images via an inverse

problem with a regularization prior that accounts for both spatial and temporal

correlations among image elements and electrode movements. This algorithm is verified

by numerical simulation, saline phantom data and in vivo human measurement.
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2. Methods

An EIT system has nE electrodes applied on a body surface in a plane using the adjacent

current stimulation and voltage measurement. Also nE current stimulation patterns are

sequentially applied and each of them takes nE−3 differential measurements. Each data

frame measures a vector, v ∈ RnM , of nM = nE(nE − 3) data points (some of which are

redundant if the medium is not changing). Difference EIT calculates difference data y,

(yi = vi − v0, where i is the time index. To improve its precision, the reference signal

v0 is typically the average over many data frames that are acquired when the measured

object may be assumed to be stable. Therefore, v0 is assumed noise-free.

The body investigated is modelled using a finite element model (FEM) that

discretizes the body conductivity into nN piecewise smooth elements, represented

by a vector σ ∈ RnN . Difference EIT calculates a vector of conductivity changes,

xi = σi − σ0 between the present conductivity distribution, σi, and that at the

reference measurement σ0. For small variations around the reference conductivity σ0,

the relationship between x and y can be linearized so that the difference EIT forward

model is:

y = Jx + n (1)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix and n ∈ RnM is the vector

of measurement noise, which is assumed to be uncorrelated white Gaussian. The

Jacobian is calculated from the FEM as Jij =
∂yi

∂xj

∣∣∣
σ0

, and depends on the FEM,

current injection patterns, the reference conductivity and the electrode models. This

system is underdetermined since nN > nM . This problem is commonly solved using

regularization techniques in order to calculate an estimated conductivity change x̂, which

is both faithful to the measurements y and to a priori constraints on a “reasonable”

image.

Under the condition that the system is relatively stable (J is constant), a sequence

of difference data yi are obtained. As long as the conductivity of the body measured

doesn’t change too rapidly, it is reasonable to expect that a certain number d of

adjacent frames in the past and from the future provide useful hints about the current

image. Labelling the current instant as t, we then seek to estimate x̂t from the data

[yt−d; . . . ;yt−1;yt;yt+1; . . . ;yt+d].

In the subsequent sections we consider the following methods: 2.1) Traditional GN

inverse, using yt only, to reconstruct conductivity change. 2.2) GN inverse calculating

both conductivity change and electrode movement, using yt only, to reconstruct both

conductivity change and electrode movement. 2.3) Temporal GN inverse, using

yt−d . . .yt+d, to reconstruct conductivity change only based on a temporal prior model.

2.4) Temporal inverse on both conductivity change and electrode movement, using

yt−d . . .yt+d, to reconstruct both conductivity change and electrode movement based

on a temporal prior model.
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2.1. One-step linear Gauss-Newton (GN) solver

The regularized image reconstruction based on the one-step linearized GN method was

first introduced into EIT by Yorkey et al (1987) and has been widely used (e.g., Cheney

et al 1990; Adler and Guardo, 1996). It addresses the inverse solution as a linear

reconstruction matrix and allows use of advanced regularization methods to solve the

inverse problem. By using a precalculated reconstruction matrix, it can realize rapid,

real-time imaging. The GN inverse problem estimates a solution x̂ by minimizing

‖y − Jx̂‖2
Σ−1

n
+ ‖x− x◦‖2

Σ−1
x

(2)

where Σn ∈ RnM×nM is the covariance matrix of the measurement noise n. Since noise

channels are independent, Σn is a diagonal matrix with [Σn]i,i = σ2
i , where σ2

i is the

noise variance at channel i. Here Σx ∈ RnN×nN is the covariance matrix of the desired

image and x◦ represents the expected value of image, which is zero for difference EIT.

Instead of calculating Σn and Σx, we heuristically model them from a priori

considerations by introducing W = σ2
nΣ−1

n and R = σ2
xΣ

−1
x . Here σn is the average

measurement noise amplitude and σx is the a priori amplitude of conductivity changes.

The measurement accuracy is modelled by W. For uncorrelated noise, each diagonal

element of W is proportional to the corresponding channel signal-to-noise-ratio (SNR).

For difference EIT with identical channels, W is an identity matrix; or else, it may

be measured during the system calibration test (the identity matrix is used in this

paper for simplicity). The regularization matrix R may be understood to statistically

model the amplitudes and interactions of image elements. Simply, R may consider all

elements equally alike and independent (or only locally dependent). More sophisticated

models (e.g., Dai et al 2007) may consider smooth distributions more likely than rapidly

changing ones and using temporal/spatial correlations.

From (2), a linearized one-step inverse solution is obtained as

x̂ =
(
JTWJ + λ2R

)−1
JTWy = By (3)

where λ = σn/σx is the regularization parameter, or hyperparameter, which controls

the trade-off between resolution and noise attenuation in the reconstructed image. Here

B =
(
JTWJ + λ2R

)−1
JTW is the linear, one-step reconstruction matrix.

Assuming that image elements are independent and have an identical expected

magnitude, R becomes an identity matrix I and (3) uses zeroth order Tikhonov

regularization. For EIT, such solutions tend to push reconstructed noise toward the

boundary, since the measured data are much more sensitive to boundary elements than

deep elements. In order to compensate the sensitivity discrepancy, R may be scaled by

the sensitivity of elements, so that R is a diagonal matrix with elements [R]i,i =
[
JTJ

]p

i,i
.

This is the NOSER prior (Cheney et al 1990) with an exponent p. In this paper, the

NOSER prior is used in all tested algorithms. The exponent is chosen as p = 0.5

heuristically, as a compromise between the pushing noise to the boundary (p = 0) or to

the centre (p = 1).
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The term inverted in (3) is of size nN × nN . The matrix B can be rewritten using

the data form (Adler et al 2007:

B = PJT
(
JPJT + λ2V,

)−1
(4)

where P = R−1 = Σx/σ
2
x and V = W−1 = Σn/σ

2
n. In (4), the size of the inverted

matrix is reduced to nM ×nM . This is important for large scale models, such as 3D EIT

models and the temporal inverse, which is introduced below.

2.2. Reconstruction of conductivity change and electrode movement

One of the primary difficulties interpreting EIT images in clinics is the movement of

electrodes from breathing or posture changes. The inaccurately modelled electrode

placement introduces severe artefacts in reconstructed images. In order to solve this

modelling error, Soleimani et al (2006) developed an algorithm to reconstruct both

the conductivity change and the electrode movement simultaneously by combining

conductivity changes and electrode movement reconstructions into a single inversion

process. An electrode displacement vector ∆r ∈ RnDnE , where nD is the model

dimension (2 or 3 for 2D or 3D, respectively), is concatenated to the difference

conductivity vector xc. Thus the augmented vector to be reconstructed is x =[
xT

c ∆rT
]T ∈ RnN+nDnE . The augmented Jacobian becomes J = [Jc Jm] ∈

RnM×(nN+nDnE), where Jc ∈ RnM×nN and Jm ∈ RnM×nDnE are the conductivity

and electrode movement Jacobians, respectively. The overall prior matrix is R =

diag(Rc,Rm) ∈ R(nN+nDnE)×(nN+nDnE), where Rc ∈ RnN×nN and Rm ∈ RnDnE×nDnE

are conductivity and electrode movement prior matrices, respectively. Finally, the one-

step reconstruction is the same as (3) with rebuilt J, x and R.

The electrode movement Jacobian (Jm) is calculated using the rank one perturbation

technique (Olsen and Gopinath 2004), as implemented by Gómez-Laberge and Adler

(2007).

The prior matrix statistically describes the “desired” values of conductivity changes

and electrode movements. The upper nN×nN part of Σ−1
x in (2) represents covariance

of finite element conductivity changes, while the lower nDnE×nDnE part represents

the covariance of electrode movements. By carefully establishing prior matrices for

specific applications, different reconstruction performances can be obtained (Adler and

Lionheart 2006). With a similar purpose to that described in Section 2.1, concerning

the sensitivity discrepancy, we need compensations on “overweighted” elements which

have high sensitivities. The NOSER prior is used in this paper. Suppose the calculated

augmented Jacobian is J = [Jc Jm], then the R is built so that [R]i,i =
[
JTJ

]1/2

i,i
.

2.3. Temporal one-step solver

Adler et al (2007) proposed a temporal image reconstruction algorithm that calculates

the image at a current frame considering data from adjacent frames. This approach

differs from the Kalman filter based algorithms (Vauhkonen et al 1998b), which estimate
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image xt based on measurements yt and the previous image estimate xt−1. The temporal

solver treats the estimate of the image frame sequence as a single inverse problem with

a regularization prior that accounts for both spatial and temporal correlations between

image elements.

2.3.1. Temporal reconstruction. The temporal solver considers a sequence of 2d+1 data

frames from t− d to t + d around the current frame t. Given a vertically concatenated

data frame sequence ỹt = [yT
t−d . . . yT

t . . . yT
t+d]

T and the corresponding concatenated

image sequence x̃t = [xT
t−d . . . xT

t . . . xT
t+d]

T , the direct temporal forward model is

rewritten from (1) as

ỹt = J̃x̃t + ñ, (5)

where ñ = [nT
t−d . . . nT

t . . . nT
t+d]

T . We consider that J is time invariant. Thus,

J̃ = I⊗J, where the identity matrix I is of size 2d+1, and ⊗ is the Kronecker product.

There exists an inter-frame correlation between two images temporally close to

each other. As images become further separated in time, the correlation decreases; for a

separation of δ, the correlation is exp(−|δ|/γ), where γ is the temporal exponential decay

factor in units of frames. Frames with a large time difference |δ| > d, are considered

independent. The one-step inverse (4) then becomes

B̃ = P̃J̃
T

(
J̃P̃J̃

T
+ λ2Ṽ

)−1

, (6)

where Ṽ = I⊗V. Also P̃ = Γ⊗P, where Γ is the temporal weight matrix of an image

sequence x̃ and is defined to have the form

[Γ]i,j = exp(−|i− j|
γ

) i, j = −d, . . . , d. (7)

From (6) and (7),

B̃ =
[
Γ⊗ (

PJT
)] [

Γ⊗ (
JPJT

)
+ λ2 (I⊗V)

]−1
. (8)

Given B̃, the one-step solution x̂t for the current image is rewritten as

x̂t = B̃0ỹt, (9)

where B̃0 occupies the rows nM × d + 1, . . . , nM × (d + 1) of B̃.

2.3.2. Parameter selection. The γ may be considered a hyperparameter of the system:

it depends on the data acquisition frame rate, the speed of underlying conductivity

changes and the system noise level. The estimation of γ can be addressed as a method

of “kernel smoothing”(Fahrmeir and Tutz, 1994). The object function to be minimized

can be averaged squared error, mean average squared error, or average predictive squared

error, etc. In this paper, we take covariance on both sides of (5). We have

Σỹ = J̃Σx̃J̃
t
+ Σñ. (10)
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The optimal γ is chosen so that the covariance error Σỹ−
(
J̃Σx̃J̃

t
+ Σñ

)
is minimized

as

γ = argmin
γ

∥∥∥Σỹ − Σñ − J̃Σx̃J̃
t
∥∥∥

2

F
, (11)

where the ‖ ·‖F is the Frobenius norm. Since Σx̃ = Γ⊗Σx and J̃ = I⊗J, (11) becomes

γ = argmin
γ

∥∥∥Σỹ − Σñ − Γ⊗ (
JΣxJt

)∥∥∥
2

F
. (12)

By taking covariance on both sides of (1), we have

Σy = JΣxJt + Σn, (13)

so that JΣxJt = Σy − Σn. We also have Σñ = I ⊗ Σn and Σỹ = Γy ⊗ Σy, where

Γy ∈ R(2d+1)×(2d+1) is the correlation matrix of ỹ. Thus the optimal γ is calculated by

γ = argmin
γ

∥∥Γy ⊗ Σy − I⊗ Σn − Γ⊗ (
Σy − Σn

)∥∥2

F
. (14)

Here Γy and Σy can be calculated directly from the data; Σn can be obtained in EIT

system calibration phase. For computational efficiency, (14) can be rewritten as

γ = argmin
γ

∥∥∥Γy
∥∥Σy

∥∥2

F
− I ‖Σn‖2

F − Γ
∥∥Σy − Σn

∥∥2

F

∥∥∥
2

F
, (15)

where Γy,
∥∥Σy

∥∥2

F
, ‖Σn‖2

F and
∥∥Σy − Σn

∥∥2

F
may be precalculated. Since Γ is relatively

small (of size (2d + 1)×(2d + 1)), this optimization is performed directly by the bisection

search between limits.

2.4. Temporal reconstruction of conductivity change and electrode movement

The temporal solver for reconstruction of both conductivity change and electrode

movement is formulated in terms of a regularized one-step inverse (8), in which the

Jacobian J is rebuilt as [Jc Jm] and

J̃ = I⊗ [Jc Jm] . (16)

The augmented prior matrix is computed as NOSER prior from the precalculated

Jacobian and

P̃ = Γ⊗ [
JTJ

]−1/2

i,i
. (17)

The inverse is further processed in terms of an augmented image x̃ and measurement

vector ỹ (9), which concatenate the values from d previous and d future frames.

2.5. Method: experiments

Data from numerical simulations, a saline phantom measurement and in vivo human

measurement were used to test these algorithms proposed.
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2.5.1. Numerical simulation. Numerical simulation data were obtained from a 2D

FEM model with 5184 elements, with homogeneous conductivity σh = 1. Illustrated as

Figure 1(a), A unit radius circular model with 16 electrodes was built and an adjacent

stimulation and measurement pattern was applied. In this model a conductive (1.2×σh)

spherical object with 0.05 unit radius rotated clockwise along a trajectory that had a

radius of 2/3 unit, Two hundred frames were taken per movement cycle. A distortion

(horizontal compression and vertical elongation) was applied with distortion amplitudes

gradually increased from 0 at the first frame to 1% of the model diameter at the end

(200th frame).

2.5.2. Phantom measurement. The saline phantom is a plastic cylindrical tank with

30 cm diameter and 30 cm height, being filled with 0.9% saline solution to the

20 cm height. Sixteen stainless steel electrodes were equidistantly placed around the

circumference at a vertical position of 10 cm. EIT data were acquired using the Goe-MF

II EIT system (Viasys Healthcare, Höchberg, Germany) using an adjacent stimulation

and measurement pattern. First, data of a homogeneous background yh were acquired

and processed by ensemble averaging; then two small non-conductive spherical objects

of 2 cm radius were statically suspended at the same level of the electrode plane at

positions (0,7 cm) and (7 cm, 0) as illustrated in Figure 1(b). A compression was

applied on the top of the phantom along the x-axis so that the cross section of the

tank became an ellipse with a minor axis of 25 cm. Since the electrode plane was at

1/3 of the tank height, the maximum movement of electrodes was about 1.7 cm. This

phantom was gradually compressed during the first 6 seconds and held with elliptical

shape afterwards.

2.5.3. In vivo human measurement. EIT data were acquired from a healthy adult

using the Goe-MF II EIT system (Viasys Healthcare, Höchberg, Germany). Adjacent

stimulation and measurement patterns were applied. The data acquisition speed was

13 fps. Sixteen 3MTM Red-Dot Ag/AgCl electrodes were equidistantly attached around

the thoracic circumference at a horizontal plane that was 1 cm under the nipple line.

The 1st Electrode was in the centre of the sternum. Other electrodes were subsequently

placed towards the subject’s right side so that the 5th electrode was under the right

armpit, the 9th electrode on the spine and the 13th electrode under the left armpit. A

17th electrode was attached at lower right waist as reference/ground. All measurements

were taken while the subject was standing and conducting deep breaths to total lung

capacity.

3. Results

The forward and inverse calculations used the EIDORS software (Adler and Lionheart

2006). The numerical and phantom data were reconstructed on a circular 576 element

model and the in vivo data was on a 2D thoracic 576 element model. For the numerical
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Figure 1. Illustration of 2D numerical model simulation and saline phantom
measurement. Green arrows indicate directions of boundary distortion. (a) one
conductive target rotates clockwise (trajectory as dashed circle). Distortion amplitude
increases linearly from 0 to 1% of model diameter. Background conductivity σh = 1
and the target conductivity is 1.2×σh. The illustrated target position is the start/final
position of one full cycle. (b) two non-conductive targets statically suspended in a
saline phantom at the level of the electrode plane. The phantom diameter is 30 cm,
the maximum distortion of the boundary is 5/3 cm.

simulation, the choice of 576 elements for the inverse mesh was to differ from the

simulation model to avoid the inverse crime. Gaussian white noise was added to

numerical simulated data with noise level SNR, defined as ȳ/σn, where σn was the

standard deviation of the added noise and ȳ was the mean value of the difference signal.

Different random seeds were tested and showed similar results. Four algorithms were

evaluated with different regularization methods: 1) GN solver (Sec.2.1); 2) temporal

solver (Sec.2.3); 3) electrode movement solver (Sec.2.2); and 4) temporal and electrode

movement solver (Sec.2.4).

To better understand the effect of the model distortion on reconstructed image,

we used the traditional GN solver to calculate images of a distorted homogeneous

medium (Figure 2, left). The 2D model is divided into four regions, regions 1 and 3 are

compressed horizontally and elongated vertically. This distortion can be understood as

a conductor with shorter length and larger cross section; therefore, the conductance is

increased. This is equivalent to the situation of increased conductivity with unchanged

geometry (Figure 2, middle). Without considering any model geometry variations, the

reconstructed image shows regions 1 and 3 as positive conductivity changes (red) (Figure

2, right). Inversely, regions 2 and 4 are represented as negative conductivity changes

(blue). These effects are named “deformation artefacts”.

As illustrated in Figure 3: at the 11th frame (fn=11, distortion amplitude is
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Figure 2. Effect of boundary distortion on EIT reconstruction.
left : a homogeneous medium with a distorted boundary. Four regions are defined to
identify different effects.
middle: the simplified circuit model of the medium. R1,...,4 represent resistances of
regions 1, . . . , 4, respectively. Ri are intermediate resistances between two regions. In
regions 1 and 3, the boundary distortion can be regarded as shortened and widened
resistors (dashed blocks), and in regions 2 and 4 as elongated and thinned resistors.
right : image reconstructed using GN method with an assumed static boundary
(λ = 0.4, noise-free).

0.05% of the model diameter), although temporal solvers show better target resolution,

all methods identify target successfully due to the small model deformation. With

increasing model deformation (fn=61, 0.3% distortion; fn=111, 0.55% distortion), the

GN and temporal solvers failed to identify the target due to severe distortion artefacts.

The electrode movement solver still shows the target, although artefacts emerge. Further

deformation (fn=161, 0.8% distortion) makes the electrode movement solver incapable

of recognizing target due to severe artefacts. Compared with other solvers, the temporal

and electrode movement solver is much more robust against the “deformation artefacts”.

Illustrated in Figure 4, a similar conclusion can be drawn from phantom data

reconstructions. With gradually increased deformation (0 ∼ 1.7 cm, approximately from

fn=1 to fn=75), the temporal and electrode movement solver shows the best artefact

robustness. The gradual disappearance of the target at the position (7, 0) illustrates

the “deformation artefacts”: the target is gradually obscured by the positive artefacts

introduced by boundary deformation.

In order to test the applicability to in vivo measurements, a thirty-second frame

sequence was acquired (the frame rate was 13 fps, thus 390 frames in total) for a

deep-breathing human subject. Data were reconstructed by the temporal and electrode

movement solver (Figure 5). The reconstructed image sequence was chosen from the

end inspiration to the end expiration. The reference data (v0) were chosen as the

average of the whole data set. At the end inspiration when t = 17.8 sec, the lungs

showed conductivity decrease in blue (compared with the reference); during expiration,

conductivity gradually increased and, after crossing the reference (x0), the lungs regions
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Figure 3. Images reconstructed from simulated data (using λ = 0.4, SNR = 10).
(a) GN solver; (b) Temporal solver; (c) Electrode movement solver; (d) Temporal and
Electrode movement solver. From left to right, the target rotated clockwise (simulated
target positions were shown by black circles); the boundary was increasingly distorted
and arrows indicate amplitudes and directions of reconstructed electrode movements.
Arrow amplitudes are scaled by 20.

showed increased conductivity (in red); they finally reached the end of expiration at

t = 22.8 sec when lungs remained the residue volume and the image showed the highest

conductivity.

4. Discussion

In this paper, we propose an image processing algorithm to help address two issues in

EIT: uncertainty in boundary movement and noise in reconstructed images. Images

of the conductivity change and electrode movement are calculated from sequences of
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Figure 4. Images reconstructed from different solvers using measured data from a
saline phantom (using λ = 0.4). (a) GN solver; (b) Temporal solver; (c) Electrode
movement solver; (d) Temporal and Electrode movement solver. From left to right,
frames were taken at 21, 31, 41 and 51, corresponding to increasing boundary
distortion. Arrows indicate amplitudes and directions of boundary distortion. Arrow
amplitudes are scaled by 10.

EIT data around the current frame. The temporal reconstruction proposed directly

formulates both the reconstructed conductivity change and electrode movement in

terms of a single regularized inverse, based on a priori models that adjacent images

and boundary shapes from a fast measurement system are highly correlated. This

method takes advantage of correlations that occur because the conductivity changes

and boundary movements happen more slowly than the data acquisition.

In this paper, one important assumption is that the Jacobian is time-invariant.

This is a core assumption in time-difference EIT. The model is linearized by taking a

derivative at a reference point. Simulations suggest that the changes in the Jacobian
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t=17.8sec t=18.8sec t=19.8sec

t=20.8sec t=21.8sec t=22.8sec

Figure 5. Images of maximal expiration on human subject (using λ = 2). Anterior is
at image top; left is at image left. Arrows show movement directions and amplitudes
that are exaggerated by 30. The reference signal was calculated as the average over
whole data set.

are much less significant than any general inaccuracies in the Jacobian used due to

inadequate knowledge of the initial geometry and conductivity distribution.

This result is based on our previous work (Adler et al 2007 and Soleimani et al 2006);

the combined solver of temporal inverse and electrode movement reconstruction uses

temporal reconstruction method to calculate both the conductivity change and electrode

movement from difference EIT data. The novel results demonstrated in this paper are

to show significant improvements in noise performance and artefact resistance. The

algorithm performed well in simulated and phantom in comparison to reconstructions

which consider only the conductivity change, and in comparison to our previous results

for electrode movement. Considering the reconstructed images and electrode movement

from in vivo human data, this method shows potential to be used in real time monitoring

of lung ventilation.
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